| import Mathlib | |
| lemma aux_1 | |
| (f : ℕ → NNReal → ℝ) | |
| (h₀ : ∀ (x : NNReal), f 1 x = ↑x) | |
| (h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) : | |
| ∀ (n : ℕ) (x : NNReal), 0 < n ∧ 0 < x → 0 < f n x := by | |
| intros n x hp | |
| have hz₇: n ≤ 7 ∨ 7 < n := by | |
| exact le_or_lt n 7 | |
| cases' hp with hn₀ hx₀ | |
| by_cases hn₁: 1 < n | |
| . refine Nat.le_induction ?_ ?_ n hn₁ | |
| . rw [h₁ 1 x (by norm_num)] | |
| rw [h₀ x] | |
| refine mul_pos hx₀ ?_ | |
| refine add_pos hx₀ (by norm_num) | |
| . intros m hm₀ hm₁ | |
| rw [h₁ m x (by linarith)] | |
| refine mul_pos hm₁ ?_ | |
| refine add_pos hm₁ ?_ | |
| refine one_div_pos.mpr ?_ | |
| norm_cast | |
| exact Nat.zero_lt_of_lt hm₀ | |
| . interval_cases n | |
| rw [h₀ x] | |
| exact hx₀ | |
| lemma aux_2 | |
| (f : ℕ → NNReal → ℝ) | |
| (h₀ : ∀ (x : NNReal), f 1 x = ↑x) | |
| (h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) | |
| (h₂ : ∀ (n : ℕ) (x : NNReal), 0 < n ∧ 0 < x → 0 < f n x) | |
| (h₃ : ∀ (n : ℕ) (x : NNReal), 0 < n → 0 ≤ f n x) : | |
| ∀ (n : ℕ) (x y : NNReal), 0 < n → x < y → f n x < f n y := by | |
| intros n x y hn hxy | |
| by_cases hn₁: 1 < n | |
| . refine Nat.le_induction ?_ ?_ n hn₁ | |
| . rw [h₁ 1 x (by norm_num)] | |
| rw [h₁ 1 y (by norm_num)] | |
| norm_num | |
| refine mul_lt_mul ?_ ?_ ?_ ?_ | |
| . rw [h₀ x, h₀ y] | |
| exact hxy | |
| . refine _root_.add_le_add ?_ (by norm_num) | |
| rw [h₀ x, h₀ y] | |
| exact le_of_lt hxy | |
| . refine add_pos_of_nonneg_of_pos ?_ (by linarith) | |
| rw [h₀ x] | |
| exact NNReal.zero_le_coe | |
| . refine le_of_lt ?_ | |
| refine h₂ 1 y ?_ | |
| norm_num | |
| exact pos_of_gt hxy | |
| . intros m hm₀ hm₁ | |
| rw [h₁ m x (by linarith)] | |
| rw [h₁ m y (by linarith)] | |
| refine mul_lt_mul hm₁ ?_ ?_ ?_ | |
| . refine _root_.add_le_add ?_ (by norm_num) | |
| exact le_of_lt hm₁ | |
| . refine add_pos_of_nonneg_of_pos ?_ ?_ | |
| . exact h₃ m x (by linarith) | |
| . refine one_div_pos.mpr ?_ | |
| norm_cast | |
| exact Nat.zero_lt_of_lt hm₀ | |
| . refine le_of_lt ?_ | |
| refine h₂ m y ?_ | |
| constructor | |
| . exact Nat.zero_lt_of_lt hm₀ | |
| . exact pos_of_gt hxy | |
| . interval_cases n | |
| rw [h₀ x, h₀ y] | |
| exact hxy | |
| lemma aux_3 | |
| (f : ℕ → NNReal → ℝ) | |
| (h₀ : ∀ (x : NNReal), f 1 x = ↑x) | |
| (h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) | |
| (h₄ : ∀ (n : ℕ) (x y : NNReal), 0 < n → x < y → f n x < f n y) : | |
| ∀ (n : ℕ) (x : NNReal), 1 < n ∧ 1 ≤ x → 1 < f n x := by | |
| intros n x hx₀ | |
| cases' hx₀ with hn₀ hx₁ | |
| have g₂₀: f n 1 ≤ f n x := by | |
| by_cases hx₂: 1 < x | |
| . refine le_of_lt ?_ | |
| refine h₄ n 1 x ?_ hx₂ | |
| exact Nat.zero_lt_of_lt hn₀ | |
| . push_neg at hx₂ | |
| have hx₃: x = 1 := by exact le_antisymm hx₂ hx₁ | |
| rw [hx₃] | |
| have g₂₁: f 1 1 < f n 1 := by | |
| rw [h₀] | |
| refine Nat.le_induction ?_ ?_ n hn₀ | |
| . rw [h₁ 1 1 (by norm_num), h₀] | |
| norm_num | |
| . intros m hm₀ hm₁ | |
| rw [h₁ m 1 (by linarith)] | |
| refine one_lt_mul_of_lt_of_le hm₁ ?_ | |
| nth_rw 1 [← add_zero 1] | |
| refine add_le_add ?_ ?_ | |
| . exact le_of_lt hm₁ | |
| . refine one_div_nonneg.mpr ?_ | |
| exact Nat.cast_nonneg' m | |
| refine lt_of_lt_of_le ?_ g₂₀ | |
| exact (lt_iff_lt_of_cmp_eq_cmp (congrFun (congrArg cmp (h₀ 1)) (f n 1))).mp g₂₁ | |
| lemma aux_4 | |
| (f : ℕ → NNReal → ℝ) | |
| (h₃ : ∀ (n : ℕ) (x : NNReal), 0 < n → 0 ≤ f n x) | |
| (h₄ : ∀ (n : ℕ) (x y : NNReal), 0 < n → x < y → f n x < f n y) | |
| (f₀ : ℕ → NNReal → NNReal) | |
| (hf₀ : f₀ = fun n x => (f n x).toNNReal) : | |
| ∀ (n : ℕ), 0 < n → StrictMono (f₀ n) := by | |
| intros n hn₀ | |
| refine Monotone.strictMono_of_injective ?_ ?_ | |
| . refine monotone_iff_forall_lt.mpr ?_ | |
| intros a b hab | |
| refine le_of_lt ?_ | |
| rw [hf₀] | |
| exact (Real.toNNReal_lt_toNNReal_iff_of_nonneg (h₃ n a hn₀)).mpr (h₄ n a b hn₀ hab) | |
| . intros p q hpq | |
| contrapose! hpq | |
| apply lt_or_gt_of_ne at hpq | |
| cases' hpq with hpq hpq | |
| . refine ne_of_lt ?_ | |
| rw [hf₀] | |
| exact (Real.toNNReal_lt_toNNReal_iff_of_nonneg (h₃ n p hn₀)).mpr (h₄ n p q hn₀ hpq) | |
| . symm | |
| refine ne_of_lt ?_ | |
| rw [hf₀] | |
| exact (Real.toNNReal_lt_toNNReal_iff_of_nonneg (h₃ n q hn₀)).mpr (h₄ n q p hn₀ hpq) | |
| lemma aux_5 | |
| (f : ℕ → NNReal → ℝ) | |
| (hmo₁ : ∀ (n : ℕ), 0 < n → Function.Injective (f n)) | |
| (f₀ : ℕ → NNReal → NNReal) | |
| (hmo₂ : ∀ (n : ℕ), 0 < n → StrictMono (f₀ n)) | |
| (fi : ℕ → NNReal → NNReal) | |
| (hfi : fi = fun n => Function.invFun (f₀ n)): | |
| ∀ (n : ℕ) (x y : NNReal), 0 < n → f₀ n x = y → fi n y = x := by | |
| intros n x y hn₀ hn₁ | |
| have hf₃: ∀ n y, fi n y = Function.invFun (f₀ n) y := by | |
| exact fun n y => congrFun (congrFun hfi n) y | |
| rw [← hn₁, hf₃] | |
| have hmo₃: ∀ n, 0 < n → Function.Injective (f₀ n) := by | |
| exact fun n a => StrictMono.injective (hmo₂ n a) | |
| have hn₂: (Function.invFun (f₀ n)) ∘ (f₀ n) = id := by exact Function.invFun_comp (hmo₃ n hn₀) | |
| rw [Function.comp_def (Function.invFun (f₀ n)) (f₀ n)] at hn₂ | |
| have hn₃: (fun x => Function.invFun (f₀ n) (f₀ n x)) x = id x := by exact Eq.symm (NNReal.eq (congrArg NNReal.toReal (congrFun (id (Eq.symm hn₂)) x))) | |
| exact hmo₁ n hn₀ (congrArg (f n) hn₃) | |
| lemma aux_6 | |
| (f : ℕ → NNReal → ℝ) | |
| (h₀ : ∀ (x : NNReal), f 1 x = ↑x) | |
| (h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) | |
| (f₀ : ℕ → NNReal → NNReal) | |
| (hf₀ : f₀ = fun n x => (f n x).toNNReal) : | |
| ∀ (n : ℕ), 0 < n → Continuous (f₀ n) := by | |
| intros n hn₀ | |
| rw [hf₀] | |
| refine Continuous.comp' ?_ ?_ | |
| . exact continuous_real_toNNReal | |
| . refine Nat.le_induction ?_ ?_ n hn₀ | |
| . have hn₁: f 1 = fun (x:NNReal) => (x:ℝ) := by exact (Set.eqOn_univ (f 1) fun x => ↑x).mp fun ⦃x⦄ _ => h₀ x | |
| rw [hn₁] | |
| exact NNReal.continuous_coe | |
