File size: 2,721 Bytes
fca4fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
.. meta::
:description: Composable Kernel mathematical basis
:keywords: composable kernel, CK, ROCm, API, mathematics, algorithm
.. _supported-primitives:
********************************************************************
Composable Kernel mathematical basis
********************************************************************
This is an introduction to the math which underpins the algorithms implemented in Composable Kernel.
For vectors :math:`x^{(1)}, x^{(2)}, \ldots, x^{(T)}` of size :math:`B` you can decompose the
softmax of concatenated :math:`x = [ x^{(1)}\ | \ \ldots \ | \ x^{(T)} ]` as,
.. math::
:nowrap:
\begin{align}
m(x) & = m( [ x^{(1)}\ | \ \ldots \ | \ x^{(T)} ] ) = \max( m(x^{(1)}),\ldots, m(x^{(T)}) ) \\
f(x) & = [\exp( m(x^{(1)}) - m(x) ) f( x^{(1)} )\ | \ \ldots \ | \ \exp( m(x^{(T)}) - m(x) ) f( x^{(T)} )] \\
z(x) & = \exp( m(x^{(1)}) - m(x) )\ z(x^{(1)}) + \ldots + \exp( m(x^{(T)}) - m(x) )\ z(x^{(1)}) \\
\operatorname{softmax}(x) &= f(x)\ / \ z(x)
\end{align}
where :math:`f(x^{(j)}) = \exp( x^{(j)} - m(x^{(j)}) )` is of size :math:`B` and
:math:`z(x^{(j)}) = f(x_1^{(j)})+ \ldots+ f(x_B^{(j)})` is a scalar.
For a matrix :math:`X` composed of :math:`T_r \times T_c` tiles, :math:`X_{ij}`, of size
:math:`B_r \times B_c` you can compute the row-wise softmax as follows.
For :math:`j` from :math:`1` to :math:`T_c`, and :math:`i` from :math:`1` to :math:`T_r` calculate,
.. math::
:nowrap:
\begin{align}
\tilde{m}_{ij} &= \operatorname{rowmax}( X_{ij} ) \\
\tilde{P}_{ij} &= \exp(X_{ij} - \tilde{m}_{ij} ) \\
\tilde{z}_{ij} &= \operatorname{rowsum}( P_{ij} ) \\
\end{align}
If :math:`j=1`, initialize running max, running sum, and the first column block of the output,
.. math::
:nowrap:
\begin{align}
m_i &= \tilde{m}_{i1} \\
z_i &= \tilde{z}_{i1} \\
\tilde{Y}_{i1} &= \diag(\tilde{z}_{ij})^{-1} \tilde{P}_{i1}
\end{align}
Else if :math:`j>1`,
1. Update running max, running sum and column blocks :math:`k=1` to :math:`k=j-1`
.. math::
:nowrap:
\begin{align}
m^{new}_i &= \max(m_i, \tilde{m}_{ij} ) \\
z^{new}_i &= \exp(m_i - m^{new}_i)\ z_i + \exp( \tilde{m}_{ij} - m^{new}_i )\ \tilde{z}_{ij} \\
Y_{ik} &= \diag(z^{new}_{i})^{-1} \diag(z_{i}) \exp(m_i - m^{new}_i)\ Y_{ik}
\end{align}
2. Initialize column block :math:`j` of output and reset running max and running sum variables:
.. math::
:nowrap:
\begin{align}
\tilde{Y}_{ij} &= \diag(z^{new}_{i})^{-1} \exp(\tilde{m}_{ij} - m^{new}_i ) \tilde{P}_{ij} \\
z_i &= z^{new}_i \\
m_i &= m^{new}_i \\
\end{align}
|