#include #include #include #include #include using namespace std; typedef long double ld; typedef complex point, vect; typedef vector polygon; typedef polygon::iterator polIter; const ld inf = 1e9; const ld eps = 1e-9; const ld pi = acos(-1.0); ld area(polygon &p) { ld result = 0.0; for (int i = 0; i < p.size(); i++) result += imag(conj(p[i])*p[(i+1)%p.size()]); return abs(result) / 2.0; } double dist(point p1, point p2) { return hypot(p1.real() - p2.real(), p1.imag() - p2.imag()); } double cross(vect a, vect b) { return a.real() * b.imag() - a.imag() * b.real(); } vect toVec(point a, point b) { return vect(b.real() - a.real(), b.imag() - a.imag()); } bool ccw(point p, point q, point r) { return cross(toVec(p, q), toVec(p, r)) > 0; } bool collinear(point p, point q, point r) { return fabs(cross(toVec(p, q), toVec(p, r))) < eps; } point pivot(0, 0); bool angleCmp(point a, point b) { if (collinear(pivot, a, b)) return dist(pivot, a) < dist(pivot, b); double d1x = a.real() - pivot.real(), d1y = a.imag() - pivot.imag(); double d2x = b.real() - pivot.real(), d2y = b.imag() - pivot.imag(); return (atan2(d1y, d1x) - atan2(d2y, d2x)) < 0; } polygon CH(polygon P) { int i, j, n = (int)P.size(); if (n <= 3) { if (!(P[0] == P[n-1])) P.push_back(P[0]); return P; } int P0 = 0; for (i = 1; i < n; i++) if (P[i].imag() < P[P0].imag() || (P[i].imag() == P[P0].imag() && P[i].real() > P[P0].real())) P0 = i; point temp = P[0]; P[0] = P[P0]; P[P0] = temp; pivot = P[0]; sort(++P.begin(), P.end(), angleCmp); polygon S; S.push_back(P[n-1]); S.push_back(P[0]); S.push_back(P[1]); i = 2; while (i < n) { j = (int)S.size()-1; if (ccw(S[j-1], S[j], P[i])) S.push_back(P[i++]); else S.pop_back(); } return S; } int main() { int N, c = 1; while (cin >> N && N != 0) { polygon pol; for (int i = 0; i < N; i++) { double x, y; cin >> x >> y; pol.push_back(point(x, y)); } ld tArea = abs(area(pol)); polygon chull = CH(pol); ld hArea = abs(area(chull)); printf("Tile #%d\n", c); printf("Wasted Space = %.2Lf %%\n\n", ((hArea-tArea)*100)/hArea); c++; } return 0; }