| . intros d hd₀ hd₁ | |
| have hd₂: f (d + 1) = fun x => f d x * (f d x + 1 / ↑d) := by | |
| exact (Set.eqOn_univ (f (d + 1)) fun x => f d x * (f d x + 1 / ↑d)).mp fun ⦃x⦄ _ => h₁ d x hd₀ | |
| rw [hd₂] | |
| refine Continuous.mul hd₁ ?_ | |
| refine Continuous.add hd₁ ?_ | |
| exact continuous_const | |
| lemma aux_7 | |
| (f : ℕ → NNReal → ℝ) | |
| (h₀ : ∀ (x : NNReal), f 1 x = ↑x) | |
| (h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) | |
| (h₃ : ∀ (n : ℕ) (x : NNReal), 0 < n → 0 ≤ f n x) | |
| (h₅ : ∀ (n : ℕ) (x : NNReal), 1 < n ∧ 1 ≤ x → 1 < f n x) | |
| (f₀ : ℕ → NNReal → NNReal) | |
| (hf₂ : ∀ (n : ℕ) (x : NNReal), 0 < n → f₀ n x = (f n x).toNNReal) | |
| (hmo₂ : ∀ (n : ℕ), 0 < n → StrictMono (f₀ n)) | |
| (hmo₄ : ∀ (n : ℕ), 0 < n → Continuous (f₀ n)) : | |
| ∀ (n : ℕ), 0 < n → Function.Surjective (f₀ n) := by | |
| intros n hn₀ | |
| refine Continuous.surjective (hmo₄ n hn₀) ?_ ?_ | |
| . refine Monotone.tendsto_atTop_atTop ?_ ?_ | |
| . exact StrictMono.monotone (hmo₂ n hn₀) | |
| . intro b | |
| use (b + 1) | |
| refine Nat.le_induction ?_ ?_ n hn₀ | |
| . rw [hf₂ 1 (b + 1) (by linarith), h₀] | |
| simp | |
| . intros d hd₀ hd₁ | |
| rw [hf₂ (d + 1) (b + 1) (by linarith), h₁ d (b + 1) (by linarith)] | |
| have hd₂: b ≤ f d (b + 1) := by | |
| rw [hf₂ d (b + 1) (by linarith)] at hd₁ | |
| exact (Real.le_toNNReal_iff_coe_le (h₃ d (b + 1) hd₀)).mp hd₁ | |
| have hd₃: 1 < (f d (b + 1) + 1 / ↑d) := by | |
| by_cases hd₄: 1 < d | |
| . refine lt_add_of_lt_of_pos ?_ ?_ | |
| . refine h₅ d (b + 1) ?_ | |
| constructor | |
| . exact hd₄ | |
| . exact le_add_self | |
| . refine div_pos (by linarith) ?_ | |
| exact Nat.cast_pos'.mpr hd₀ | |
| . have hd₅: d = 1 := by linarith | |
| rw [hd₅, h₀] | |
| simp | |
| norm_cast | |
| refine add_pos_of_nonneg_of_pos ?_ ?_ | |
| . exact _root_.zero_le b | |
| . exact zero_lt_one' NNReal | |
| refine NNReal.le_toNNReal_of_coe_le ?_ | |
| nth_rw 1 [← mul_one (↑b:ℝ)] | |
| refine mul_le_mul hd₂ (le_of_lt hd₃) (by linarith) ?_ | |
| exact h₃ d (b + 1) hd₀ | |
| . refine Filter.tendsto_atBot_atBot.mpr ?_ | |
| intro b | |
| use 0 | |
| intro a ha₀ | |
| have ha₁: a = 0 := by exact nonpos_iff_eq_zero.mp ha₀ | |
| have ha₂: f₀ n 0 = 0 := by | |
| refine Nat.le_induction ?_ ?_ n hn₀ | |
| . rw [hf₂ 1 0 (by linarith), h₀] | |
| exact Real.toNNReal_coe | |
| . intros d hd₀ hd₁ | |
| rw [hf₂ (d + 1) 0 (by linarith), h₁ d 0 (by linarith)] | |
| have hd₂: 0 ≤ f d 0 := by exact h₃ d 0 hd₀ | |
| have hd₃: f d 0 = 0 := by | |
| rw [hf₂ d 0 (by linarith)] at hd₁ | |
| apply Real.toNNReal_eq_zero.mp at hd₁ | |
| exact eq_of_le_of_le hd₁ hd₂ | |
| rw [hd₃, zero_mul] | |
| exact Real.toNNReal_zero | |
| rw [ha₁, ha₂] | |
| exact _root_.zero_le b | |
| lemma aux_8 | |
| (f : ℕ → NNReal → ℝ) | |
| (h₀ : ∀ (x : NNReal), f 1 x = ↑x) | |
| (h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) | |
| (hmo₀ : ∀ (n : ℕ), 0 < n → StrictMono (f n)) | |
| (hmo₁ : ∀ (n : ℕ), 0 < n → Function.Injective (f n)) | |
| (f₀ : ℕ → NNReal → NNReal) | |
| (hf₂ : ∀ (n : ℕ) (x : NNReal), 0 < n → f₀ n x = (f n x).toNNReal) | |
| (sn : Set ℕ) | |
| (fb : ↑sn → NNReal) | |
| (hsn₁ : ∀ (n : ↑sn), ↑n ∈ sn ∧ 0 < n.1) | |
| (hfb₁ : ∀ (n : ↑sn), f₀ (↑n) (fb n) = 1 - 1 / ↑↑n) : | |
| ∀ (n : ↑sn), fb n < 1 := by | |
| intros n | |
| have hn₀: 0 < (n:ℕ) := by exact (hsn₁ n).2 | |
| let z := fb n | |
| have hz₀: z = fb n := by rfl | |
| rw [← hz₀] | |
| by_contra! hc₀ | |
| have hc₁: 1 ≤ f n z := by | |
| by_cases hn₁: 1 < (n:ℕ) | |
| . refine le_of_lt ?_ | |
| refine aux_3 f h₀ h₁ ?_ (↑n) z ?_ | |
| . exact fun n x y a a_1 => hmo₀ n a a_1 | |
| . exact ⟨hn₁, hc₀⟩ | |
| . have hn₂: (n:ℕ) = 1 := by linarith | |
| rw [hn₂, h₀] | |
| exact hc₀ | |
| have hz₁: f₀ n z = 1 - 1 / n := by | |
| exact hfb₁ n | |
| have hz₃: f n z = 1 - 1 / n := by | |
| rw [hf₂ n z hn₀] at hz₁ | |
| by_cases hn₁: 1 < (n:ℕ) | |
| . have hz₂: 1 - 1 / (n:NNReal) ≠ 0 := by | |
| have g₀: (n:NNReal) ≠ 0 := by | |
| norm_cast | |
| linarith | |
| nth_rw 1 [← div_self g₀, ← NNReal.sub_div] | |
| refine div_ne_zero ?_ g₀ | |
| norm_cast | |
| exact Nat.sub_ne_zero_iff_lt.mpr hn₁ | |
| apply (Real.toNNReal_eq_iff_eq_coe hz₂).mp at hz₁ | |
| rw [hz₁] | |
| exact Eq.symm ((fun {r} {p:NNReal} hp => (Real.toNNReal_eq_iff_eq_coe hp).mp) hz₂ (hmo₁ n hn₀ rfl)) | |
| . have hn₂: (n:ℕ) = 1 := by linarith | |
| rw [hn₂, h₀] at hz₁ | |
| simp at hz₁ | |
| rw [hn₂, h₀, hz₁] | |
| simp | |
| rw [hz₃] at hc₁ | |
| have hz₄: 0 < 1 / (n:ℝ) := by | |
| refine div_pos (by linarith) ?_ | |
| exact Nat.cast_pos'.mpr hn₀ | |
| linarith | |
| lemma aux_9 | |
| (f : ℕ → NNReal → ℝ) | |
| (h₀ : ∀ (x : NNReal), f 1 x = ↑x) | |
| (h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) | |
| (f₀ : ℕ → NNReal → NNReal) | |
| (hf₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f n x = ↑(f₀ n x)) | |
| (hf₂ : ∀ (n : ℕ) (x : NNReal), 0 < n → f₀ n x = (f n x).toNNReal) | |
| (hmo₂ : ∀ (n : ℕ), 0 < n → StrictMono (f₀ n)) | |
| (fi : ℕ → NNReal → NNReal) | |
| (hf₅ : ∀ (x : NNReal), fi 1 x = x) | |
| (hmo₇ : ∀ (n : ℕ), 0 < n → Function.RightInverse (fi n) (f₀ n)) | |
| (hf₇ : ∀ (n : ℕ) (x y : NNReal), 0 < n → (f₀ n x = y ↔ fi n y = x)) | |
| (fb : ℕ → NNReal) | |
| (hfb₀ : fb = fun n => fi n (1 - 1 / ↑n)) | |
| (sn : Set ℕ) | |
| (hsn : sn = Set.Ici 1) : | |
| StrictMonoOn fb sn := by | |
| rw [hsn] | |
| refine strictMonoOn_Ici_of_pred_lt ?hψ | |
| intros m hm₀ | |
| rw [hfb₀] | |
| refine Nat.le_induction ?_ ?_ m hm₀ | |
| . have g₁: fi 1 0 = 0 := by exact hf₅ 0 | |
| have g₂: (2:NNReal).IsConjExponent (2:NNReal) := by | |
| refine (NNReal.isConjExponent_iff_eq_conjExponent ?_).mpr ?_ | |
| . exact one_lt_two | |
| . norm_cast | |
| simp | |
| simp | |
| norm_cast | |
| rw [g₁, NNReal.IsConjExponent.one_sub_inv g₂] | |
| let x := fi 2 2⁻¹ | |
| have hx₀: x = fi 2 2⁻¹ := by rfl | |
