stkhann commited on
Commit
109942a
·
verified ·
1 Parent(s): 9ac3607

Upload 14 files

Browse files
Articles in JSON/article 1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lines":[]}
Articles in JSON/article 10.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lines":[{"page":1,"text":"Russian Chemical Reviews","rect":[39.0,64.02201843261719,184.3560028076172,55.154014587402347]},{"page":1,"text":"CHEMICAL CHARACTERISTICS, STRUCTURE,","rect":[39.0,148.86599731445313,388.92006762695316,136.86599731445313]},{"page":1,"text":"AND PROPERTIES OF LIQUID CRYSTAL","rect":[39.0,168.77001953125,342.71207055664066,156.06600952148438]},{"page":1,"text":"To cite this article: V A Usol'tseva and I G Chistyakov 1963 Russ. Chem. Rev. 32 495","rect":[39.0,195.251953125,340.85199169921875,187.66795349121095]},{"page":1,"text":"View the article online for updates and enhancements.","rect":[39.0,241.48402404785157,231.54599096679687,234.07601928710938]},{"page":1,"text":"You may also like","rect":[403.6600036621094,125.66803741455078,497.69201953125,114.56803131103516]},{"page":1,"text":"- THE EXTRACTION OF HETEROPOLY-","rect":[418.6600036621094,140.23703002929688,547.7919985351563,135.05703735351563]},{"page":1,"text":"COMPOUNDS AND ITS APPLICATION IN","rect":[422.94000244140627,148.23703002929688,555.960982421875,143.05703735351563]},{"page":1,"text":"INORGANIC ANALYSIS","rect":[422.94000244140627,156.23703002929688,498.79198583984376,151.05703735351563]},{"page":1,"text":"I P Alimarin, F P Sudakov and V I Klitina","rect":[422.94000244140627,165.0,547.8269975585938,159.0640411376953]},{"page":1,"text":"- THE FORMATION OF BIOCHEMICALLY","rect":[418.6600036621094,179.73703002929688,551.2919858398437,174.55703735351563]},{"page":1,"text":"IMPORTANT COMPOUNDS IN THE PRE-","rect":[422.94000244140627,187.73703002929688,555.946966796875,182.55703735351563]},{"page":1,"text":"BIOLOGICAL STAGE OF THE EARTH'S","rect":[422.94000244140627,195.73703002929688,550.3120053710937,190.55703735351563]},{"page":1,"text":"DEVELOPMENT","rect":[422.94000244140627,203.73703002929688,475.83901171875,198.55703735351563]},{"page":1,"text":"A G Pasynskii and T E Pavlovskaya","rect":[422.94000244140627,213.12303161621095,534.20498828125,206.5640411376953]},{"page":1,"text":"-","rect":[418.6600036621094,225.655029296875,420.9910036621094,225.03903198242188]},{"page":1,"text":"This content was downloaded from IP address 128.151.150.113 on 17/07/2024 at 19:50","rect":[142.07000732421876,798.8159790039063,452.9259357910156,792.89599609375]}]}
Articles in JSON/article 11.json ADDED
The diff for this file is too large to render. See raw diff
 
Articles in JSON/article 12.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lines":[]}
Articles in JSON/article 13.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lines":[]}
Articles in JSON/article 14.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lines":[{"page":1,"text":"Molecular Crystals and Liquid Crystals Science and","rect":[127.85546112060547,59.87419509887695,491.54191534961549,44.72492218017578]},{"page":1,"text":"Technology. Section A. Molecular Crystals and Liquid","rect":[127.85546112060547,77.87328338623047,504.52540533984986,62.72400665283203]},{"page":1,"text":"Crystals","rect":[127.85546112060547,95.87242889404297,185.17153053039417,80.72315216064453]},{"page":1,"text":"ISSN: 1058-725X (Print) (Online) Journal homepage: www.tandfonline.com/journals/gmcl19","rect":[127.85546112060547,144.5811004638672,474.51247255776908,136.46148681640626]},{"page":1,"text":"Density-Functional Theory of Liquid Crystal","rect":[97.05101013183594,190.36392211914063,469.4450181035358,172.0948028564453]},{"page":1,"text":"Surfaces","rect":[97.05101013183594,207.22308349609376,171.04766402905114,193.09376525878907]},{"page":1,"text":"Yashwant Singh & Jokhan Ram","rect":[97.05101013183594,252.36993408203126,272.0906633829993,240.25051879882813]},{"page":1,"text":"To cite this article: Yashwant Singh & Jokhan Ram (1996) Density-Functional Theory of Liquid","rect":[97.05101013183594,286.87127685546877,526.084441929403,276.7217712402344]},{"page":1,"text":"Crystal Surfaces, Molecular Crystals and Liquid Crystals Science and Technology. Section A.","rect":[97.05101013183594,298.8707275390625,515.669705468269,288.7212219238281]},{"page":1,"text":"Molecular Crystals and Liquid Crystals, 288:1, 143-152, DOI: 10.1080/10587259608034591","rect":[97.05101013183594,310.8701171875,511.8216214190948,300.7705993652344]},{"page":1,"text":"To link to this article: https://doi.org/10.1080/10587259608034591","rect":[97.05101013183594,330.869140625,410.3429837237823,320.7696228027344]},{"page":1,"text":"Published online: 24 Sep 2006.","rect":[131.73350524902345,384.8675537109375,259.50500542925456,375.7779846191406]},{"page":1,"text":"Submit your article to this journal","rect":[131.73350524902345,429.7193908691406,271.5139261704369,420.62982177734377]},{"page":1,"text":"Article views: 27","rect":[131.73350524902345,468.6295166015625,198.36287846663846,461.5738525390625]},{"page":1,"text":"View related articles","rect":[131.73350524902345,513.4453735351563,215.40027033767962,506.42572021484377]},{"page":1,"text":"Full Terms & Conditions of access and use can be found at","rect":[195.6282501220703,777.0186767578125,438.3706487579061,769.9540405273438]},{"page":1,"text":"https://www.tandfonline.com/action/journalInformation?journalCode=gmcl20","rect":[154.6539306640625,790.0880126953125,479.3451172361697,780.9534912109375]}]}
Articles in JSON/article 15.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lines":[]}
Articles in JSON/article 2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lines":[]}
Articles in JSON/article 4.json ADDED
The diff for this file is too large to render. See raw diff
 
