IMO-Steps / imo_proofs /imo_1997_p5.lean
roozbeh-yz's picture
Upload 42 files
1c3ffd8 verified
import Mathlib
set_option linter.unusedVariables.analyzeTactics true
open Nat Real
lemma mylemma_xy_le_y
(x y : ℕ)
(h₀ : 0 < x ∧ 0 < y)
-- (g : x ^ y ^ 2 = (x ^ y) ^ y)
(hxy : x ≤ y)
(h₁ : (x ^ y) ^ y = y ^ x) :
x ^ y ≤ y := by
by_contra hc
push_neg at hc
have h₂: y^x ≤ y^y := by
{ exact Nat.pow_le_pow_of_le_right h₀.2 hxy }
have h₃: y^y < (x^y)^y := by
refine Nat.pow_lt_pow_left hc ?_
refine Nat.pos_iff_ne_zero.mp h₀.2
rw [h₁] at h₃
linarith [h₂, h₃]
lemma four_times_k_less_than_two_pow_k
(k : ℕ)
(hk : 5 ≤ k) :
4 * k < 2 ^ k := by
-- Proceed by induction on k
induction' k using Nat.case_strong_induction_on with n ih
-- Base case: k = 0 is not possible since 5 ≤ k
-- so we start directly with k = 5 as the base case
. norm_num
by_cases h₀ : n < 5
. have hn: n = 4 := by linarith
rw [hn]
norm_num
. push_neg at h₀
have ih₁ : 4 * n < 2 ^ n := ih n (le_refl n) h₀
rw [mul_add, pow_add, mul_one, pow_one, mul_two]
refine Nat.add_lt_add ih₁ ?_
refine lt_trans ?_ ih₁
refine (Nat.lt_mul_iff_one_lt_right (by norm_num)).mpr ?_
refine Nat.lt_of_lt_of_le ?_ h₀
norm_num
lemma mylemma_case_xley
(x y : ℕ)
(h₀ : 0 < x ∧ 0 < y)
(h₁ : x^(y^2) = y^x)
(g₁ : x^(y^2) = (x^y)^y)
(hxy : x ≤ y) :
(x, y) = (1, 1) ∨ (x, y) = (16, 2) ∨ (x, y) = (27, 3) := by
rw [g₁] at h₁
have g2: x^y ≤ y := by
exact mylemma_xy_le_y x y h₀ hxy h₁
have g3: x = 1 := by
by_contra hc
have g3: 2 ≤ x := by
by_contra gc
push_neg at gc
interval_cases x
. linarith
. omega
have g4: 2^y ≤ x^y := by { exact Nat.pow_le_pow_of_le_left g3 y }
have g5: y < 2^y := by exact Nat.lt_two_pow_self
linarith
rw [g3] at h₁
simp at h₁
left
norm_num
exact { left := g3, right := id h₁.symm }
lemma mylemma_exp_log
(x: ℕ)
(h₀: 0 < x):
(↑x = Real.exp (Real.log ↑x)):= by
have hx_pos : 0 < (↑x : ℝ) := by exact Nat.cast_pos.mpr h₀
symm
exact Real.exp_log hx_pos
lemma mylemma_y2_lt_x
(x y : ℕ)
(h₀ : 0 < x ∧ 0 < y)
(h₁ : x ^ y ^ 2 = y ^ x)
(hxy : y < x) :
y ^ 2 < x := by
by_cases hy: 1 < y
. have hx: 2 ≤ x := by linarith
have h₂: y ^ x < x ^ x := by
refine Nat.pow_lt_pow_left hxy ?_
exact Nat.ne_of_lt' h₀.1
rw [← h₁] at h₂
exact (Nat.pow_lt_pow_iff_right hx).mp h₂
. push_neg at hy
interval_cases y
. simp
exact h₀.1
. simp at *
assumption
lemma mylemma_5
(x y: ℕ)
(h₀: 0 < x ∧ 0 < y)