| have hx₁: f₀ 2 x = 2⁻¹ := by | |
| rw [hx₀] | |
| have g₃: Function.RightInverse (fi 2) (f₀ 2) := by exact hmo₇ 2 (by linarith) | |
| exact g₃ 2⁻¹ | |
| rw [← hx₀] | |
| contrapose! hx₁ | |
| have hc₁: x = 0 := by exact nonpos_iff_eq_zero.mp hx₁ | |
| have hc₃: f₀ 2 x = 0 := by | |
| rw [hc₁, hf₂ 2 0 (by linarith), h₁ 1 0 (by linarith), h₀ 0] | |
| norm_cast | |
| rw [zero_mul] | |
| exact Real.toNNReal_zero | |
| rw [hc₃] | |
| exact Ne.symm (NNReal.IsConjExponent.inv_ne_zero g₂) | |
| . simp | |
| intros n hn₀ _ | |
| let i := fi n (1 - (↑n)⁻¹) | |
| let j := fi (n + 1) (1 - ((↑n:NNReal) + 1)⁻¹) | |
| have hi₀: i = fi n (1 - (↑n)⁻¹) := by rfl | |
| have hj₀: j = fi (n + 1) (1 - ((↑n:NNReal) + 1)⁻¹) := by rfl | |
| have hi₁: f₀ n i = (1 - (↑n)⁻¹) := by exact (hf₇ n i (1 - (↑n:NNReal)⁻¹) (by linarith)).mpr hi₀.symm | |
| have hj₁: f₀ (n + 1) j = (1 - ((↑n:NNReal) + 1)⁻¹) := by | |
| exact (hf₇ (n + 1) j _ (by linarith)).mpr hj₀.symm | |
| have hj₂: (1 - ((↑n:NNReal) + 1)⁻¹) = (1 - ((n:ℝ) + 1)⁻¹).toNNReal := by | |
| exact rfl | |
| have hn₂: f₀ (n + 1) i < f₀ (n + 1) j := by | |
| rw [hj₁, hj₂, hf₂ (n + 1) _ (by linarith), h₁ n i (by linarith)] | |
| rw [hf₁ n i (by linarith), hi₁] | |
| refine (Real.toNNReal_lt_toNNReal_iff ?_).mpr ?_ | |
| . refine sub_pos.mpr ?_ | |
| refine inv_lt_one_of_one_lt₀ ?_ | |
| norm_cast | |
| exact Nat.lt_add_right 1 hn₀ | |
| . have g₀: (↑n:NNReal)⁻¹ ≤ 1 := by exact Nat.cast_inv_le_one n | |
| rw [NNReal.coe_sub g₀, NNReal.coe_inv] | |
| simp | |
| refine inv_strictAnti₀ ?_ ?_ | |
| . norm_cast | |
| exact Nat.zero_lt_of_lt hn₀ | |
| . norm_cast | |
| exact lt_add_one n | |
| refine (StrictMono.lt_iff_lt ?_).mp hn₂ | |
| exact hmo₂ (n + 1) (by linarith) | |
| lemma aux_10 | |
| (f : ℕ → NNReal → ℝ) | |
| (h₀ : ∀ (x : NNReal), f 1 x = ↑x) | |
| (h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) | |
| (f₀ : ℕ → NNReal → NNReal) | |
| (hf₂ : ∀ (n : ℕ) (x : NNReal), 0 < n → f₀ n x = (f n x).toNNReal) | |
| (fi : ℕ → NNReal → NNReal) | |
| (hmo₇ : ∀ (n : ℕ), 0 < n → Function.RightInverse (fi n) (f₀ n)) | |
| (sn : Set ℕ) | |
| (sb : Set NNReal) | |
| (fb : ↑sn → NNReal) | |
| (hsn₀ : sn = Set.Ici 1) | |
| (hfb₀ : fb = fun n:↑sn => fi (↑n) (1 - 1 / ↑↑n)) | |
| (hsb₀ : sb = Set.range fb) | |
| (fr : NNReal → ℝ) | |
| (hfr: fr = fun x => ↑x) | |
| (sbr : Set ℝ) | |
| (hsbr: sbr = fr '' sb) | |
| (br: ℝ) | |
| (hbr₀ : IsLUB sbr br) : | |
| 0 < br := by | |
| have hnb₀: 2 ∈ sn := by | |
| rw [hsn₀] | |
| decide | |
| let nb : ↑sn := ⟨2, hnb₀⟩ | |
| have g₀: 0 < fb nb := by | |
| have g₁: (2:NNReal).IsConjExponent (2:NNReal) := by | |
| refine (NNReal.isConjExponent_iff_eq_conjExponent ?_).mpr ?_ | |
| . exact one_lt_two | |
| . norm_cast | |
| simp | |
| rw [hfb₀] | |
| simp | |
| have hnb₁: nb.val = 2 := by exact rfl | |
| rw [hnb₁] | |
| norm_cast | |
| rw [NNReal.IsConjExponent.one_sub_inv g₁] | |
| let x := fi 2 2⁻¹ | |
| have hx₀: x = fi 2 2⁻¹ := by rfl | |
| have hx₁: f₀ 2 x = 2⁻¹ := by | |
| rw [hx₀] | |
| have g₃: Function.RightInverse (fi 2) (f₀ 2) := by exact hmo₇ 2 (by linarith) | |
| exact g₃ 2⁻¹ | |
| rw [← hx₀] | |
| contrapose! hx₁ | |
| have hc₁: x = 0 := by exact nonpos_iff_eq_zero.mp hx₁ | |
| have hc₃: f₀ 2 x = 0 := by | |
| rw [hc₁, hf₂ 2 0 (by linarith), h₁ 1 0 (by linarith), h₀ 0] | |
| norm_cast | |
| rw [zero_mul] | |
| exact Real.toNNReal_zero | |
| rw [hc₃] | |
| exact Ne.symm (NNReal.IsConjExponent.inv_ne_zero g₁) | |
| have g₁: ∃ x, 0 < x ∧ x ∈ sbr := by | |
| use (fb nb).toReal | |
| constructor | |
| . exact g₀ | |
| . rw [hsbr] | |
| simp | |
| use fb ↑nb | |
| constructor | |
| . rw [hsb₀] | |
| exact Set.mem_range_self nb | |
| . exact congrFun hfr (fb ↑nb) | |
| obtain ⟨x, hx₀, hx₁⟩ := g₁ | |
| have hx₂: br ∈ upperBounds sbr := by | |
| refine (isLUB_le_iff hbr₀).mp ?_ | |
| exact Preorder.le_refl br | |
| exact gt_of_ge_of_gt (hx₂ hx₁) hx₀ | |
| lemma aux_11 | |
| (sn : Set ℕ) | |
| (fb fc : ↑sn → NNReal) | |
| (hfc₂ : ∀ (n : ↑sn), fb n < fc n) | |
| (hfb₃ : StrictMono fb) | |
| (hfc₃ : StrictAnti fc) | |
| (sb sc : Set NNReal) | |
| (hsb₀ : sb = Set.range fb) | |
| (hsc₀ : sc = Set.range fc) | |
| (fr : NNReal → ℝ) | |
| (hfr : fr = fun x ↦ ↑x) | |
| (sbr scr : Set ℝ) | |
| (hsbr : sbr = fr '' sb) | |
| (hscr : scr = fr '' sc) | |
| (br cr : ℝ) | |
| (hbr₀ : IsLUB sbr br) | |
| (hcr₀ : IsGLB scr cr) | |
| (hfb₄ : ∀ (n : ↑sn), 0 ≤ fb n) : | |
| br ≤ cr := by | |
| have hfc₄: ∀ nb nc, fb nb < fc nc := by | |
| intros nb nc | |
| cases' (lt_or_le nb nc) with hn₀ hn₀ | |
| . refine lt_trans ?_ (hfc₂ nc) | |
| exact hfb₃ hn₀ | |
| cases' lt_or_eq_of_le hn₀ with hn₁ hn₁ | |
| . refine lt_trans (hfc₂ nb) ?_ | |
| exact hfc₃ hn₁ | |
| . rw [hn₁] | |
| exact hfc₂ nb | |
| by_contra! hc₀ | |
| have hc₁: ∃ x ∈ sbr, cr < x ∧ x ≤ br := by exact IsLUB.exists_between hbr₀ hc₀ | |
| let ⟨x, hx₀, hx₁, _⟩ := hc₁ | |
| have hc₂: ∃ y ∈ scr, cr ≤ y ∧ y < x := by exact IsGLB.exists_between hcr₀ hx₁ | |
| let ⟨y, hy₀, _, hy₂⟩ := hc₂ | |
| have hc₃: x < y := by | |
| have hx₃: x.toNNReal ∈ sb := by | |
| rw [hsbr] at hx₀ | |
| apply (Set.mem_image fr sb x).mp at hx₀ | |
| obtain ⟨z, hz₀, hz₁⟩ := hx₀ | |
| rw [← hz₁, hfr, Real.toNNReal_coe] | |
| exact hz₀ | |
| have hy₃: y.toNNReal ∈ sc := by | |
| rw [hscr] at hy₀ | |
| apply (Set.mem_image fr sc y).mp at hy₀ | |
| obtain ⟨z, hz₀, hz₁⟩ := hy₀ | |
| rw [← hz₁, hfr, Real.toNNReal_coe] | |
| exact hz₀ | |
| rw [hsb₀] at hx₃ | |
| rw [hsc₀] at hy₃ | |
| apply Set.mem_range.mp at hx₃ | |
| apply Set.mem_range.mp at hy₃ | |
| let ⟨nx, hnx₀⟩ := hx₃ | |
| let ⟨ny, hny₀⟩ := hy₃ | |
| have hy₄: 0 < y := by | |
| contrapose! hy₃ | |
| have hy₅: y.toNNReal = 0 := by exact Real.toNNReal_of_nonpos hy₃ | |
| intro z | |
| rw [hy₅] | |
| refine ne_of_gt ?_ | |
| refine lt_of_le_of_lt ?_ (hfc₂ z) | |
| exact hfb₄ z | |
| refine (Real.toNNReal_lt_toNNReal_iff hy₄).mp ?_ | |