Articles in JSON/article 5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lines":[{"page":1,"text":"View Article Online / Journal Homepage / Table of Contents for this issue","rect":[138.6800079345703,9.708333969116211,377.9999978663554,2.4446282386779787]},{"page":2,"text":"View Article Online","rect":[307.67999267578127,13.096430778503418,372.9999978663554,7.4388909339904789]},{"page":3,"text":"View Article Online","rect":[307.67999267578127,13.096430778503418,372.9999978663554,7.4388909339904789]},{"page":4,"text":"View Article Online","rect":[307.67999267578127,13.096430778503418,372.9999978663554,7.4388909339904789]},{"page":5,"text":"View Article Online","rect":[307.67999267578127,13.096430778503418,372.9999978663554,7.4388909339904789]},{"page":6,"text":"View Article Online","rect":[307.67999267578127,13.096430778503418,372.9999978663554,7.4388909339904789]},{"page":7,"text":"View Article Online","rect":[307.67999267578127,13.096430778503418,372.9999978663554,7.4388909339904789]},{"page":8,"text":"View Article Online","rect":[307.67999267578127,13.096430778503418,372.9999978663554,7.4388909339904789]},{"page":9,"text":"View Article Online","rect":[307.67999267578127,13.096430778503418,372.9999978663554,7.4388909339904789]},{"page":10,"text":"View Article Online","rect":[307.67999267578127,13.096430778503418,372.9999978663554,7.4388909339904789]}]}
Articles in JSON/article 6.json ADDED
The diff for this file is too large to render. See raw diff
 
Articles in JSON/article 7.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lines":[]}
Articles in JSON/article 8.json ADDED
The diff for this file is too large to render. See raw diff
 
Articles in JSON/article 9.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lines":[{"page":1,"text":"RESEARCH ARTICLE|","rect":[119.69732666015625,83.62850952148438,213.91710912935324,75.916748046875]},{"page":1,"text":"JUNE 02 2020","rect":[221.0641632080078,82.01782989501953,278.0651619298703,75.98995971679688]},{"page":1,"text":"Structures and phase transition of liquid crystals in a","rect":[120.85943603515625,102.8556137084961,471.30200506337146,89.63545227050781]},{"page":1,"text":"dynamic slit confinement","rect":[120.85943603515625,120.2872543334961,287.0317213724377,107.06709289550781]},{"page":1,"text":"Special Collection: 2020 Biophysics and Bioengineering","rect":[120.85943603515625,131.61317443847657,305.7482524341912,125.00308990478516]},{"page":1,"text":"Ruifen Zhang; Xin Wen","rect":[120.85943603515625,148.12557983398438,213.4393553215406,139.7142333984375]},{"page":1,"text":"AIP Advances 10, 065307 (2020)","rect":[120.85943603515625,182.74598693847657,223.02451241961729,176.13589477539063]},{"page":1,"text":"https://doi.org/10.1063/5.0009727","rect":[120.85943603515625,193.7860870361328,224.19253695551385,187.17599487304688]},{"page":1,"text":"","rect":[445.0881042480469,242.35760498046876,467.59643066147319,212.8981170654297]},{"page":1,"text":"View","rect":[449.6185302734375,249.95547485351563,468.0848147013549,243.09437561035157]},{"page":1,"text":"Online","rect":[446.1775817871094,259.2523498535156,471.8718689354768,252.27040100097657]},{"page":1,"text":"","rect":[485.761962890625,242.35760498046876,508.2702893040513,212.8981170654297]},{"page":1,"text":"Export","rect":[486.8514404296875,251.69400024414063,513.1207178872705,243.09437561035157]},{"page":1,"text":"Citation","rect":[485.761962890625,259.2523498535156,516.0953796776643,252.27969360351563]},{"page":2,"text":"AIP Advances","rect":[35.137996673583987,45.53744125366211,107.7547204732895,37.75001525878906]},{"page":2,"text":"ARTICLE","rect":[374.76800537109377,44.81396484375,406.7449909667969,38.162967681884769]},{"page":2,"text":"scitation.org/journal/adv","rect":[439.6210021972656,48.28499221801758,525.3370322265625,39.851993560791019]},{"page":2,"text":"Structures and phase transition of liquid crystals","rect":[44.10499954223633,113.99495697021485,533.8650366210937,94.81495666503906]},{"page":2,"text":"in a dynamic slit confnement","rect":[44.10499954223633,137.9949493408203,345.94501953125,118.81495666503906]},{"page":2,"text":"Cite as: AIP Advances 10, 065307 (2020); doi: 10.1063/5.0009727","rect":[44.10499954223633,172.406982421875,331.6000275878906,163.96498107910157]},{"page":2,"text":"Submitted: 2 April 2020 • Accepted: 13 May 2020•","rect":[44.105010986328128,184.3989715576172,272.28423581123357,175.76797485351563]},{"page":2,"text":"Published Online: 2 June 2020","rect":[44.10499572753906,194.6079864501953,181.74199536132813,187.72299194335938]},{"page":2,"text":"Ruifen","rect":[44.10499954223633,219.02098083496095,73.65199713134766,212.14498901367188]},{"page":2,"text":"Zhang1,2","rect":[76.35199737548828,220.76698303222657,113.13174420166016,211.2832489013672]},{"page":2,"text":"and","rect":[117.22699737548828,219.0299835205078,134.67799060058594,212.30699157714845]},{"page":2,"text":"Xin","rect":[138.3769989013672,218.9849853515625,153.32600073242188,212.14498901367188]},{"page":2,"text":"Wen2,a)","rect":[156.0260009765625,219.02098083496095,186.10623681640625,211.09950256347657]},{"page":2,"text":"AFFILIATIONS","rect":[44.10499954223633,240.38002014160157,106.5110087890625,233.98101806640626]},{"page":2,"text":"1National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced","rect":[44.10499954223633,257.0340576171875,535.816015625,248.967041015625]},{"page":2,"text":"Microstructures, Nanjing University, Nanjing 210093, China","rect":[47.391998291015628,267.0340576171875,277.90405126953126,259.5220642089844]},{"page":2,"text":"2Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New","rect":[44.10499954223633,279.2091064453125,540.5519448242187,271.08209228515627]},{"page":2,"text":"Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology,","rect":[47.391998291015628,289.2091064453125,476.9680419921875,281.6651306152344]},{"page":2,"text":"Guilin 