(h₁: x ^ y ^ 2 = y ^ x) :
(↑x / ↑y^2) ^ y ^ 2 = (↑y:ℝ)^ ((↑x:ℝ) - 2 * ↑y ^ 2) := by
have g₁: (↑x:ℝ) ^ (↑y:ℝ) ^ 2 = (↑y:ℝ) ^ (↑x:ℝ) := by
norm_cast
have g₂: 0 < ((↑y:ℝ) ^ (2 * (↑y:ℝ) ^ 2)) := by
norm_cast
exact pow_pos h₀.2 _
have g₃: ((↑x:ℝ) ^ (↑y:ℝ) ^ 2) / ((↑y:ℝ) ^ (2 * (↑y:ℝ) ^ 2))
= ((↑y:ℝ) ^ (↑x:ℝ)) / ((↑y:ℝ) ^ (2 * (↑y:ℝ) ^ 2)) := by
refine (div_left_inj' ?_).mpr g₁
norm_cast
refine pow_ne_zero _ ?_
linarith [h₀.2]
have gy: 0 < (↑y:ℝ) := by
norm_cast
exact h₀.2
rw [← Real.rpow_sub gy (↑x) (2 * ↑y ^ 2)] at g₃
have g₄: ((↑x:ℝ) ^ (↑y:ℝ) ^ 2) / ((↑y:ℝ) ^ (2 * (↑y:ℝ) ^ 2))
= (↑x / ↑y^2) ^ y ^ 2 := by
have g₅: (↑y:ℝ) ^ (2 * (↑y:ℝ) ^ 2) = ((↑y:ℝ) ^ 2) ^ ((↑y:ℝ) ^ 2) := by
norm_cast
refine pow_mul y 2 (y^2)
rw [g₅]
symm
norm_cast
have g₆: ((↑x:ℝ) / ↑y ^ 2) ^ y ^ 2 = ↑x ^ y ^ 2 / (↑y ^ 2) ^ y ^ 2 := by
refine div_pow (↑x:ℝ) ((↑y:ℝ) ^ 2) (y^2)
norm_cast at *
rw [g₄] at g₃
norm_cast at *
lemma mylemma_2y2_lt_x
(x y : ℕ)
(h₀ : 0 < x ∧ 0 < y)
(h₁ : x ^ y ^ 2 = y ^ x)
(hxy : y < x) :
2 * y ^ 2 < x := by
by_cases hy1: y = 1
. rw [hy1]
norm_num
by_contra hc
push_neg at hc
interval_cases x
. linarith
. linarith
. rw [hy1] at h₁
simp at h₁
. have hy: 1 < y := by
contrapose! hy1
linarith
clear hy1
have h₂: (↑y:ℝ) ^ 2 < ↑x := by
norm_cast
exact mylemma_y2_lt_x x y h₀ h₁ hxy
have h₃: 1 < ↑x / (↑y:ℝ) ^ 2 := by
refine (one_lt_div ?_).mpr h₂
norm_cast
exact pow_pos h₀.2 2 -- rw ← one_mul ((↑y:ℝ)^2) at h₂, refine lt_div_iff_mul_lt.mpr h₂, },
have h₄: 1 < (↑x / (↑y:ℝ)^2)^(y^2) := by
refine one_lt_pow₀ h₃ ?_
refine Nat.ne_of_gt ?_
refine sq_pos_of_pos ?_
exact lt_of_succ_lt hy
have h₅: (↑x/ (↑y:ℝ)^2)^(y^2) = (↑y:ℝ)^((↑x:ℝ) - 2*(↑y:ℝ)^2) := by
exact mylemma_5 x y h₀ h₁
rw [h₅] at h₄
have h₆: 0 < (↑x:ℝ) - 2 * (↑y:ℝ) ^ 2 := by
by_contra hc
push_neg at hc
cases' lt_or_eq_of_le hc with hlt heq
. have gy: 1 < (↑y:ℝ) := by
norm_cast
have glt: (↑x:ℝ) - 2*(↑y:ℝ)^2 < (↑0:ℝ) := by
norm_cast at *
have g₁: (↑y:ℝ) ^ ((↑x:ℝ) - 2*(↑y:ℝ)^2) < (↑y:ℝ) ^ (↑0:ℝ) := by
exact Real.rpow_lt_rpow_of_exponent_lt gy glt
simp at g₁
linarith[ h₄,g₁]
. rw [heq] at h₄
simp at h₄
simp at h₆
norm_cast at h₆
lemma mylemma_castdvd
(x y: ℕ)
(h₀: 0 < x ∧ 0 < y)
(h₁ : x ^ y ^ 2 = y ^ x)
(hyx: y < x) :
(y^2 ∣ x) := by
have h₂: (x ^ y ^ 2).factorization = (y^x).factorization := by
exact congr_arg Nat.factorization h₁
simp at h₂
symm at h₂