| rw [← hnx₀, ← hny₀] | |
| exact hfc₄ nx ny | |
| refine (lt_self_iff_false x).mp ?_ | |
| exact lt_trans hc₃ hy₂ | |
| lemma aux_exists | |
| (f : ℕ → NNReal → ℝ) | |
| (h₂ : ∀ (n : ℕ) (x : NNReal), 0 < n ∧ 0 < x → 0 < f n x) | |
| (hmo₀ : ∀ (n : ℕ), 0 < n → StrictMono (f n)) | |
| (f₀ : ℕ → NNReal → NNReal) | |
| (hf₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f n x = ↑(f₀ n x)) | |
| (sn : Set ℕ) | |
| (hsn₀ : sn = Set.Ici 1) | |
| (fb fc : ↑sn → NNReal) | |
| (hfb₁ : ∀ (n : ↑sn), f₀ (↑n) (fb n) = 1 - 1 / ↑↑n) | |
| (hfc₁ : ∀ (n : ↑sn), f₀ (↑n) (fc n) = 1) | |
| (hfb₃ : StrictMono fb) | |
| (hfc₃ : StrictAnti fc) | |
| (sb sc : Set NNReal) | |
| (hsb₀ : sb = Set.range fb) | |
| (hsc₀ : sc = Set.range fc) | |
| (fr : NNReal → ℝ) | |
| (hfr : fr = fun x => ↑x) | |
| (sbr scr : Set ℝ) | |
| (hsbr : sbr = fr '' sb) | |
| (hscr : scr = fr '' sc) | |
| (br cr : ℝ) | |
| (h₈ : ∀ (n : ℕ) (x : NNReal), 0 < n → 0 < x → 1 - 1 / ↑n < f n x → f n x < f (n + 1) x) | |
| (hbr₁ : 0 < br) | |
| (hu₅ : br ≤ cr) | |
| (hbr₃ : ∀ x ∈ sbr, x ≤ br) | |
| (hcr₃ : ∀ x ∈ scr, cr ≤ x) : | |
| ∃ x, ∀ (n : ℕ), 0 < n → 0 < f n x ∧ f n x < f (n + 1) x ∧ f (n + 1) x < 1 := by | |
| cases' lt_or_eq_of_le hu₅ with hu₆ hu₆ | |
| . apply exists_between at hu₆ | |
| let ⟨a, ha₀, ha₁⟩ := hu₆ | |
| have ha₂: 0 < a := by exact gt_trans ha₀ hbr₁ | |
| have ha₃: 0 < a.toNNReal := by exact Real.toNNReal_pos.mpr ha₂ | |
| use a.toNNReal | |
| intros n hn₀ | |
| have hn₁: n ∈ sn := by | |
| rw [hsn₀] | |
| exact hn₀ | |
| constructor | |
| . exact h₂ n a.toNNReal ⟨hn₀, ha₃⟩ | |
| constructor | |
| . refine h₈ n a.toNNReal hn₀ ?_ ?_ | |
| . exact Real.toNNReal_pos.mpr ha₂ | |
| . let nn : ↑sn := ⟨n, hn₁⟩ | |
| have hn₂: f n (fb nn) = 1 - 1 / n := by | |
| rw [hf₁ n _ hn₀, hfb₁ nn] | |
| refine NNReal.coe_sub ?_ | |
| refine div_le_self ?_ ?_ | |
| . exact zero_le_one' NNReal | |
| . exact Nat.one_le_cast.mpr hn₀ | |
| rw [← hn₂] | |
| refine hmo₀ n hn₀ ?_ | |
| refine Real.lt_toNNReal_iff_coe_lt.mpr ?_ | |
| refine lt_of_le_of_lt ?_ ha₀ | |
| refine hbr₃ _ ?_ | |
| rw [hsbr] | |
| refine (Set.mem_image fr sb _).mpr ?_ | |
| use (fb nn) | |
| rw [hfr, hsb₀] | |
| refine ⟨?_, rfl⟩ | |
| exact Set.mem_range_self nn | |
| . have hn₂: n + 1 ∈ sn := by | |
| rw [hsn₀] | |
| exact Set.mem_Ici.mpr (by linarith) | |
| let nn : ↑sn := ⟨n + 1, hn₂⟩ | |
| have hn₃: f (n + 1) (fc (nn)) = 1 := by | |
| rw [hf₁ (n + 1) _ (by linarith), hfc₁ nn] | |
| exact rfl | |
| rw [← hn₃] | |
| refine hmo₀ (n + 1) (by linarith) ?_ | |
| refine (Real.toNNReal_lt_iff_lt_coe (le_of_lt ha₂)).mpr ?_ | |
| refine lt_of_lt_of_le ha₁ ?_ | |
| refine hcr₃ _ ?_ | |
| rw [hscr] | |
| refine (Set.mem_image fr sc _).mpr ?_ | |
| use (fc nn) | |
| rw [hfr, hsc₀] | |
| refine ⟨?_, rfl⟩ | |
| exact Set.mem_range_self nn | |
| . use br.toNNReal | |
| intros n hn₀ | |
| have hn₁: n ∈ sn := by | |
| rw [hsn₀] | |
| exact hn₀ | |
| constructor | |
| . refine h₂ n br.toNNReal ⟨hn₀, ?_⟩ | |
| exact Real.toNNReal_pos.mpr hbr₁ | |
| constructor | |
| . refine h₈ n br.toNNReal hn₀ ?_ ?_ | |
| . exact Real.toNNReal_pos.mpr hbr₁ | |
| . let nn : ↑sn := ⟨n, hn₁⟩ | |
| have hn₂: fb nn < br := by | |
| by_contra! hc₀ | |
| have hbr₅: (fb nn) = br := by | |
| refine eq_of_le_of_le ?_ hc₀ | |
| refine hbr₃ _ ?_ | |
| rw [hsbr] | |
| refine (Set.mem_image fr sb _).mpr ?_ | |
| use (fb nn) | |
| rw [hfr, hsb₀] | |
| constructor | |
| . exact Set.mem_range_self nn | |
| . exact rfl | |
| have hn₂: n + 1 ∈ sn := by | |
| rw [hsn₀] | |
| refine Set.mem_Ici.mpr ?_ | |
| exact Nat.le_add_right_of_le hn₀ | |
| let ns : ↑sn := ⟨n + 1, hn₂⟩ | |
| have hc₁: fb nn < fb ns := by | |
| refine hfb₃ ?_ | |
| refine Subtype.mk_lt_mk.mpr ?_ | |
| exact lt_add_one n | |
| have hbr₆: fb ns ≤ fb nn := by | |
| refine NNReal.coe_le_coe.mp ?_ | |
| rw [hbr₅] | |
| refine hbr₃ _ ?_ | |
| rw [hsbr] | |
| refine (Set.mem_image fr sb _).mpr ?_ | |
| use (fb ns) | |
| rw [hfr, hsb₀] | |
| refine ⟨?_, rfl⟩ | |
| exact Set.mem_range_self ns | |
| refine (lt_self_iff_false (fb nn)).mp ?_ | |
| exact lt_of_lt_of_le hc₁ hbr₆ | |
| have hn₃: f n (fb nn) = 1 - 1 / n := by | |
| rw [hf₁ n _ hn₀, hfb₁ nn] | |
| refine NNReal.coe_sub ?_ | |
| refine div_le_self ?_ ?_ | |
| . exact zero_le_one' NNReal | |
| . exact Nat.one_le_cast.mpr hn₀ | |
| rw [← hn₃] | |
| refine hmo₀ n hn₀ ?_ | |
| exact Real.lt_toNNReal_iff_coe_lt.mpr hn₂ | |
| . have hn₂: n + 1 ∈ sn := by | |
| rw [hsn₀] | |
| exact Set.mem_Ici.mpr (by linarith) | |
| let nn : ↑sn := ⟨n + 1, hn₂⟩ | |
| have hcr₁: 0 < cr := by exact gt_of_ge_of_gt hu₅ hbr₁ | |
| have hn₃: f (n + 1) (fc (nn)) = 1 := by | |
| rw [hf₁ (n + 1) _ (by linarith), hfc₁ nn] | |
| exact rfl | |
| rw [← hn₃, hu₆] | |
| refine hmo₀ (n + 1) (by linarith) ?_ | |
| refine (Real.toNNReal_lt_iff_lt_coe (le_of_lt hcr₁)).mpr ?_ | |
| by_contra! hc₀ | |
| have hc₁: fc nn = cr := by | |
| refine eq_of_le_of_le hc₀ ?_ | |
| refine hcr₃ _ ?_ | |
| rw [hscr] | |
| refine (Set.mem_image fr sc _).mpr ?_ | |
| use (fc nn) | |
| rw [hfr, hsc₀] | |
| refine ⟨?_, rfl⟩ | |
| exact Set.mem_range_self nn | |
| have hn₄: n + 2 ∈ sn := by | |
| rw [hsn₀] | |
| refine Set.mem_Ici.mpr ?_ | |
| exact Nat.le_add_right_of_le hn₀ | |
| let ns : ↑sn := ⟨n + 2, hn₄⟩ | |
| have hn₅: fc ns < fc nn := by | |
| refine hfc₃ ?_ | |
| refine Subtype.mk_lt_mk.mpr ?_ | |
| exact Nat.lt_add_one (n + 1) | |
| have hc₂: fc nn ≤ fc ns := by | |
| refine NNReal.coe_le_coe.mp ?_ | |
| rw [hc₁] | |
| refine hcr₃ _ ?_ | |
| rw [hscr] | |
| refine (Set.mem_image fr sc _).mpr ?_ | |
| use (fc ns) | |
| rw [hfr, hsc₀] | |
| refine ⟨?_, rfl⟩ | |
| exact Set.mem_range_self ns | |
| refine (lt_self_iff_false (fc ns)).mp ?_ | |
| exact lt_of_lt_of_le hn₅ hc₂ | |
| lemma aux_unique_top_ind | |
| (f : ℕ → NNReal → ℝ) | |
| (sd : Set ℕ) | |
| (hsd : sd = Set.Ici 2) | |
| (fd : NNReal → NNReal → ↑sd → ℝ) | |