541004, China","rect":[47.391998291015628,297.6891174316406,127.8160004272461,291.6971130371094]},{"page":2,"text":"a)Author to whom correspondence should be addressed: wenxin@guet.edu.cn","rect":[44.10499954223633,319.1110534667969,358.622259437561,310.80413818359377]},{"page":2,"text":"ABSTRACT","rect":[44.10499954223633,349.0138244628906,92.75667876052856,342.6387023925781]},{"page":2,"text":"We report on the dynamic confnement of colloidal liquid crystals in a two-dimensional slit pore with a periodically stretching and con-","rect":[44.10499954223633,366.14398193359377,550.60683203125,357.4320068359375]},{"page":2,"text":"tracting boundary using Langevin dynamics simulations. The infuence of moving walls on phase behavior is analyzed, and four structures","rect":[44.10499954223633,376.64398193359377,550.6068330078125,367.9320068359375]},{"page":2,"text":"are identifed. It is found that boundary vibration can induce phase transition. Structural transition characterized by the change in particle","rect":[44.10499954223633,387.14398193359377,550.6068603515626,378.4320068359375]},{"page":2,"text":"orientation is caused by varying the amplitude or frequency of the oscillating boundary. The key factor determined by the work performed","rect":[44.10499954223633,397.64398193359377,550.60698046875,388.9320068359375]},{"page":2,"text":"on the system maintaining a steady structure is also clarifed from the energy perspective. The inhomogeneous mobility of these far-from-","rect":[44.10499954223633,408.14398193359377,550.607076171875,399.4320068359375]},{"page":2,"text":"equilibrium structures is induced by the active boundary. Our results contribute to a better understanding of the slit dynamic confnement","rect":[44.10499954223633,418.64398193359377,550.6071215820313,409.9320068359375]},{"page":2,"text":"system and suggest a new way of generating order by dissipating energy in non-equilibrium systems.","rect":[44.10499954223633,429.14398193359377,405.85101123046879,420.4320068359375]},{"page":2,"text":"© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license","rect":[44.10499954223633,444.2359924316406,550.6090942382813,435.5690002441406]},{"page":2,"text":"(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0009727.,s","rect":[44.105003356933597,456.0,338.8069978027344,446.0690002441406]},{"page":2,"text":"I. INTRODUCTION","rect":[44.10499954223633,500.676025390625,123.04399047851563,494.2950134277344]},{"page":2,"text":"Liquid crystals (LCs) have received considerable attention due","rect":[62.03700256347656,523.89501953125,288.6029846191406,515.1829833984375]},{"page":2,"text":"to their wide range of application in displays, biosensors, optical","rect":[44.105003356933597,534.39501953125,288.60799365234376,525.6829833984375]},{"page":2,"text":"switches, and many other electro-optical devices. These applications","rect":[44.105003356933597,544.89501953125,288.6080231933594,536.1829833984375]},{"page":2,"text":"of LCs are based on controlling the orientational and translational","rect":[44.105003356933597,555.39501953125,288.60802416992189,546.6829833984375]},{"page":2,"text":"orderintheLCmedium1 inwhichtheorientationallyorderedmate-","rect":[44.105003356933597,565.89501953125,288.6059775390625,555.6629638671875]},{"page":2,"text":"rials are expected to exhibit surprising functionalities. Confnement","rect":[44.105010986328128,576.39501953125,288.608037109375,567.6829833984375]},{"page":2,"text":"is one of the many ways to induce phase behavior in LCs. Different","rect":[44.105010986328128,586.89501953125,288.608037109375,578.1829833984375]},{"page":2,"text":"types of geometric confnement, surface roughness, and particle–","rect":[44.105010986328128,597.39501953125,288.60803955078128,588.6829833984375]},{"page":2,"text":"surface interaction can signifcantly affect the ordering properties","rect":[44.105010986328128,607.89501953125,288.6080231933594,599.1829833984375]},{"page":2,"text":"of","rect":[44.105010986328128,616.1900024414063,51.35901113891602,609.6829833984375]},{"page":2,"text":"LC","rect":[55.886009216308597,616.2169799804688,66.71301208496094,610.1060180664063]},{"page":2,"text":"materials.2,3","rect":[71.2400131225586,616.1900024414063,113.83060653686523,608.1629638671875]},{"page":2,"text":"Although","rect":[118.8590087890625,618.39501953125,153.29301477050783,609.6829833984375]},{"page":2,"text":"some","rect":[157.82000732421876,617.0,176.9090148925781,611.0]},{"page":2,"text":"routes","rect":[181.43600463867188,617.0,204.01700451660157,610.906982421875]},{"page":2,"text":"that","rect":[208.54400634765626,617.0,222.79100524902345,609.6829833984375]},{"page":2,"text":"induce","rect":[227.32701110839845,617.0,251.82501525878906,609.6829833984375]},{"page":2,"text":"desirable","rect":[256.35198974609377,617.0,288.60802001953126,609.6829833984375]},{"page":2,"text":"phase transitions including applied external felds,4–6 temperature","rect":[44.105010986328128,628.89501953125,288.60499877929689,618.6257934570313]},{"page":2,"text":"changes,7–9 coadsorption of mesogenic species10 and chemical mod-","rect":[44.105010986328128,639.39501953125,288.6030173339844,629.1629638671875]},{"page":2,"text":"ifcation of the surface11 have been introduced, a new strategy is still","rect":[44.10502624511719,649.89501953125,288.60799365234376,639.6629638671875]},{"page":2,"text":"necessary to achieve a better control of the spatial alignments of LCs","rect":[44.10503387451172,660.39501953125,288.60799267578127,651.6829833984375]},{"page":2,"text":"in practical application.","rect":[44.10503387451172,670.7420043945313,129.08303637695313,662.1829833984375]},{"page":2,"text":"Liquid crystal phases with a static boundary are well