Upload jijifi.txt
Browse files- jijifi.txt +247 -0
jijifi.txt
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# K Means Clustering w elbow plot
|
| 2 |
+
#importing libraries
|
| 3 |
+
from sklearn.cluster import KMeans
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
#import dataset
|
| 8 |
+
df = pd.read_csv("C:datasets\.csv")
|
| 9 |
+
df.head()
|
| 10 |
+
plt.scatter(df.Age, df.Income)
|
| 11 |
+
plt.xlabel('Age')
|
| 12 |
+
plt.ylabel('Income')
|
| 13 |
+
scaler = MinMaxScaler()
|
| 14 |
+
scaler.fit(df[['Income']])
|
| 15 |
+
df['Income'] = scaler.transform(df[['Income']])
|
| 16 |
+
|
| 17 |
+
scaler.fit(df[['Age']])
|
| 18 |
+
df['Age'] = scaler.transform(df[['Age']])
|
| 19 |
+
|
| 20 |
+
#Elbow plot
|
| 21 |
+
sse = []
|
| 22 |
+
k_rng = range(1, 10)
|
| 23 |
+
for k in k_rng:
|
| 24 |
+
km = KMeans(n_clusters = k)
|
| 25 |
+
km.fit(df[['Age', 'Income']])
|
| 26 |
+
sse.append(km.inertia_)
|
| 27 |
+
plt.xlabel('K')
|
| 28 |
+
plt.ylabel('Sum of squared error')
|
| 29 |
+
plt.plot(k_rng,sse)
|
| 30 |
+
km = KMeans(n_clusters = 3)
|
| 31 |
+
y_predicted = km.fit_predict(df[['Age', 'Income']])
|
| 32 |
+
y_predicted
|
| 33 |
+
km.cluster_centers_
|
| 34 |
+
df['cluster']=y_predicted
|
| 35 |
+
df.head()
|
| 36 |
+
df1 = df[df.cluster == 0]
|
| 37 |
+
df2 = df[df.cluster == 1]
|
| 38 |
+
df3 = df[df.cluster == 2]
|
| 39 |
+
|
| 40 |
+
plt.scatter(df1.Age, df1.Income, color = 'black')
|
| 41 |
+
plt.scatter(df2.Age, df2.Income, color = 'orange')
|
| 42 |
+
plt.scatter(df3.Age, df3.Income, color = 'maroon')
|
| 43 |
+
plt.scatter(km.cluster_centers_[:,0], km.cluster_centers_[:,1], color = 'purple', marker = '*', label = 'centroid')
|
| 44 |
+
plt.xlabel('Age')
|
| 45 |
+
plt.ylabel('Income in $')
|
| 46 |
+
|
| 47 |
+
#Association Rule Mining
|
| 48 |
+
#!pip install --no-binary :all: mlxtend
|
| 49 |
+
import pandas as pd
|
| 50 |
+
from mlxtend.preprocessing import TransactionEncoder
|
| 51 |
+
from mlxtend.frequent_patterns import apriori
|
| 52 |
+
dataset = [["Milk", "Cola", "Beer"],
|
| 53 |
+
["Milk", "Pepsi", "Juice"],
|
| 54 |
+
["Milk", "Beer"],
|
| 55 |
+
["Cola", "Juice"],
|
| 56 |
+
["Milk", "Pepsi", "Beer"]]
|
| 57 |
+
dataset
|
| 58 |
+
var = TransactionEncoder()
|
| 59 |
+
var_arr = var.fit(dataset).transform(dataset)
|
| 60 |
+
df = pd.DataFrame(var_arr, columns = var.columns_)
|
| 61 |
+
df
|
| 62 |
+
#from mlxtend.frequent_patterns import apriori
|
| 63 |
+
fq_is = apriori(df, min_support = 0.5, use_colnames = True)
|
| 64 |
+
fq_is
|
| 65 |
+
from mlxtend.frequent_patterns import association_rules
|
| 66 |
+
rules_ap = association_rules(fq_is, metric = "confidence", min_threshold = 0.01)
|
| 67 |
+
rules_ap
|
| 68 |
+
|
| 69 |
+
##Decision Tree
|
| 70 |
+
|
| 71 |
+
import pandas as pd
|
| 72 |
+
from sklearn.preprocessing import LabelEncoder
|
| 73 |
+
from sklearn import tree
|
| 74 |
+
df = pd.read_csv('C:/Users/datasets/lung cancer.csv')
|
| 75 |
+
df.head()
|
| 76 |
+
df.isnull().any()
|
| 77 |
+
le_GENDER = LabelEncoder()
|
| 78 |
+
le_LUNG_CANCER = LabelEncoder()
|
| 79 |
+
|
| 80 |
+
df['Gender'] = le_GENDER.fit_transform(df['GENDER'])
|
| 81 |
+
df['LungCancer'] = le_LUNG_CANCER.fit_transform(df['LUNG_CANCER'])
|
| 82 |
+
|
| 83 |
+
df.head()
|
| 84 |
+
df = df.drop(['GENDER','LUNG_CANCER'], axis = 1)