| (hfd₁ : ∀ (y₁ y₂ : NNReal) (n : ↑sd), fd y₁ y₂ n = f (↑n) y₂ - f (↑n) y₁) | |
| (hd₁ : ∀ (n : ↑sd) (a b : NNReal), a < b → 0 < fd a b n) | |
| (a b : NNReal) | |
| (ha₀ : a < b) | |
| (hd₃: ∀ (nd : ↑sd), nd.1 + (1:ℕ) ∈ sd) | |
| (hd₂ : ∀ (nd : ↑sd), fd a b nd * (2 - 1 / ↑↑nd) ≤ fd a b ⟨nd.1 + 1, hd₃ nd⟩) | |
| (hi₀ : 2 ∈ sd) | |
| (i : ↑sd) | |
| (hi₁ : i = ⟨2, hi₀⟩) : | |
| ∀ (nd : ↑sd), fd a b i * (3 / 2) ^ (nd.1 - 2) ≤ fd a b nd := by | |
| intro nd | |
| rw [hfd₁ a b nd] | |
| have hnd₀: 2 ≤ nd.1 := by | |
| refine Set.mem_Ici.mp ?_ | |
| rw [← hsd] | |
| exact nd.2 | |
| refine Nat.le_induction ?_ ?_ nd.1 hnd₀ | |
| . have hi₂: i.val = (2:ℕ) := by | |
| simp_all only [Subtype.forall] | |
| rw [hfd₁ a b i, hi₂] | |
| simp | |
| . simp | |
| intros n hn₀ hn₁ | |
| have hn₂: n - 1 = n - 2 + 1 := by | |
| simp | |
| exact (Nat.sub_eq_iff_eq_add hn₀).mp rfl | |
| have hn₃: n ∈ sd := by | |
| rw [hsd] | |
| exact hn₀ | |
| let nn : ↑sd := ⟨n, hn₃⟩ | |
| have hnn: nn.1 = n := by exact rfl | |
| have hn₄: nn.1 + 1 ∈ sd := by | |
| rw [hnn, hsd] | |
| refine Set.mem_Ici.mpr ?_ | |
| exact Nat.le_add_right_of_le hn₀ | |
| have hn₅: fd a b nn * (2 - 1 / ↑n) ≤ fd a b ⟨nn.1 + 1, hn₄⟩ := by exact hd₂ nn | |
| rw [hfd₁ a b ⟨nn.1 + 1, hn₄⟩] at hn₅ | |
| have hn₆: f (↑nn + 1) b - f (↑nn + 1) a = f (n + 1) b - f (n + 1) a := by exact rfl | |
| rw [hn₆] at hn₅ | |
| refine le_trans ?_ hn₅ | |
| rw [hn₂, pow_succ (3/2) (n - 2), ← mul_assoc (fd a b i)] | |
| refine mul_le_mul ?_ ?_ (by linarith) ?_ | |
| . refine le_of_le_of_eq hn₁ ?_ | |
| rw [hfd₁] | |
| . refine (div_le_iff₀ (two_pos)).mpr ?_ | |
| rw [sub_mul, one_div_mul_eq_div _ 2] | |
| refine le_sub_iff_add_le.mpr ?_ | |
| refine le_sub_iff_add_le'.mp ?_ | |
| refine (div_le_iff₀ ?_).mpr ?_ | |
| . refine Nat.cast_pos.mpr ?_ | |
| exact lt_of_lt_of_le (two_pos) hn₀ | |
| . ring_nf | |
| exact Nat.ofNat_le_cast.mpr hn₀ | |
| . exact le_of_lt (hd₁ nn a b ha₀) | |
| lemma aux_unique_top | |
| (f : ℕ → NNReal → ℝ) | |
| (h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) | |
| (h₇ : ∀ (n : ℕ) (x : NNReal), 0 < n → f n x < f (n + 1) x → 1 - 1 / ↑n < f n x) | |
| (sd : Set ℕ) | |
| (hsd : sd = Set.Ici 2) | |
| (fd : NNReal → NNReal → ↑sd → ℝ) | |
| (hfd₁ : ∀ (y₁ y₂ : NNReal) (n : ↑sd), fd y₁ y₂ n = f (↑n) y₂ - f (↑n) y₁) | |
| (hd₁ : ∀ (n : ↑sd) (a b : NNReal), a < b → 0 < fd a b n) : | |
| ∀ (a b : NNReal), | |
| a < b → | |
| (∀ (n : ↑sd), f (↑n) a < f (↑n + 1) a ∧ f (↑n) b < f (↑n + 1) b) | |
| → Filter.Tendsto (fd a b) Filter.atTop Filter.atTop := by | |
| intros a b ha₀ ha₁ | |
| have hd₀: ∀ (nd:↑sd), (nd.1 + 1) ∈ sd := by | |
| intro nd | |
| let t : ℕ := nd.1 | |
| have ht: t = nd.1 := by rfl | |
| rw [← ht, hsd] | |
| refine Set.mem_Ici.mpr ?_ | |
| refine Nat.le_add_right_of_le ?_ | |
| refine Set.mem_Ici.mp ?_ | |
| rw [ht, ← hsd] | |
| exact nd.2 | |
| have hd₂: ∀ nd, fd a b nd * (2 - 1 / nd.1) ≤ fd a b ⟨nd.1 + 1, hd₀ nd⟩ := by | |
| intro nd | |
| have hnd₀: 0 < nd.1 := by | |
| have g₀: 2 ≤ nd.1 := by | |
| refine Set.mem_Ici.mp ?_ | |
| rw [← hsd] | |
| exact nd.2 | |
| exact Nat.zero_lt_of_lt g₀ | |
| rw [hfd₁, hfd₁, h₁ nd.1 _ hnd₀, h₁ nd.1 _ hnd₀] | |
| have hnd₁: f (↑nd) b * (f (↑nd) b + 1 / ↑↑nd) - f (↑nd) a * (f (↑nd) a + 1 / ↑↑nd) = | |
| (f (↑nd) b - f (↑nd) a) * (f (↑nd) b + f (↑nd) a + 1 / nd.1) := by | |
| ring_nf | |
| rw [hnd₁] | |
| refine (mul_le_mul_left ?_).mpr ?_ | |
| . rw [← hfd₁] | |
| exact hd₁ nd a b ha₀ | |
| . refine le_sub_iff_add_le.mp ?_ | |
| rw [sub_neg_eq_add] | |
| have hnd₂: 1 - 1 / nd.1 < f (↑nd) b := by | |
| exact h₇ nd.1 b hnd₀ (ha₁ nd).2 | |
| have hnd₃: 1 - 1 / nd.1 < f (↑nd) a := by | |
| exact h₇ nd.1 a hnd₀ (ha₁ nd).1 | |
| linarith | |
| have hi: 2 ∈ sd := by | |
| rw [hsd] | |
| decide | |
| let i : ↑sd := ⟨(2:ℕ), hi⟩ | |
| have hd₃: ∀ nd, fd a b i * (3 / 2) ^ (nd.1 - 2) ≤ fd a b nd := by | |
| intro nd | |
| exact aux_unique_top_ind f sd hsd fd hfd₁ hd₁ a b ha₀ hd₀ hd₂ hi i rfl nd | |
| have hsd₁: Nonempty ↑sd := by | |
| refine Set.Nonempty.to_subtype ?_ | |
| exact Set.nonempty_of_mem (hd₀ i) | |
| refine Filter.tendsto_atTop_atTop.mpr ?_ | |
| intro z | |
| by_cases hz₀: z ≤ fd a b i | |
| . use i | |
| intros j _ | |
| refine le_trans hz₀ ?_ | |
| refine le_trans ?_ (hd₃ j) | |
| refine le_mul_of_one_le_right ?_ ?_ | |
| . refine le_of_lt ?_ | |
| exact hd₁ i a b ha₀ | |
| . refine one_le_pow₀ ?_ | |
| linarith | |
| . push_neg at hz₀ | |
| have hz₁: 0 < fd a b i := by exact hd₁ i a b ha₀ | |
| have hz₂: 0 < Real.log (z / fd a b i) := by | |
| refine Real.log_pos ?_ | |
| exact (one_lt_div hz₁).mpr hz₀ | |
| let j : ℕ := Nat.ceil (2 + Real.log (z / fd a b i) / Real.log (3 / 2)) | |
| have hj₀: 2 < j := by | |
| refine Nat.lt_ceil.mpr ?_ | |
| norm_cast | |
| refine lt_add_of_pos_right 2 ?_ | |
| refine div_pos ?_ ?_ | |
| . exact hz₂ | |
| . refine Real.log_pos ?_ | |
| linarith | |
| have hj₁: j ∈ sd := by | |
| rw [hsd] | |
| exact Set.mem_Ici_of_Ioi hj₀ | |
| use ⟨j, hj₁⟩ | |
| intro k hk₀ | |
| have hk₁: fd a b i * (3 / 2) ^ (k.1 - 2) ≤ fd a b k := by | |
| exact hd₃ k | |
| have hk₂: i < k := by | |
| refine lt_of_lt_of_le ?_ hk₀ | |
| refine Subtype.mk_lt_mk.mpr ?_ | |
| refine Nat.lt_ceil.mpr ?_ | |
| norm_cast | |
| refine lt_add_of_pos_right 2 ?_ | |
| refine div_pos ?_ ?_ | |
| . exact hz₂ | |
| . refine Real.log_pos ?_ | |
| linarith | |
| refine le_trans ?_ hk₁ | |
| refine (div_le_iff₀' ?_).mp ?_ | |
| . exact hz₁ | |
| . refine Real.le_pow_of_log_le (by linarith) ?_ | |
| refine (div_le_iff₀ ?_).mp ?_ | |
| . refine Real.log_pos ?_ | |
| linarith | |
| . rw [Nat.cast_sub ?_] | |
| . rw [Nat.cast_two] | |
| refine le_sub_iff_add_le'.mpr ?_ | |
| exact Nat.le_of_ceil_le hk₀ | |
| . exact Nat.le_of_succ_le hk₂ | |
| lemma aux_unique_nhds | |
| (f : ℕ → NNReal → ℝ) | |
| (sd : Set ℕ) | |
| (hsd : sd = Set.Ici 2) | |