observed","rect":[62.03703308105469,681.39501953125,288.6030437011719,672.6829833984375]},{"page":2,"text":"and characterized experimentally and theoretically, but the infuence","rect":[44.10503387451172,691.89501953125,288.60802001953126,683.1829833984375]},{"page":2,"text":"of a dynamic boundary on phase behavior is still less understood.","rect":[306.10504150390627,502.93499755859377,550.607908203125,494.2230224609375]},{"page":2,"text":"We focus on the effects of a periodically active boundary on passive","rect":[306.10504150390627,513.4349975585938,550.6080810546876,504.7230224609375]},{"page":2,"text":"particles. With a periodic motion of the boundary, the system is dis-","rect":[306.10504150390627,523.9349975585938,550.6079916992187,515.2229614257813]},{"page":2,"text":"sipative, resembling fuid and granular material driven systems. Such","rect":[306.10504150390627,534.4349975585938,550.608001953125,525.7229614257813]},{"page":2,"text":"systems driven out of the equilibrium states by changes in chemical","rect":[306.10504150390627,544.9349975585938,550.6080546875,536.2229614257813]},{"page":2,"text":"or feld-based stimuli have gained a lot of attention recently.12–14 For","rect":[306.10504150390627,555.4349975585938,550.6050522460938,545.2030029296875]},{"page":2,"text":"example, the mechanism of how the dissipative self-assembly ofa","rect":[306.10504150390627,565.9349975585938,550.607982421875,557.2229614257813]},{"page":2,"text":"synthetic gelator uses chemical fuel as an energy source was stud-","rect":[306.10504150390627,576.4349975585938,550.608052734375,567.7229614257813]},{"page":2,"text":"ied by Boekhoven et al.15 Grzybowski et al. reported that dynamic","rect":[306.10504150390627,586.9349975585938,550.609001953125,576.7030029296875]},{"page":2,"text":"patterns of millimeter-sized magnetic disks are driven by a rotating","rect":[306.10504150390627,597.4349975585938,550.60799609375,588.7229614257813]},{"page":2,"text":"permanent magnet.16 Granular media under horizontal or vertical","rect":[306.10504150390627,607.9349975585938,550.6040263671876,597.6658325195313]},{"page":2,"text":"vibrations have also been extensively studied by experiment, the-","rect":[306.10504150390627,618.4349975585938,550.6079916992187,609.7229614257813]},{"page":2,"text":"ory, and computer simulations.17–19 By controlling energy infux","rect":[306.10504150390627,628.9349975585938,550.60102734375,618.7030029296875]},{"page":2,"text":"and energy dissipation, such driven systems can produce ordered","rect":[306.10504150390627,639.4349975585938,550.6080180664062,630.7229614257813]},{"page":2,"text":"structures, such as cluster phenomena, ordered separation, collec-","rect":[306.10504150390627,649.781982421875,550.608052734375,641.2229614257813]},{"page":2,"text":"tive swirling motions,20 giant number fuctuations,17,21 phase transi-","rect":[306.10504150390627,660.4349975585938,550.609029296875,650.2030029296875]},{"page":2,"text":"tion,22–24 and so on. These self-assembled structures resulting from","rect":[306.10504150390627,670.9349975585938,550.607083984375,660.7030029296875]},{"page":2,"text":"non-equilibrium systems promise to be good candidates for novel","rect":[306.1050720214844,681.4349975585938,550.6081157226563,672.7229614257813]},{"page":2,"text":"functional materials.","rect":[306.1050720214844,689.72998046875,380.44506640625,683.2229614257813]},{"page":2,"text":"AIP Advances 10, 065307 (2020); doi: 10.1063/5.0009727","rect":[29.160999298095704,738.8690185546875,198.40001416015626,731.373046875]},{"page":2,"text":"© Author(s) 2020","rect":[29.161041259765626,751.8889770507813,79.20904278564453,744.3930053710938]},{"page":2,"text":"10, 065307-1","rect":[517.2219848632813,737.2930297851563,555.886037109375,731.4450073242188]},{"page":3,"text":"AIP Advances","rect":[35.137996673583987,45.53744125366211,107.7547204732895,37.75001525878906]},{"page":3,"text":"ARTICLE","rect":[374.76800537109377,44.81396484375,406.7449909667969,38.162967681884769]},{"page":3,"text":"scitation.org/journal/adv","rect":[439.6210021972656,48.28499221801758,525.3370322265625,39.851993560791019]},{"page":3,"text":"Computer simulation studies based on proper modeling can","rect":[62.0369987487793,94.99400329589844,288.60299267578128,86.2820053100586]},{"page":3,"text":"provide guidance for experimental research and also offer a more","rect":[44.10499572753906,105.49400329589844,288.607958984375,96.7820053100586]},{"page":3,"text":"direct means to study molecular systems, allowing the spatial behav-","rect":[44.10499572753906,115.99400329589844,288.6079306640625,107.2820053100586]},{"page":3,"text":"ior to be characterized in detail. In our paper, we investigate the","rect":[44.10499572753906,126.49400329589844,288.607958984375,117.7820053100586]},{"page":3,"text":"structural transition confned in a simple periodically moving slit","rect":[44.10499572753906,136.99400329589845,288.60797607421878,128.28199768066407]},{"page":3,"text":"pore formed by two identical walls that are parallel to each other.","rect":[44.10499572753906,147.49400329589845,288.60796923828129,138.78199768066407]},{"page":3,"text":"Boundary vibration effectively changes the anchoring conditions","rect":[44.10499572753906,157.99400329589845,288.60799267578127,149.28199768066407]},{"page":3,"text":"instead of changing the effective interaction potential energy. It","rect":[44.10499572753906,168.49400329589845,288.608037109375,159.78199768066407]},{"page":3,"text":"functions as the continuous input of energy in the monolayer by","rect":[44.10499572753906,178.99400329589845,288.60802026367187,170.28199768066407]},{"page":3,"text":"collisions between the boundary and ellipsoids. The energy is trans-","rect":[44.10499572753906,189.49400329589845,288.6079306640625,180.78199768066407]},{"page":3,"text":"mitted