|
| 85 |
+
df.head()
|
| 86 |
+
inputs = df.drop('LungCancer', axis = 1)
|
| 87 |
+
target = df['LungCancer']
|
| 88 |
+
inputs.head()
|
| 89 |
+
print(target)
|
| 90 |
+
from sklearn import tree
|
| 91 |
+
model = tree.DecisionTreeClassifier()
|
| 92 |
+
model.fit(inputs, target)
|
| 93 |
+
model.score(inputs, target)
|
| 94 |
+
print(model.predict([[63,1,2,2,1,2,1,1,2,1,2,1,1,2,2]]))
|
| 95 |
+
tree.plot_tree(model)
|
| 96 |
+
|
| 97 |
+
##SVM bank loan
|
| 98 |
+
|
| 99 |
+
# libraries
|
| 100 |
+
import pandas as pd
|
| 101 |
+
import numpy as np
|
| 102 |
+
import matplotlib.pyplot as plt
|
| 103 |
+
import seaborn
|
| 104 |
+
import sklearn
|
| 105 |
+
from sklearn import model_selection
|
| 106 |
+
from sklearn.model_selection import train_test_split
|
| 107 |
+
from sklearn import svm
|
| 108 |
+
from sklearn.svm import SVC
|
| 109 |
+
from sklearn import metrics
|
| 110 |
+
from sklearn.metrics import confusion_matrix
|
| 111 |
+
from sklearn.metrics import classification_report
|
| 112 |
+
from sklearn.metrics import roc_curve, auc
|
| 113 |
+
bl = pd.read_csv("C:/fifi.csv")
|
| 114 |
+
bl = pd.DataFrame(bl)
|
| 115 |
+
bl_data = bl.drop(['address','ed','debtinc','employ'],1)
|
| 116 |
+
bl_data.head(3)
|
| 117 |
+
x = bl_data.drop('default', axis = 1)
|
| 118 |
+
y = bl_data.default
|
| 119 |
+
x.head()
|
| 120 |
+
y.head()
|
| 121 |
+
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=0)
|
| 122 |
+
# building an SVM having penalty 10 and gamma auto optimized
|
| 123 |
+
svct = SVC(kernel = 'linear',
|
| 124 |
+
C = 10, gamma = 'auto',
|
| 125 |
+
probability = True).fit(x_train, y_train)
|
| 126 |
+
|
| 127 |
+
print(svct)
|
| 128 |
+
y_pred = svct.predict(x_test)
|
| 129 |
+
y_pred
|
| 130 |
+
cnf = confusion_matrix(y_test, y_pred)
|
| 131 |
+
cnf
|
| 132 |
+
# ROC Curve with AUC Plotting
|
| 133 |
+
# finding probabilities for 0 and 1 classses
|
| 134 |
+
preds1 = svct.predict_proba(x_test)[:,1]
|
| 135 |
+
print(preds1)
|
| 136 |
+
from sklearn.metrics import roc_curve, auc
|
| 137 |
+
fpr1, tpr1, thresholds1 = metrics.roc_curve(y_test, preds1)
|
| 138 |
+
fpr1
|
| 139 |
+
tpr1
|
| 140 |
+
thresholds1
|
| 141 |
+
df1 = pd.DataFrame(dict(fpr = fpr1, tpr = tpr1))
|
| 142 |
+
auc = metrics.auc(fpr1, tpr1)
|
| 143 |
+
# plotting
|
| 144 |
+
plt.figure()
|
| 145 |
+
plt.plot(fpr1, tpr1, color = 'darkorange', label = 'ROC CURVE(area = %0.2f)' % auc)
|
| 146 |
+
plt.plot([0,1], [0,1], color = 'navy')
|
| 147 |
+
plt.xlim([0.0, 1.0])
|
| 148 |
+
plt.ylim([0.0, 1.05])
|
| 149 |
+
plt.xlabel('False Positive Rate')
|
| 150 |
+
plt.ylabel('True Positive Rate')
|
| 151 |
+
plt.title('ROC example')
|
| 152 |
+
plt.legend(loc = 'lower right')
|
| 153 |
+
plt.show()
|
| 154 |
+
|
| 155 |
+
##SVM Iris
|
| 156 |
+
from sklearn import svm
|
| 157 |
+
import pandas as pd
|
| 158 |
+
df = pd.read_csv("C:datasets/iris_df.csv")
|
| 159 |
+
df.head(5)
|
| 160 |
+
df.columns = ['X4','X3','X1','X2','Y']
|
| 161 |
+
df = df.drop(['X4','X3'],1)
|
| 162 |
+
df.head()
|
| 163 |
+
from sklearn.model_selection import train_test_split
|
| 164 |
+
from sklearn import svm
|
| 165 |
+
x = df.drop("Y", axis = 1)
|
| 166 |
+
y = df.Y
|
| 167 |
+
|
| 168 |
+
support = svm.SVC()
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