| (fd : NNReal → NNReal → ↑sd → ℝ) | |
| (hfd₁ : ∀ (y₁ y₂ : NNReal) (n : ↑sd), fd y₁ y₂ n = f (↑n) y₂ - f (↑n) y₁) | |
| (hd₁ : ∀ (n : ↑sd) (a b : NNReal), a < b → 0 < fd a b n) : | |
| ∀ (a b : NNReal), | |
| a < b → | |
| (∀ (n : ↑sd), (1 - 1 / ↑↑n < f (↑n) a ∧ 1 - 1 / ↑↑n < f (↑n) b) ∧ f (↑n) a < 1 ∧ f (↑n) b < 1) → | |
| Filter.Tendsto (fd a b) Filter.atTop (nhds 0) := by | |
| intros a b ha₀ ha₁ | |
| have hsd₁: Nonempty ↑sd := by | |
| rw [hsd] | |
| refine Set.Nonempty.to_subtype ?_ | |
| exact Set.nonempty_Ici | |
| refine tendsto_atTop_nhds.mpr ?_ | |
| intros U hU₀ hU₁ | |
| have hU₂: U ∈ nhds 0 := by exact IsOpen.mem_nhds hU₁ hU₀ | |
| apply mem_nhds_iff_exists_Ioo_subset.mp at hU₂ | |
| obtain ⟨l, u, hl₀, hl₁⟩ := hU₂ | |
| have hl₂: 0 < u := by exact (Set.mem_Ioo.mpr hl₀).2 | |
| let nd := 2 + Nat.ceil (1/u) | |
| have hnd₀: nd ∈ sd := by | |
| rw [hsd] | |
| refine Set.mem_Ici.mpr ?_ | |
| exact Nat.le_add_right 2 ⌈1 / u⌉₊ | |
| use ⟨nd, hnd₀⟩ | |
| intros n hn₀ | |
| refine (IsOpen.mem_nhds_iff hU₁).mp ?_ | |
| refine mem_nhds_iff.mpr ?_ | |
| use Set.Ioo l u | |
| constructor | |
| . exact hl₁ | |
| constructor | |
| . exact isOpen_Ioo | |
| . refine Set.mem_Ioo.mpr ?_ | |
| constructor | |
| . refine lt_trans ?_ (hd₁ n a b ha₀) | |
| exact (Set.mem_Ioo.mp hl₀).1 | |
| . have hn₁: fd a b n < 1 / n := by | |
| rw [hfd₁] | |
| have ha₂: 1 - 1 / n < f n a := by exact (ha₁ n).1.1 | |
| have hb₁: f n b < 1 := by exact (ha₁ n).2.2 | |
| refine sub_lt_iff_lt_add.mpr ?_ | |
| refine lt_trans hb₁ ?_ | |
| exact sub_lt_iff_lt_add'.mp ha₂ | |
| have hn₂: (1:ℝ) / n ≤ 1 / nd := by | |
| refine one_div_le_one_div_of_le ?_ ?_ | |
| . refine Nat.cast_pos.mpr ?_ | |
| rw [hsd] at hnd₀ | |
| exact lt_of_lt_of_le (Nat.zero_lt_two) hnd₀ | |
| . exact Nat.cast_le.mpr hn₀ | |
| refine lt_of_lt_of_le hn₁ ?_ | |
| refine le_trans hn₂ ?_ | |
| refine div_le_of_le_mul₀ ?_ ?_ ?_ | |
| . exact Nat.cast_nonneg' nd | |
| . exact le_of_lt hl₂ | |
| . have hl₃: u * (2 + 1 / u) ≤ u * ↑((2:ℕ) + ⌈(1:ℝ) / u⌉₊) := by | |
| refine (mul_le_mul_left hl₂).mpr ?_ | |
| rw [Nat.cast_add 2 _, Nat.cast_two] | |
| refine add_le_add_left ?_ 2 | |
| exact Nat.le_ceil (1 / u) | |
| refine le_trans ?_ hl₃ | |
| rw [mul_add, mul_one_div u u, div_self (ne_of_gt hl₂)] | |
| refine le_of_lt ?_ | |
| refine sub_lt_iff_lt_add.mp ?_ | |
| rw [sub_self 1] | |
| exact mul_pos hl₂ (two_pos) | |
| lemma aux_unique | |
| (f : ℕ → NNReal → ℝ) | |
| (h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) | |
| (hmo₀ : ∀ (n : ℕ), 0 < n → StrictMono (f n)) | |
| (h₇ : ∀ (n : ℕ) (x : NNReal), 0 < n → f n x < f (n + 1) x → 1 - 1 / ↑n < f n x) : | |
| ∀ (y₁ y₂ : NNReal), | |
| (∀ (n : ℕ), 0 < n → 0 < f n y₁ ∧ f n y₁ < f (n + 1) y₁ ∧ f (n + 1) y₁ < 1) → | |
| (∀ (n : ℕ), 0 < n → 0 < f n y₂ ∧ f n y₂ < f (n + 1) y₂ ∧ f (n + 1) y₂ < 1) → y₁ = y₂ := by | |
| intros x y hx₀ hy₀ | |
| let sd : Set ℕ := Set.Ici 2 | |
| let fd : NNReal → NNReal → ↑sd → ℝ := fun y₁ y₂ n => (f n.1 y₂ - f n.1 y₁) | |
| have hfd₁: ∀ y₁ y₂ n, fd y₁ y₂ n = f n.1 y₂ - f n.1 y₁ := by exact fun y₁ y₂ n => rfl | |
| have hd₁: ∀ n a b, a < b → 0 < fd a b n := by | |
| intros nd a b hnd₀ | |
| rw [hfd₁] | |
| refine sub_pos.mpr ?_ | |
| refine hmo₀ nd.1 ?_ hnd₀ | |
| exact lt_of_lt_of_le (Nat.zero_lt_two) nd.2 | |
| have hfd₂: ∀ a b, a < b → (∀ n:↑sd, f n.1 a < f (n.1 + 1) a ∧ f n.1 b < f (n.1 + 1) b) | |
| → Filter.Tendsto (fd a b) Filter.atTop Filter.atTop := by | |
| intros a b ha₀ ha₁ | |
| exact aux_unique_top f h₁ h₇ sd rfl fd hfd₁ hd₁ a b ha₀ ha₁ | |
| have hfd₃: ∀ a b, a < b → (∀ (n:↑sd), (1 - 1 / n.1 < f n.1 a ∧ 1 - 1 / n.1 < f n.1 b) ∧ (f n.1 a < 1 ∧ f n.1 b < 1)) | |
| → Filter.Tendsto (fd a b) Filter.atTop (nhds 0) := by | |
| intros a b ha₀ ha₁ | |
| exact aux_unique_nhds f sd rfl fd hfd₁ hd₁ a b ha₀ ha₁ | |
| by_contra! hc₀ | |
| by_cases hy₁: x < y | |
| . have hy₂: Filter.Tendsto (fd x y) Filter.atTop Filter.atTop := by | |
| refine hfd₂ x y hy₁ ?_ | |
| intro nd | |
| have hnd₀: 0 < nd.1 := by exact lt_of_lt_of_le (two_pos) nd.2 | |
| constructor | |
| . exact (hx₀ nd.1 hnd₀).2.1 | |
| . exact (hy₀ nd.1 hnd₀).2.1 | |
| have hy₃: Filter.Tendsto (fd x y) Filter.atTop (nhds 0) := by | |
| refine hfd₃ x y hy₁ ?_ | |
| intro nd | |
| have hnd₀: 0 < nd.1 := by | |
| refine lt_of_lt_of_le ?_ nd.2 | |
| exact Nat.zero_lt_two | |
| have hnd₁: nd.1 - 1 + 1 = nd.1 := by exact Nat.sub_add_cancel hnd₀ | |
| have hnd₂: 0 < nd.1 - 1 := by | |
| refine Nat.sub_pos_of_lt ?_ | |
| refine lt_of_lt_of_le ?_ nd.2 | |
| exact Nat.one_lt_two | |
| constructor | |
| . constructor | |
| . refine h₇ nd.1 x hnd₀ ?_ | |
| exact (hx₀ (nd.1) hnd₀).2.1 | |
| . refine h₇ nd.1 y hnd₀ ?_ | |
| exact (hy₀ (nd.1) hnd₀).2.1 | |
| . constructor | |
| . rw [← hnd₁] | |
| exact (hx₀ (nd.1 - 1) hnd₂).2.2 | |
| . rw [← hnd₁] | |
| exact (hy₀ (nd.1 - 1) hnd₂).2.2 | |
| apply Filter.tendsto_atTop_atTop.mp at hy₂ | |
| apply tendsto_atTop_nhds.mp at hy₃ | |
| contrapose! hy₃ | |
| clear hy₃ | |
| let sx : Set ℝ := Set.Ioo (-1) 1 | |
| use sx | |
| constructor | |
| . refine Set.mem_Ioo.mpr ?_ | |
| simp | |
| constructor | |
| . exact isOpen_Ioo | |
| . intro N | |
| have hy₅: ∃ i, ∀ (a : ↑sd), i ≤ a → N + 3 ≤ fd x y a := by exact hy₂ (N + 3) | |
| obtain ⟨i, hi₀⟩ := hy₅ | |
| have hi₁: (N.1 + i.1) ∈ sd := by | |
| refine Set.mem_Ici.mpr ?_ | |
| rw [← add_zero 2] | |
| refine Nat.add_le_add ?_ ?_ | |
| . exact N.2 | |
| . refine le_trans ?_ i.2 | |
| exact Nat.zero_le 2 | |
| let a : ↑sd := ⟨N + i, hi₁⟩ | |
| use a | |
| constructor | |
| . refine Subtype.mk_le_mk.mpr ?_ | |
| exact Nat.le_add_right ↑N ↑i | |
| . refine Set.not_mem_Ioo_of_ge ?_ | |
| have hi₂: ↑↑N + 3 ≤ fd x y a := by | |
| refine hi₀ a ?_ | |
| refine Subtype.mk_le_mk.mpr ?_ | |
| exact Nat.le_add_left ↑i ↑N | |
| refine le_trans ?_ hi₂ | |
| norm_cast | |