and dissipated by particles’ Brownian motion. A rich variety","rect":[44.10499572753906,199.99400329589845,288.60805078125,191.28199768066407]},{"page":3,"text":"of confgurations and the state phase diagram in the plane of ampli-","rect":[44.10499572753906,210.49400329589845,288.6080222167969,201.78199768066407]},{"page":3,"text":"tude and frequency are presented. We characterize these steady","rect":[44.10499572753906,220.99400329589845,288.6079592285156,212.28199768066407]},{"page":3,"text":"states by calculating local feld parameters and energies. By vary-","rect":[44.10499572753906,231.49400329589845,288.60796118164066,222.78199768066407]},{"page":3,"text":"ing the amplitude and frequency of the boundary, our study can","rect":[44.10499572753906,241.99400329589845,288.60799755859378,233.28199768066407]},{"page":3,"text":"provide a route to capture a range of ordered structures, which","rect":[44.10499572753906,252.49400329589845,288.60797143554688,243.78199768066407]},{"page":3,"text":"are","rect":[44.10499572753906,261.0,55.21999664306641,256.0]},{"page":3,"text":"expected","rect":[59.72899627685547,262.84100341796877,91.47199359130859,254.28199768066407]},{"page":3,"text":"to","rect":[95.97199249267578,261.0,103.30699523925782,255.50599670410157]},{"page":3,"text":"have","rect":[107.81599426269531,261.0,124.564990234375,254.28199768066407]},{"page":3,"text":"potential","rect":[129.07398986816407,262.84100341796877,161.2579875488281,254.28199768066407]},{"page":3,"text":"applications","rect":[165.76699829101563,262.84100341796877,209.56999829101563,254.28199768066407]},{"page":3,"text":"in","rect":[214.0699920654297,261.0,221.40499462890626,254.93899536132813]},{"page":3,"text":"novel","rect":[225.91400146484376,261.0,245.69600634765625,254.28199768066407]},{"page":3,"text":"responsive","rect":[250.2050018310547,262.84100341796877,288.60802001953126,254.93899536132813]},{"page":3,"text":"materials.","rect":[44.10499572753906,271.28900146484377,79.33099932861329,264.7820129394531]},{"page":3,"text":"II. MODEL DESCRIPTION AND SIMULATIONS","rect":[44.10499572753906,299.0980224609375,242.40196948242187,292.6990051269531]},{"page":3,"text":"Molecular simulation has been a useful method in studying the","rect":[62.03699493408203,316.3399963378906,288.6029846191406,307.6280212402344]},{"page":3,"text":"properties and dynamics of confned LCs. Here, we study a system","rect":[44.10499572753906,326.8399963378906,288.6079384765625,318.1280212402344]},{"page":3,"text":"of ellipsoid particles in an oscillating slit-like pore and probe the","rect":[44.10499572753906,337.3399963378906,288.6079895019531,328.6280212402344]},{"page":3,"text":"effect of the dynamic boundary on the formation of different struc-","rect":[44.10499572753906,347.8399963378906,288.60799169921878,339.1280212402344]},{"page":3,"text":"tures and phase transitions by Langevin dynamics simulations. The","rect":[44.10499572753906,358.3399963378906,288.607958984375,349.6280212402344]},{"page":3,"text":"Gay–Berne (GB) potential is a useful intermolecular potential and","rect":[44.10499572753906,368.8399963378906,288.60801806640628,360.1280212402344]},{"page":3,"text":"has been widely used for modeling of LC systems because it con-","rect":[44.10499572753906,379.3399963378906,288.60799169921878,370.6280212402344]},{"page":3,"text":"tains anisotropic repulsive and attractive interactions.25–27 LCs are","rect":[44.10499572753906,389.68701171875,288.606982421875,379.6080017089844]},{"page":3,"text":"modeled by ellipsoids which interact via a generalized Gay–Berne","rect":[306.10498046875,94.99400329589844,550.607958984375,86.2820053100586]},{"page":3,"text":"potential. We focus on the simplest case in a two-dimensional sys-","rect":[306.10498046875,107.77598571777344,550.6079916992187,99.0639877319336]},{"page":3,"text":"tem where the wall is a straight line. Each wall is composed of","rect":[306.10498046875,118.27598571777344,550.6079697265625,109.5639877319336]},{"page":3,"text":"51 spherical beads with a diameter σ0, and their interactions are","rect":[306.10498046875,128.62298583984376,550.606005859375,120.0639877319336]},{"page":3,"text":"neglected. Systems containing N = 735 ellipsoid particles with an","rect":[306.10498046875,139.27598571777345,550.6079975585938,130.56398010253907]},{"page":3,"text":"aspect ratio k = 3 are confned in a dynamic slab geometry with","rect":[306.10498046875,149.77598571777345,550.6079409179688,141.06398010253907]},{"page":3,"text":"an initial wall separation L0 = 50σ0, with the walls located at y0","rect":[306.10498046875,160.27598571777345,550.1059703063965,151.56398010253907]},{"page":3,"text":"=0andymax =50σ0.ThedistanceLbetweenthetwowallsischanged","rect":[306.10498046875,170.77598571777345,550.60698046875,162.06398010253907]},{"page":3,"text":"periodically as L = L0 − A + Acos2π ft due to the boundary vibra-","rect":[306.10498046875,181.27598571777345,550.60097265625,172.56398010253907]},{"page":3,"text":"tion, where A is the oscillating amplitude, and f is the frequency.","rect":[306.10498046875,191.77598571777345,550.6079692382813,183.06398010253907]},{"page":3,"text":"The length of the simulation box in the x-direction is Lx = 50σ0. The","rect":[306.10498046875,202.27598571777345,550.6029541015626,193.56398010253907]},{"page":3,"text":"Cartesian coordinate system is set to be at the bottom wall, where x","rect":[306.10498046875,212.77598571777345,550.6079243164063,204.06398010253907]},{"page":3,"text":"and y axes are along the horizontal and vertical directions, respec-","rect":[306.10498046875,223.27598571777345,550.6079916992187,214.56398010253907]},{"page":3,"text":"tively. In addition, the vibration direction is along the y