have hxy1: 2 * y^2 ≤ x := by exact le_of_lt (mylemma_2y2_lt_x x y h₀ h₁ hyx)
have hxy: 2 • y^2 ≤ x := by exact hxy1
have h₃: 2 • y^2 • x.factorization ≤ x • x.factorization := by
rw [← smul_assoc]
refine nsmul_le_nsmul_left ?_ hxy
norm_num
rw [← h₂] at h₃
have h₄: 2 • x • y.factorization = x • (2 • y.factorization) := by
rw [← smul_assoc, ← smul_assoc]
have g₄: 2 • x = x • 2 := by
simp
exact mul_comm 2 x
rw [g₄]
rw [h₄] at h₃
rw [← Nat.factorization_pow] at h₃
rw [← Nat.factorization_pow] at h₃
rw [← Nat.factorization_pow] at h₃
have h₅: (y ^ 2) ^ x ∣ x^x := by
have g₁: (y ^ 2) ^ x ≠ 0 := by
refine pow_ne_zero x ?_
refine pow_ne_zero 2 ?_
linarith
have g₂: x ^ x ≠ 0 := by
refine pow_ne_zero x ?_
linarith
exact (Nat.factorization_le_iff_dvd g₁ g₂).mp h₃
refine (Nat.pow_dvd_pow_iff ?_).mp h₅
exact Nat.ne_of_gt h₀.1
lemma mylemma_xsuby_eq_2xy2_help
(x y : ℕ)
(h₀ : 0 < x ∧ 0 < y)
(h₁ : x ^ y ^ 2 = y ^ x)
(h₂ : Real.log (↑x:ℝ) = Real.log ↑y * ↑x / (↑(y ^ 2:ℕ ):ℝ) )
(hxy : y < x) :
x = y ^ (x / y ^ 2) := by
have h_exp : Real.exp (Real.log ↑x)
= Real.exp (Real.log ↑y * (↑x:ℝ) / ((↑y:ℝ)) ^ 2) := by
rw [h₂]
norm_cast
rw [← mylemma_exp_log x h₀.1] at h_exp
rw [← mul_div] at h_exp
rw [Real.exp_mul] at h_exp
rw [← mylemma_exp_log y h₀.2] at h_exp
have h₃: (↑x:ℝ) / ((↑y:ℝ)^2) = (↑(x / y^2:ℕ):ℝ) := by
norm_cast
symm
have g₂: y^2 ∣ x := by
exact mylemma_castdvd x y h₀ h₁ hxy
have h₃: (↑(y^(2:ℕ)):ℝ) ≠ 0 := by
norm_cast
exact pow_ne_zero 2 ( by linarith)
exact Nat.cast_div g₂ h₃
have h₄ : (↑(y ^ (x / y ^ (2:ℕ))):ℝ) = (↑y:ℝ)^((↑x:ℝ) / ((↑y:ℝ)^2)) := by
rw [Nat.cast_pow, h₃]
norm_cast
rw [←h₄] at h_exp
exact Nat.cast_inj.mp h_exp
theorem mylemma_xsuby_eq_2xy2
(x y : ℕ)
(h₀ : 0 < x ∧ 0 < y)
(h₁ : x ^ y ^ 2 = y ^ x)
(hxy : y < x) :
x = y ^ (x / y ^ 2) := by
-- sketch: y^2 * log x = x * log y
have h₃: Real.log (x^(y^2)) = Real.log (y^x) := by
norm_cast
rw [h₁]
have h₄: (↑(y ^ (2:ℕ)):ℝ) * Real.log x = ↑x * Real.log y := by
have h41: Real.log (y^x) = (↑x:ℝ) * Real.log (y) := by
exact Real.log_pow y x
have h42: Real.log (x^(y^2)) = (↑(y ^ (2:ℕ)):ℝ) * Real.log x := by
exact Real.log_pow x (y^2)
rw [h41,h42] at h₃
exact h₃
ring_nf at h₄
have h₅: Real.log ↑x = Real.log ↑y * ↑x / (↑(y ^ (2:ℕ)):ℝ) := by
by_contra hc
rw [mul_comm (Real.log ↑y) (↑x)] at hc
rw [← h₄, mul_comm, ← mul_div] at hc
rw [div_self, mul_one] at hc