| exact Nat.le_add_left 1 (↑N + 2) | |
| . have hy₂: y < x := by | |
| push_neg at hy₁ | |
| exact lt_of_le_of_ne hy₁ hc₀.symm | |
| have hy₃: Filter.Tendsto (fd y x) Filter.atTop Filter.atTop := by | |
| refine hfd₂ y x hy₂ ?_ | |
| intro nd | |
| have hnd₀: 0 < nd.1 := by exact lt_of_lt_of_le (two_pos) nd.2 | |
| constructor | |
| . exact (hy₀ nd.1 hnd₀).2.1 | |
| . exact (hx₀ nd.1 hnd₀).2.1 | |
| have hy₄: Filter.Tendsto (fd y x) Filter.atTop (nhds 0) := by | |
| refine hfd₃ y x hy₂ ?_ | |
| intro nd | |
| have hnd₀: 0 < nd.1 := by exact lt_of_lt_of_le (Nat.zero_lt_two) nd.2 | |
| have hnd₁: nd.1 - 1 + 1 = nd.1 := by exact Nat.sub_add_cancel hnd₀ | |
| have hnd₂: 0 < nd.1 - 1 := by | |
| refine Nat.sub_pos_of_lt ?_ | |
| exact lt_of_lt_of_le (Nat.one_lt_two) nd.2 | |
| constructor | |
| . constructor | |
| . refine h₇ nd.1 y hnd₀ ?_ | |
| exact (hy₀ (nd.1) hnd₀).2.1 | |
| . refine h₇ nd.1 x hnd₀ ?_ | |
| exact (hx₀ (nd.1) hnd₀).2.1 | |
| . constructor | |
| . rw [← hnd₁] | |
| exact (hy₀ (nd.1 - 1) hnd₂).2.2 | |
| . rw [← hnd₁] | |
| exact (hx₀ (nd.1 - 1) hnd₂).2.2 | |
| apply Filter.tendsto_atTop_atTop.mp at hy₃ | |
| apply tendsto_atTop_nhds.mp at hy₄ | |
| contrapose! hy₄ | |
| clear hy₄ | |
| let sx : Set ℝ := Set.Ioo (-1) 1 | |
| use sx | |
| constructor | |
| . refine Set.mem_Ioo.mpr ?_ | |
| simp | |
| constructor | |
| . exact isOpen_Ioo | |
| . intro N | |
| have hy₅: ∃ i, ∀ (a : ↑sd), i ≤ a → N + 3 ≤ fd y x a := by exact hy₃ (N + 3) | |
| obtain ⟨i, hi₀⟩ := hy₅ | |
| have hi₁: (N.1 + i.1) ∈ sd := by | |
| refine Set.mem_Ici.mpr ?_ | |
| rw [← add_zero 2] | |
| refine Nat.add_le_add ?_ ?_ | |
| . exact N.2 | |
| . refine le_trans ?_ i.2 | |
| exact Nat.zero_le 2 | |
| let a : ↑sd := ⟨N + i, hi₁⟩ | |
| use a | |
| constructor | |
| . refine Subtype.mk_le_mk.mpr ?_ | |
| exact Nat.le_add_right ↑N ↑i | |
| . refine Set.not_mem_Ioo_of_ge ?_ | |
| have hi₂: ↑↑N + 3 ≤ fd y x a := by | |
| refine hi₀ a ?_ | |
| refine Subtype.mk_le_mk.mpr ?_ | |
| exact Nat.le_add_left ↑i ↑N | |
| refine le_trans ?_ hi₂ | |
| norm_cast | |
| exact Nat.le_add_left 1 (↑N + 2) | |
| lemma imo_1985_p6_nnreal | |
| (f : ℕ → NNReal → ℝ) | |
| (h₀ : ∀ x, f 1 x = x) | |
| (h₁ : ∀ n x, 0 < n → f (n + 1) x = f n x * (f n x + 1 / n)) : | |
| ∃! a, ∀ n, 0 < n → 0 < f n a ∧ f n a < f (n + 1) a ∧ f (n + 1) a < 1 := by | |
| have h₂: ∀ n x, 0 < n ∧ 0 < x → 0 < f n x := by | |
| exact fun n x a => aux_1 f h₀ h₁ n x a | |
| have h₃: ∀ n x, 0 < n → 0 ≤ f n x := by | |
| intros n x hn | |
| refine Nat.le_induction ?_ ?_ n hn | |
| . rw [h₀ x] | |
| exact NNReal.zero_le_coe | |
| . intros d hd₀ hd₁ | |
| rw [h₁ d x hd₀] | |
| refine mul_nonneg hd₁ ?_ | |
| refine add_nonneg hd₁ ?_ | |
| refine div_nonneg (by linarith) ?_ | |
| exact Nat.cast_nonneg' d | |
| have hmo₀: ∀ n, 0 < n → StrictMono (f n) := by | |
| intros n hn₀ | |
| refine Monotone.strictMono_of_injective ?h₁ ?h₂ | |
| . refine monotone_iff_forall_lt.mpr ?h₁.a | |
| intros a b hab | |
| refine le_of_lt ?_ | |
| exact aux_2 f h₀ h₁ h₂ h₃ n a b hn₀ hab | |
| . intros p q hpq | |
| contrapose! hpq | |
| apply lt_or_gt_of_ne at hpq | |
| cases' hpq with hpq hpq | |
| . refine ne_of_lt ?_ | |
| exact aux_2 f h₀ h₁ h₂ h₃ n p q hn₀ hpq | |
| . symm | |
| refine ne_of_lt ?_ | |
| exact aux_2 f h₀ h₁ h₂ h₃ n q p hn₀ hpq | |
| have hmo₁: ∀ n, 0 < n → Function.Injective (f n) := by exact fun n a => StrictMono.injective (hmo₀ n a) | |
| let f₀: ℕ → NNReal → NNReal := fun n x => (f n x).toNNReal | |
| have hf₀: f₀ = fun n x => (f n x).toNNReal := by rfl | |
| have hf₁: ∀ n x, 0 < n → f n x = f₀ n x := by | |
| intros n x hn₀ | |
| rw [hf₀] | |
| simp | |
| exact h₃ n x hn₀ | |
| have hf₂: ∀ n x, 0 < n → f₀ n x = (f n x).toNNReal := by | |
| intros n x _ | |
| rw [hf₀] | |
| have hmo₂: ∀ n, 0 < n → StrictMono (f₀ n) := by | |
| intros n hn₀ | |
| refine aux_4 f h₃ ?_ f₀ hf₀ n hn₀ | |
| exact fun n x y a a_1 => hmo₀ n a a_1 | |
| let fi : ℕ → NNReal → NNReal := fun n => Function.invFun (f₀ n) | |
| have hmo₇: ∀ n, 0 < n → Function.RightInverse (fi n) (f₀ n) := by | |
| intros n hn₀ | |
| refine Function.rightInverse_invFun ?_ | |
| have h₄: ∀ n x y, 0 < n → x < y → f n x < f n y := by | |
| exact fun n x y a a_1 => aux_2 f h₀ h₁ h₂ h₃ n x y a a_1 | |
| refine aux_7 f h₀ h₁ h₃ ?_ f₀ hf₂ hmo₂ ?_ n hn₀ | |
| . exact fun n x a => aux_3 f h₀ h₁ h₄ n x a | |
| . intros m hm₀ | |
| exact aux_6 f h₀ h₁ f₀ hf₀ m hm₀ | |
| have hf₇: ∀ n x y, 0 < n → (f₀ n x = y ↔ fi n y = x) := by | |
| intros n x y hn₀ | |
| constructor | |
| . intro hn₁ | |
| rw [← hn₁, hf₀] | |
| have hn₂: (Function.invFun (f n)) ∘ (f n) = id := by exact Function.invFun_comp (hmo₁ n hn₀) | |
| rw [Function.comp_def (Function.invFun (f n)) (f n)] at hn₂ | |
| exact aux_5 f hmo₁ f₀ hmo₂ fi rfl n x ((fun n x => (f n x).toNNReal) n x) hn₀ (hf₂ n x hn₀) | |
| . intro hn₁ | |
| rw [← hn₁] | |
| exact hmo₁ n hn₀ (congrArg (f n) (hmo₇ n hn₀ y)) | |
| let sn : Set ℕ := Set.Ici 1 | |
| let fb : ↑sn → NNReal := sn.restrict (fun (n:ℕ) => fi n (1 - 1 / (n:NNReal))) | |
| let fc : ↑sn → NNReal := sn.restrict (fun (n:ℕ) => fi n 1) | |
| have hsn₁: ∀ n:↑sn, ↑n ∈ sn ∧ 0 < (↑n:ℕ) := by | |
| intro n | |
| have hn₀: ↑n ∈ sn := by exact Subtype.coe_prop n | |
| constructor | |
| . exact Subtype.coe_prop n | |
| . exact hn₀ | |
| have hfb₀: fb = fun (n:↑sn) => fi n (1 - 1 / (n:NNReal)) := by rfl | |
| have hfc₀: fc = fun (n:↑sn) => fi n 1 := by rfl | |
| have hfb₁: ∀ n:↑sn, f₀ n (fb n) = 1 - 1 / (n:NNReal) := by | |
| intros n | |
| have hn₀: 0 < (n:ℕ) := by exact (hsn₁ n).2 | |
| rw [hfb₀] | |
| exact hmo₁ n hn₀ (congrArg (f n) (hmo₇ n hn₀ (1 - 1 / (n:NNReal)))) | |
| have hfc₁: ∀ n:↑sn, f₀ n (fc n) = 1 := by | |
| intros n | |
| have hn₀: 0 < (n:ℕ) := by exact (hsn₁ n).2 | |
| rw [hfc₀] | |
| exact hmo₁ n hn₀ (congrArg (f n) (hmo₇ n hn₀ 1)) | |
| have hu₁: ∀ n:↑sn, fb n < 1 := by | |