axis. We","rect":[306.10498046875,233.77598571777345,550.607958984375,225.06398010253907]},{"page":3,"text":"focus on relatively high bulk densities corresponding to area frac-","rect":[306.10498046875,244.27598571777345,550.6079916992187,235.56398010253907]},{"page":3,"text":"tions of 70%, where the bulk phase is nematic. LC particles interact","rect":[306.10498046875,254.62298583984376,550.6079760742188,246.06398010253907]},{"page":3,"text":"through the Gay–Berne potential,","rect":[306.10498046875,265.2759704589844,427.52395434570317,256.5639953613281]},{"page":3,"text":"ˆ","rect":[331.4270324707031,342.18798828125,335.02703247070317,340.5679931640625]},{"page":3,"text":"ˆ","rect":[357.59503173828127,342.18798828125,361.1950317382813,340.5679931640625]},{"page":3,"text":"where u⃗i and u⃗j are the unit vectors along the principal axis of LC","rect":[306.10504150390627,351.6697998046875,550.6090234375,342.0]},{"page":3,"text":"molecules i and j, respectively. Here,⃗rij =⃗ri −⃗rj is the intermolecular","rect":[306.10504150390627,362.1697998046875,550.6030991210938,353.1490173339844]},{"page":3,"text":"⃗","rect":[396.50311279296877,364.29022216796877,400.1760129041672,363.1499328613281]},{"page":3,"text":"vector distance, and⃗ˆrij = rriijj is the unit vector along the vector⃗rij. The","rect":[306.1051025390625,378.1050109863281,550.6009399414063,364.22601318359377]},{"page":3,"text":"ˆˆˆ","rect":[460.32098388671877,380.6669616699219,485.60698852539067,379.0469665527344]},{"page":3,"text":"orientation-dependent range parameter σ(⃗rij,u⃗i,u⃗j) is given by","rect":[306.10498046875,390.14776611328127,532.5749697265625,380.75897216796877]},{"page":3,"text":"and the","rect":[44.105010986328128,462.0,71.15001220703125,454.6250305175781]},{"page":3,"text":"with","rect":[44.104034423828128,500.4730224609375,60.23203302001953,493.9660339355469]},{"page":3,"text":"and","rect":[44.10406494140625,531.030029296875,57.73006549072266,524.5230102539063]},{"page":3,"text":"potential","rect":[73.19300842285156,463.18402099609377,105.37700610351563,454.6250305175781]},{"page":3,"text":"energy","rect":[107.42001342773438,463.3370056152344,131.67499871826173,456.0]},{"page":3,"text":"σ(⃗ˆrij,u⃗ˆi,u⃗ˆj) = σ0{1 − χ[(⃗ˆrij ⋅ u⃗ˆi)2 + (⃗ˆrij ⋅ u⃗ˆ1j)−2 −χ22(χu⃗ˆ(i⃗ˆr⋅iu⃗jˆ⋅j)u⃗ˆ2i)(⃗ˆrij ⋅ u⃗ˆj)(u⃗ˆi","rect":[153.2139892578125,447.684814453125,397.1949671907425,422.6009826660156]},{"page":3,"text":"well-depth anisotropy is expressed as","rect":[133.71798706054688,463.3370056152344,267.2869782714844,454.6250305175781]},{"page":3,"text":"ϵ(⃗ˆrij,u⃗ˆi,u⃗ˆj) = ϵ0[ϵ1(u⃗ˆi,u⃗ˆj)]υ[ϵ2(⃗ˆrij,u⃗ˆi,u⃗ˆj)]μ,","rect":[218.6230010986328,481.4358215332031,376.0860270996094,470.33502197265627]},{"page":3,"text":"⋅","rect":[399.52008056640627,430.0,401.55408056640627,428.0]},{"page":3,"text":"u⃗ˆj) ]}−1/2,","rect":[403.3880920410156,446.625,441.4949931640625,420.34478759765627]},{"page":3,"text":"ϵ1(u⃗ˆi,u⃗ˆj) = [1 − χ2(u⃗ˆi ⋅ u⃗ˆj)2]−1/2,","rect":[238.0530242919922,518.4677734375,356.65606494140629,506.61480712890627]},{"page":3,"text":"ϵ2(⃗ˆrij,u⃗ˆi,u⃗ˆj) = 1 − χ′[(⃗ˆrij ⋅ u⃗ˆi)2 + (⃗ˆrij ⋅ u⃗ˆ1j)−2 −χ′22(χu⃗ˆ′(i⃗ˆr⋅iu⃗jˆ⋅j)u⃗ˆ2i)(⃗ˆrij ⋅ u⃗ˆj)(u⃗ˆi ⋅ u⃗ˆj)],","rect":[165.46107482910157,562.0357666015625,429.2480144042969,536.9530639648438]},{"page":3,"text":"(2)","rect":[540.0540161132813,438.9570007324219,550.6019760742188,431.0459899902344]},{"page":3,"text":"(3)","rect":[540.0570068359375,480.34503173828127,550.6050278320313,472.43402099609377]},{"page":3,"text":"(4)","rect":[540.0580444335938,517.3770141601563,550.6060654296875,509.46600341796877]},{"page":3,"text":"(5)","rect":[540.0560302734375,553.3090209960938,550.603990234375,545.3980102539063]},{"page":3,"text":"where ϵ0 and σ0 are the energy and length units. The molecular","rect":[44.10499954223633,605.7040405273438,288.60901953125,596.9920043945313]},{"page":3,"text":"anisotropy parameter χ depends on the aspect ratio κ = σσes , and","rect":[44.105003356933597,618.1875,288.60395922851566,606.9694213867188]},{"page":3,"text":"σe and σs are the length of the major and minor axes of ellipsoids,","rect":[44.10496520996094,627.7969970703125,288.60293383789067,619.0849609375]},{"page":3,"text":"respectively. χ′ is related to the ratio of the potential energy well","rect":[44.10496139526367,638.4409790039063,288.602927734375,628.6441040039063]},{"page":3,"text":"depths, that is, κ′ = ϵs/ϵe, where ϵs and ϵe are the side-to-side and","rect":[44.104949951171878,648.6439819335938,288.6029216308594,639.1441040039063]},{"page":3,"text":"end-to-end confgurations, respectively. The expressions of χ and χ′","rect":[44.10493469238281,659.4409790039063,288.103731464386,649.6441040039063]},{"page":3,"text":"are given by","rect":[44.10493469238281,669.7969970703125,87.54793115234375,661.0849609375]},{"page":3,"text":"κ2 −1","rect":[161.56195068359376,680.2459716796875,182.998955078125,672.155517578125]},{"page":3,"text":"χ = κ2 + 1,","rect":[146.46295166015626,692.4409790039063,186.24700732421875,681.0]},{"page":3,"text":"χ′ = (κ′1/μ − 1)/(κ′1/μ + 