trainx, testx, trainy, testy = train_test_split(x,y, test_size = 0.3)
|
| 172 |
+
support.fit(trainx, trainy)
|
| 173 |
+
print('Accuracy:/n', support.score(testx, testy))
|
| 174 |
+
|
| 175 |
+
pred = support.predict(testx)
|
| 176 |
+
import pandas as pd
|
| 177 |
+
import numpy as np
|
| 178 |
+
from sklearn import linear_model
|
| 179 |
+
import matplotlib.pyplot as plt
|
| 180 |
+
df = pd.read_csv("C:datasets/house_price.csv")
|
| 181 |
+
df.head()
|
| 182 |
+
plt.xlabel('area')
|
| 183 |
+
plt.ylabel('price')
|
| 184 |
+
plt.scatter(df.area,df.price,color = 'blue')
|
| 185 |
+
reg = linear_model.LinearRegression()
|
| 186 |
+
reg.fit(df[['area']], df.price)
|
| 187 |
+
# prediction
|
| 188 |
+
reg.predict([[3100]])
|
| 189 |
+
reg.coef_
|
| 190 |
+
reg.intercept_
|
| 191 |
+
plt.xlabel('area')
|
| 192 |
+
plt.ylabel('price')
|
| 193 |
+
plt.scatter(df.area,df.price,color='green')
|
| 194 |
+
plt.plot(df.area,reg.predict(df[['area']]), color = 'red')
|
| 195 |
+
|
| 196 |
+
##Linear Regression Multiple Variable
|
| 197 |
+
# pandas numpy
|
| 198 |
+
from sklearn import linear_model
|
| 199 |
+
df = pd.read_csv("C:/house_pricemodel.csv")
|
| 200 |
+
df.head()
|
| 201 |
+
df.isnull()
|
| 202 |
+
df.bedrooms.median()
|
| 203 |
+
df.bedrooms = df.bedrooms.fillna(df.bedrooms.median())
|
| 204 |
+
df
|
| 205 |
+
reg = linear_model.LinearRegression()
|
| 206 |
+
reg.fit(df.drop('price', axis = 1), df.price)
|
| 207 |
+
reg.coef_
|
| 208 |
+
reg.predict([[3200,3,10]])
|
| 209 |
+
##SImple Logistic Regression
|
| 210 |
+
# pandas, matplotlib
|
| 211 |
+
from sklearn.model_selection import train_test_split
|
| 212 |
+
from sklearn.linear_model import LogisticRegression
|
| 213 |
+
df = pd.read_csv("C:/Users//Datasets/insurance_age.csv")
|
| 214 |
+
df.head()
|
| 215 |
+
plt.scatter(df.age,df.bought_insurance, marker ='*', color = 'purple')
|
| 216 |
+
x_train, x_test, y_train, y_test = train_test_split(df[['age']], df.bought_insurance, train_size=0.8)
|
| 217 |
+
model = LogisticRegression()
|
| 218 |
+
model.fit(x_train, y_train)
|
| 219 |
+
y_predicted = model.predict(x_test)
|
| 220 |
+
model.predict_proba(x_test)
|
| 221 |
+
model.score(x_test, y_test)
|
| 222 |
+
y_predicted
|
| 223 |
+
model.predict([[45]])
|
| 224 |
+
##Gradient descent simple
|
| 225 |
+
import numpy as np
|
| 226 |
+
import matplotlib.pyplot as plt
|
| 227 |
+
def gradient_descent(x,y):
|
| 228 |
+
m_curr = b_curr = 0
|
| 229 |
+
iterations = 10000
|
| 230 |
+
n = len(x) # length of x
|
| 231 |
+
learning_rate = 0.001
|
| 232 |
+
#learning rate = .00001
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
for i in range(iterations):
|
| 237 |
+
y_predicted = m_curr * x + b_curr
|
| 238 |
+
cost = (1/n) * sum([val**2 for val in (y-y_predicted)])
|
| 239 |
+
md = -(2/n)*sum(x*(y-y_predicted)) # m derivative
|
| 240 |
+
bd = -(2/n)*sum(y-y_predicted) # b derivative
|
| 241 |
+
m_curr = m_curr - learning_rate * md
|
| 242 |
+
b_curr = b_curr - learning_rate * bd
|
| 243 |
+
#print ("m {}, b {}, iteration {}".format(m_curr,b_curr, i))
|
| 244 |
+
print ("m {}, b {}, cost {} iteration {}".format(m_curr,b_curr,cost, i)) # each iteration to print the values
|
| 245 |
+
x = np.array([1,2,3,4,5])
|
| 246 |
+
y = np.array([5,7,9,11,13])
|
| 247 |
+
gradient_descent(x,y)
|