| exact aux_8 f h₀ h₁ hmo₀ hmo₁ f₀ hf₂ sn fb hsn₁ hfb₁ | |
| have hfc₂: ∀ n:↑sn, fb n < fc n := by | |
| intros n | |
| have hn₀: 0 < (n:ℕ) := by exact (hsn₁ n).2 | |
| have g₀: f₀ n (fb n) < f₀ n (fc n) := by | |
| rw [hfb₁ n, hfc₁ n] | |
| simp | |
| exact (hsn₁ n).2 | |
| exact (StrictMono.lt_iff_lt (hmo₂ n hn₀)).mp g₀ | |
| have hfb₃: StrictMono fb := by | |
| refine StrictMonoOn.restrict ?_ | |
| refine aux_9 f h₀ h₁ f₀ hf₁ hf₂ hmo₂ fi ?_ hmo₇ hf₇ _ (by rfl) sn (by rfl) | |
| intro x | |
| refine (hf₇ 1 x x (by linarith)).mp ?_ | |
| rw [hf₂ 1 x (by linarith), h₀] | |
| exact Real.toNNReal_coe | |
| have hfc₃: StrictAnti fc := by | |
| have g₀: StrictAntiOn (fun n => fi n 1) sn := by | |
| refine strictAntiOn_Ici_of_lt_pred ?_ | |
| intros m hm₀ | |
| have hm₁: 0 < m - 1 := by exact Nat.zero_lt_sub_of_lt hm₀ | |
| have hm₂: m = m - 1 + 1 := by rw [Nat.sub_add_cancel (le_of_lt hm₀)] | |
| have hm₃: 0 < m := by exact Nat.zero_lt_of_lt hm₀ | |
| simp | |
| let x := fi m 1 | |
| let y := fi (m - 1) 1 | |
| have hx₀: x = fi m 1 := by rfl | |
| have hy₀: y = fi (m - 1) 1 := by rfl | |
| have hx₁: f₀ m x = 1 := by exact (hf₇ m x 1 (by linarith)).mpr hx₀.symm | |
| have hy₁: f₀ (m - 1) y = 1 := by | |
| exact (hf₇ (m - 1) y 1 hm₁).mpr hy₀.symm | |
| have hy₂: f (m - 1) y = 1 := by | |
| rw [hf₁ (m - 1) y hm₁, hy₁] | |
| exact rfl | |
| have hf: StrictMono (f m) := by exact hmo₀ m hm₃ | |
| refine (StrictMono.lt_iff_lt hf).mp ?_ | |
| rw [← hx₀, ← hy₀] | |
| rw [hf₁ m x hm₃, hf₁ m y hm₃] | |
| refine NNReal.coe_lt_coe.mpr ?_ | |
| rw [hx₁, hf₂ m y hm₃, hm₂, h₁ (m - 1) y hm₁, hy₂] | |
| simp | |
| exact hm₀ | |
| intros m n hmn | |
| rw [hfc₀] | |
| simp | |
| let mn : ℕ := ↑m | |
| let nn : ℕ := ↑n | |
| have hm₀: mn ∈ sn := by exact Subtype.coe_prop m | |
| have hn₀: nn ∈ sn := by exact Subtype.coe_prop n | |
| exact g₀ hm₀ hn₀ hmn | |
| let sb := Set.range fb | |
| let sc := Set.range fc | |
| have hsb₀: sb = Set.range fb := by rfl | |
| have hsc₀: sc = Set.range fc := by rfl | |
| let fr : NNReal → ℝ := fun x => x.toReal | |
| let sbr := Set.image fr sb | |
| let scr := Set.image fr sc | |
| have hu₃: ∃ br, IsLUB sbr br := by | |
| refine Real.exists_isLUB ?_ ?_ | |
| . exact Set.Nonempty.of_subtype | |
| . refine NNReal.bddAbove_coe.mpr ?_ | |
| refine (bddAbove_iff_exists_ge 1).mpr ?_ | |
| use 1 | |
| constructor | |
| . exact Preorder.le_refl 1 | |
| . intros y hy₀ | |
| apply Set.mem_range.mp at hy₀ | |
| obtain ⟨na, hna₀⟩ := hy₀ | |
| refine le_of_lt ?_ | |
| rw [← hna₀] | |
| exact hu₁ na | |
| have hu₄: ∃ cr, IsGLB scr cr := by | |
| refine Real.exists_isGLB ?_ ?_ | |
| . refine Set.Nonempty.image fr ?_ | |
| exact Set.range_nonempty fc | |
| . exact NNReal.bddBelow_coe sc | |
| obtain ⟨br, hbr₀⟩ := hu₃ | |
| obtain ⟨cr, hcr₀⟩ := hu₄ | |
| have h₇: ∀ n x, 0 < n → (f n x < f (n + 1) x → 1 - 1 / n < f n x) := by | |
| intros n x hn₀ hn₁ | |
| rw [h₁ n x hn₀] at hn₁ | |
| nth_rw 1 [← mul_one (f n x)] at hn₁ | |
| suffices g₀: 1 < f n x + 1 / ↑n | |
| . exact sub_right_lt_of_lt_add g₀ | |
| . refine lt_of_mul_lt_mul_left hn₁ ?_ | |
| exact h₃ n x hn₀ | |
| have h₈: ∀ n x, 0 < n → 0 < x → 1 - 1 / n < f n x → f n x < f (n + 1) x := by | |
| intros n x hn₀ hx₀ hn₁ | |
| rw [h₁ n x hn₀] | |
| suffices g₀: 1 < f n x + 1 / ↑n | |
| . nth_rw 1 [← mul_one (f n x)] | |
| refine mul_lt_mul' ?_ g₀ ?_ ?_ | |
| . exact Preorder.le_refl (f n x) | |
| . exact zero_le_one' ℝ | |
| . exact gt_of_gt_of_ge (hmo₀ n hn₀ hx₀) (h₃ n 0 hn₀) | |
| . exact lt_add_of_tsub_lt_right hn₁ | |
| have hbr₁: 0 < br := by | |
| exact aux_10 f h₀ h₁ f₀ hf₂ fi hmo₇ sn sb fb (by rfl) hfb₀ hsb₀ fr (by rfl) sbr (by rfl) br hbr₀ | |
| have hfb₄: ∀ n, 0 ≤ fb n := by | |
| intro n | |
| have hfb₂: fb = fun (n:↑sn) => Function.invFun (f₀ n) (1 - 1 / ↑n) := by exact hfb₀ | |
| rw [hfb₂] | |
| simp | |
| have hu₅: br ≤ cr := by | |
| exact aux_11 sn fb fc hfc₂ hfb₃ hfc₃ sb sc hsb₀ hsc₀ fr (by rfl) sbr scr (by rfl) (by rfl) br cr hbr₀ hcr₀ hfb₄ | |
| have hbr₃: ∀ x ∈ sbr, x ≤ br := by | |
| refine mem_upperBounds.mp ?_ | |
| refine (isLUB_le_iff hbr₀).mp ?_ | |
| exact Preorder.le_refl br | |
| have hcr₃: ∀ x ∈ scr, cr ≤ x := by | |
| refine mem_lowerBounds.mp ?_ | |
| refine (le_isGLB_iff hcr₀).mp ?_ | |
| exact Preorder.le_refl cr | |
| refine existsUnique_of_exists_of_unique ?_ ?_ | |
| . exact aux_exists f h₂ hmo₀ f₀ hf₁ sn (by rfl) fb fc hfb₁ hfc₁ hfb₃ hfc₃ sb sc hsb₀ hsc₀ fr (by rfl) sbr scr (by rfl) (by rfl) br cr h₈ hbr₁ hu₅ hbr₃ hcr₃ | |
| . intros x y hx₀ hy₀ | |
| exact aux_unique f h₁ hmo₀ h₇ x y hx₀ hy₀ | |
| theorem imo_1985_p6 | |
| (f : ℕ → ℝ → ℝ) | |
| (h₀ : ∀ x, f 1 x = x) | |
| (h₁ : ∀ n x, 0 < n → f (n + 1) x = f n x * (f n x + 1 / n)) : | |
| ∃! a, ∀ n, 0 < n → 0 < f n a ∧ f n a < f (n + 1) a ∧ f (n + 1) a < 1 := by | |
| let fn : ℕ → NNReal → ℝ := fun n x => f n x | |
| have hfn₁: ∀ n x, 0 < n → 0 ≤ x → fn n x = f n x := by | |
| exact fun n x _ _ ↦ rfl | |
| have h₂: ∃! a, ∀ (n : ℕ), 0 < n → 0 < fn n a ∧ fn n a < fn (n + 1) a ∧ fn (n + 1) a < 1 := by | |
| exact imo_1985_p6_nnreal fn (fun x ↦ h₀ ↑x) fun n x ↦ h₁ n ↑x | |
| obtain ⟨a, ha₀, ha₁⟩ := h₂ | |
| use a | |
| constructor | |
| . intro n hn₀ | |
| exact ha₀ n hn₀ | |
| . intro y hy₀ | |
| have hy₁: 0 ≤ y.toNNReal := by exact zero_le y.toNNReal | |
| by_cases hy₂: 0 ≤ y | |
| . refine (Real.toNNReal_eq_toNNReal_iff hy₂ ?_).mp ?_ | |
| . exact NNReal.zero_le_coe | |
| . rw [@Real.toNNReal_coe] | |
| refine ha₁ (y.toNNReal) ?_ | |
| intro n hn₀ | |
| rw [hfn₁ n _ hn₀ hy₁, hfn₁ (n + 1) _ (by linarith) hy₁] | |
| rw [Real.coe_toNNReal y hy₂] | |
| exact hy₀ n hn₀ | |
| . exfalso | |
| push_neg at hy₂ | |
| have hy₃: f 1 y < 0 := by | |
| rw [h₀] | |
| exact hy₂ | |
| have hy₄: 0 < f 1 y := by | |
| exact (hy₀ 1 (by decide)).1 | |
| have hy₅: (0:ℝ) < 0 := by exact lt_trans hy₄ hy₃ | |
| exact (lt_self_iff_false 0).mp hy₅ | |