1).","rect":[379.05999755859377,606.6240234375,477.6499919433594,594.934814453125]},{"page":3,"text":"Here,","rect":[324.0369873046875,627.0,343.97198291015629,620.2640380859375]},{"page":3,"text":"the","rect":[348.8409729003906,627.0,360.2169982910156,619.7059936523438]},{"page":3,"text":"parameters","rect":[365.0769958496094,628.2650146484375,405.44197705078127,620.9299926757813]},{"page":3,"text":"μ","rect":[410.30596923828127,628.427001953125,414.90496923828126,622.072998046875]},{"page":3,"text":"and","rect":[419.7679748535156,626.2130126953125,433.3939677734375,619.7059936523438]},{"page":3,"text":"υ","rect":[438.2569885253906,626.2130126953125,442.6129885253906,622.072998046875]},{"page":3,"text":"are","rect":[447.4759826660156,627.0,458.5909912109375,621.0]},{"page":3,"text":"empirically","rect":[463.45098876953127,628.4180297851563,503.96898217773437,619.7059936523438]},{"page":3,"text":"determined","rect":[508.8379821777344,627.0,550.60698046875,619.7059936523438]},{"page":3,"text":"dimensionless","rect":[306.10498046875,637.0,357.32399609375,630.2059936523438]},{"page":3,"text":"exponents","rect":[363.06597900390627,638.7650146484375,400.1639924316406,631.4299926757813]},{"page":3,"text":"and","rect":[405.9059753417969,637.0,419.53196826171878,630.2059936523438]},{"page":3,"text":"used","rect":[425.27398681640627,637.0,441.93296923828128,630.2059936523438]},{"page":3,"text":"to","rect":[447.67498779296877,637.0,455.0099829101562,631.4299926757813]},{"page":3,"text":"tune","rect":[460.751953125,637.0,477.023974609375,631.4299926757813]},{"page":3,"text":"the","rect":[482.7659912109375,637.0,494.14195556640626,630.2059936523438]},{"page":3,"text":"shape","rect":[499.8929748535156,638.7650146484375,520.4939453125,630.2059936523438]},{"page":3,"text":"of","rect":[526.2359619140625,637.0,533.4899887695312,630.2059936523438]},{"page":3,"text":"the","rect":[539.2319946289063,637.0,550.607958984375,630.2059936523438]},{"page":3,"text":"anisotropic interaction. Each GB model is defned by a set of four","rect":[306.10498046875,649.4180297851563,550.6079208984376,640.7059936523438]},{"page":3,"text":"parameters κ, κ′, μ, and ν, and the original GB parameters (3, 5, 2,","rect":[306.10498046875,659.927001953125,550.605955078125,650.2650756835938]},{"page":3,"text":"and 1) are proposed by Gay and Berne.28","rect":[306.10491943359377,670.4180297851563,452.4649220275879,660.1859741210938]},{"page":3,"text":"Since the wall particles are spherical, their interactions with GB","rect":[324.03692626953127,680.7650146484375,550.6029130859375,672.2059936523438]},{"page":3,"text":"ˆ","rect":[524.5848999023438,683.291015625,528.1848999023438,681.6710205078125]},{"page":3,"text":"particles are analogous to GB–GB interactions by setting u⃗i =0","rect":[306.10491943359377,692.4630126953125,550.6049731445313,683.0]},{"page":3,"text":"AIP Advances 10, 065307 (2020); doi: 10.1063/5.0009727","rect":[29.160999298095704,738.8690185546875,198.40001416015626,731.373046875]},{"page":3,"text":"© Author(s) 2020","rect":[29.161041259765626,751.8889770507813,79.20904278564453,744.3930053710938]},{"page":3,"text":"10, 065307-2","rect":[517.2219848632813,737.2930297851563,555.886037109375,731.4450073242188]},{"page":4,"text":"AIP Advances","rect":[35.137996673583987,45.53744125366211,107.7547204732895,37.75001525878906]},{"page":4,"text":"in Eqs. (1)–(3).29 Therefore, the range parameter and the potential","rect":[44.10499954223633,94.99400329589844,288.601951171875,84.76197814941406]},{"page":4,"text":"energy well-depth anisotropy between the boundary beads and the","rect":[44.105003356933597,105.49400329589844,288.60802001953126,96.7820053100586]},{"page":4,"text":"ellipsoid particles become","rect":[44.105003356933597,115.84100341796875,137.12001342773437,107.2820053100586]},{"page":4,"text":"σ(⃗ˆrij,u⃗ˆj) = σ0[1 − χ(⃗ˆrij ⋅ u⃗ˆj)2]−1/2,","rect":[106.05400085449219,135.12481689453126,226.65501208496094,123.27079772949219]},{"page":4,"text":"and","rect":[44.10502624511719,149.5870361328125,57.731026794433599,143.0800323486328]},{"page":4,"text":"ϵ(⃗ˆrij,u⃗ˆj) = ϵ0[1 − χ′(⃗ˆrij ⋅ u⃗ˆj)2]μ.","rect":[110.45903015136719,168.57781982421876,222.25002856445313,157.47349548339845]},{"page":4,"text":"We consider a nonequilibrium system of LCs confned in a","rect":[62.037017822265628,184.74705505371095,288.6030385742188,176.03504943847657]},{"page":4,"text":"dynamic slab pore and perform Langevin dynamics simulations","rect":[44.105018615722659,195.24705505371095,288.6080231933594,186.53504943847657]},{"page":4,"text":"using the LAMMPS package.30 In our work, the motion of particles","rect":[44.105018615722659,205.74705505371095,288.6080231933594,195.51502990722657]},{"page":4,"text":"is described by the Langevin equations of motion. The friction coef-","rect":[44.105010986328128,216.24705505371095,288.6080222167969,207.53504943847657]},{"page":4,"text":"fcients for both translation and rotation are fxed at 10 to ensure","rect":[44.105010986328128,224.54205322265626,288.60802001953126,218.03504943847657]},{"page":4,"text":"slow diffusion of particles.31 All physical quantities are expressed","rect":[44.105010986328128,237.24705505371095,288.6049968261719,227.01502990722657]},{"page":4,"text":"in reduced units: σ0 = 1.0, ϵ0 = 1.0, and m0 = 1.0; σ0, ϵ0, and m0","rect":[44.105010986328128,246.56637573242188,288.1060008239746,239.03504943847657]},{"page":4,"text":"are the units of length, energy, and mass, respectively. The reduced","rect":[44.10499572753906,258.2470397949219,288.60795703125,249.53504943847657]},{"page":4,"text":"number density ρ is given in units of 1/σ02. Newton’s equations","rect":[44.10499572753906,268.7470397949219,288.60298779296877,258.4515380859375]},{"page":4,"text":"of motion for the force and torque acting on an ellipsoid particle","rect":[44.10498046875,279.2470397949219,288.607958984375,270.5350646972656]},{"page":4,"text":"are integrated using the Velocity–Verlet algorithm with a time step","rect":[44.10498046875,289.7470397949219,288.6079677734375,281.0350646972656]},{"page":4,"text":"Δt = 0.0005τ, where τ = (σ02m0/ϵ0)12. It requires more time to reach","rect":[44.10498046875,302.2730407714844,288.60501123046876,290.8055419921875]},{"page":4,"text":"the steady equilibration states, and a smaller time step is adopted for","rect":[44.105010986328128,312.86297607421877,288.6079208984375,304.1510009765625]},{"page":4,"text":"large amplitude or high frequency. The cutoff for the intermolec-","rect":[44.105010986328128,323.36297607421877,288.60799169921878,314.6510009765625]},{"page":4,"text":"ular