/* graphs > minimum spanning tree (MST) difficulty: easy date: 10/Nov/2019 by: @brpapa */ #include #include #include #include #define MAX_V 110 using namespace std; struct Tedge { int v1, v2; double w; Tedge(int v1, int v2, double w) : v1(v1), v2(v2), w(w) {} bool operator<(const Tedge& e) const { return this->w < e.w; } }; vector edgeList; // arestas não direcionadas typedef pair Tpoint; Tpoint points[MAX_V]; // coordenada do vértice (first: x, second: y) int p[MAX_V]; // ufds int findSet(int i) { if (p[i] == i) return i; return p[i] = findSet(p[i]); } double distEuclidian(Tpoint c1, Tpoint c2) { return sqrt(pow(c1.first-c2.first, 2) + pow(c1.second-c2.second, 2)); } int main() { int V, T; cin >> T; while (T--) { edgeList.clear(); cin >> V; double x, y, d; for (int v = 0; v < V; v++) { cin >> x >> y; points[v] = make_pair(x, y); p[v] = v; // init ufds for (int t = 0; t < v; t++) { // para cada vértice t já lido d = distEuclidian(points[t], points[v]); edgeList.push_back(Tedge(t, v, d)); } } double mstCost = 0; sort(edgeList.begin(), edgeList.end()); for (Tedge e: edgeList) { int set_v1 = findSet(e.v1); int set_v2 = findSet(e.v2); if (set_v1 != set_v2) { p[set_v1] = set_v2; // union sets mstCost += e.w; } } printf("%.2lf%s", mstCost, (T == 0)?"\n":"\n\n"); } return 0; }