. apply hc
norm_cast
. norm_cast
push_neg
refine pow_ne_zero 2 ?_
exact Nat.ne_of_gt h₀.2
have h₆: x = y ^ (x / y ^ 2) := by
exact mylemma_xsuby_eq_2xy2_help x y h₀ h₁ h₅ hxy
exact h₆
theorem imo_1997_p5
(x y : ℕ)
(h₀ : 0 < x ∧ 0 < y)
(h₁ : x^(y^2) = y^x) :
(x, y) = (1, 1) ∨ (x, y) = (16, 2) ∨ (x, y) = (27, 3) := by
have g₁: x^(y^2) = (x^y)^y := by
rw [Nat.pow_two]
exact Nat.pow_mul x y y
by_cases hxy: x ≤ y
. exact mylemma_case_xley x y h₀ h₁ g₁ hxy
. push_neg at hxy
right
have h₃: x = y ^ (x / y ^ 2) := by
exact mylemma_xsuby_eq_2xy2 x y h₀ h₁ hxy
let k:ℕ := x / y^2 -- { admit },
have hk_def: k = x / y^2 := by exact rfl
by_cases hk: k < 2
. rw [← hk_def] at h₃
interval_cases k
. exfalso
simp at h₃
linarith
. exfalso
simp at *
linarith [hxy,h₃] --simp at h₃, rw h₃ at hxy, linarith[hxy], },
. push_neg at hk
rw [← hk_def] at h₃
have h₅: k = y^(k-2) := by
rw [h₃] at hk_def
nth_rewrite 1 [hk_def]
exact Nat.pow_div hk h₀.2
by_cases hk5: k < 5
. interval_cases k
. exfalso
simp at h₅
. right
norm_num
simp at h₅
symm at h₅
rw [h₅] at h₃
norm_num at h₃
exact { left := h₃, right := h₅ }
. simp at h₅
symm at h₅
have g₂: y^4 = y^2 * y^2 := by ring_nf
rw [g₂, h₅] at h₃
norm_num at h₃
left
norm_num
constructor
. exact h₃
. have h₆ : y ^ 2 = 2 ^ 2 := by
norm_num
exact h₅
have h₇: 0 ≤ y := by
linarith
exact (sq_eq_sq₀ h₇ (by linarith)).mp (h₆)
push_neg at hk5
by_cases hy: 2 ≤ y
. have h₅₁: k < y^(k-2) := by
have h₆: 2^(k-2) ≤ y^(k-2) := by
have hk1: 3 ≤ k - 2 := by exact Nat.sub_le_sub_right hk5 2
exact (Nat.pow_le_pow_iff_left (by linarith)).mpr hy
have h₇: 4*k < 2^k := by
exact four_times_k_less_than_two_pow_k k hk5
have h₇: k < 2^(k-2) := by
have h₈ : k < 2 ^ k / 4 := by
have h81: 42^k := by
have h82: 2^k = 4*2^(k-2) := by
have h83: k = 2 + (k -2) := by
ring_nf
exact (add_sub_of_le hk).symm
nth_rewrite 1 [h83]
rw [pow_add]
norm_num
rw [h82]
exact Nat.dvd_mul_right 4 (2^(k-2))
exact (Nat.lt_div_iff_mul_lt' h81 k).mpr h₇
have h₉: 2 ^ k / 4 = 2 ^ (k-2) := by
have g2: k = k - 2 + 2 := by
exact (Nat.sub_eq_iff_eq_add hk).mp rfl
have h1: 2^k = 2^(k - 2 + 2) := by
exact congrArg (HPow.hPow 2) g2
have h2: 2 ^ (k - 2 + 2) = 2 ^ (k - 2) * 2 ^ 2 := by rw [pow_add]
rw [h1, h2]
ring_nf
simp
linarith
linarith
exfalso
linarith
. push_neg at hy
interval_cases y
. linarith
. simp at h₅
simp at h₃
linarith