interactions is chosen as rc = 4.0σ0. Periodic boundary condi-","rect":[44.105010986328128,333.86297607421877,288.60701513671878,325.1510009765625]},{"page":4,"text":"tions are imposed on the x axis. The trajectory and snapshots of","rect":[44.105010986328128,344.36297607421877,288.60803076171876,335.6510009765625]},{"page":4,"text":"particles are visualized by the OVITO tool. At the beginning, the","rect":[44.105010986328128,354.86297607421877,288.6079895019531,346.1510009765625]},{"page":4,"text":"ARTICLE","rect":[374.76800537109377,44.81396484375,406.7449909667969,38.162967681884769]},{"page":4,"text":"scitation.org/journal/adv","rect":[439.6210021972656,48.28499221801758,525.3370322265625,39.851993560791019]},{"page":4,"text":"ellipsoids are randomly distributed in the simulation box. All runs","rect":[306.1050109863281,94.99400329589844,550.6080537109375,86.2820053100586]},{"page":4,"text":"are evolved for a suffciently long time so that the ellipsoids reach","rect":[306.1050109863281,105.49400329589844,550.608001953125,96.7820053100586]},{"page":4,"text":"steady states in all cases. The collected data are averaged over 5000","rect":[306.1050109863281,115.99400329589844,550.6080249023438,107.2820053100586]},{"page":4,"text":"steady confgurations.","rect":[306.1050109863281,126.49400329589844,385.2960185546875,117.7820053100586]},{"page":4,"text":"In order to characterize the structural properties of the parti-","rect":[324.0370178222656,136.84100341796876,550.6030478515625,128.28199768066407]},{"page":4,"text":"cles, three local felds—the density ρ(y), the uniaxial order parameter","rect":[306.1050109863281,147.49400329589845,550.6010239257813,138.78199768066407]},{"page":4,"text":"S(y), and the tilt angle ψ(y)—are introduced.32 To obtain the three","rect":[306.10504150390627,157.99400329589845,550.6071044921876,147.76197814941407]},{"page":4,"text":"local quantities along the y-direction, the simulation box is divided","rect":[306.1051025390625,168.49400329589845,550.6080791015625,159.78199768066407]},{"page":4,"text":"into 100 equidistant bins along the y axis, and the local felds are cal-","rect":[306.1051025390625,178.99400329589845,550.608052734375,170.28199768066407]},{"page":4,"text":"culated in each bin. The bin density is obtained by ρ(y) = ⟨NLex(δyy)⟩,","rect":[306.1051025390625,194.02874755859376,550.604978515625,179.97080993652345]},{"page":4,"text":"where Ne(y) denotes the number of ellipsoids with their center of","rect":[306.10498046875,203.6119842529297,550.6080307617187,194.8999786376953]},{"page":4,"text":"mass located in a bin. S(y) is defned as the positive eigenvalue of","rect":[306.1050109863281,214.1119842529297,550.6080307617187,205.3999786376953]},{"page":4,"text":"the local order matrix Qαβ(y) = Ne(y)−1⟨∑Ni=1[2uα(i)uβ(i) − δαβ]⟩,","rect":[306.10504150390627,225.34075927734376,550.6050395507813,214.22825622558595]},{"page":4,"text":"where uα(i) is the αth component of the ith particle orientation vec-","rect":[306.10504150390627,234.95892333984376,550.6060385742187,226.39991760253907]},{"page":4,"text":"tor u⃗(i) = (cosθi,sinθi). S measures the degree of the orientational","rect":[306.10504150390627,245.61192321777345,550.6029887695313,236.0]},{"page":4,"text":"order of the phase. If S = 0, the system is in an isotropic state;S","rect":[306.10400390625,256.1119079589844,550.6069423828125,247.39991760253907]},{"page":4,"text":"increases as the number of molecular axes aligning with the direc-","rect":[306.10400390625,266.6119079589844,550.6070151367187,257.8999328613281]},{"page":4,"text":"tor increases; if S = 1, the system is perfectly uniaxially oriented. The","rect":[306.10400390625,277.1119079589844,550.606982421875,268.3999328613281]},{"page":4,"text":"corresponding eigenvector is the local director feld n⃗. The tilt angle","rect":[306.10400390625,287.6119079589844,550.605029296875,278.0]},{"page":4,"text":"ψ(y) denotes the angle between the local director and the x axis.","rect":[306.10400390625,298.1119079589844,535.1990336914063,289.3999328613281]},{"page":4,"text":"III. RESULTS AND DISCUSSION","rect":[306.1040344238281,327.0819396972656,442.994033203125,320.68292236328127]},{"page":4,"text":"Figure 1 shows typical snapshots for a system with a static and","rect":[324.03704833984377,344.32391357421877,550.60307421875,335.6119384765625]},{"page":4,"text":"a moving slit boundary. It is found that there are great differences","rect":[306.1040344238281,354.82391357421877,550.6070771484375,346.1119384765625]},{"page":4,"text":"FIG. 1. Snapshots of the characteristic patterns of the confned ellipsoids driven by the oscillating slit boundary: (a) a fxed boundary, [(b)–(d)] the frequency is fxed at","rect":[48.09000015258789,669.990966796875,546.6170908203125,662.470947265625]},{"page":4,"text":"f = 2.0, and the amplitude A is 1.0, 3.0, and 4.0, respectively, and [(e) and (f)] the amplitude is the same as (d), but the frequency is 1.0 and 5.0, respectively. From (b) to (f),","rect":[48.09000015258789,678.990966796875,546.6181284179687,671.4949951171875]},{"page":4,"text":"the structures are named Npar, Sper, Scs, Stilt, and D.","rect":[48.09000015258789,688.4277954101563,200.06499731445315,680.4949951171875]},{"page":4,"text":"AIP Advances 10, 065307 (2020); doi: 10.1063/5.0009727","rect":[29.160999298095704,738.8690185546875,198.40001416015626,731.373046875]},{"page":4,"text":"© Author(s) 2020","rect":[29.161041259765626,751.8889770507813,79.20904278564453,744.3930053710938]},{"page":4,"text":"10, 065307-3","rect":[517.2219848632813,737.2930297851563,555.886037109375,731.4450073242188]},{"page":5,"text":"AIP Advances","rect":[35.137996673583987,45.53744125366211,107.7547204732895,37.75001525878906]},{"page":5,"text":"between static and dynamic confnement. For the equilibrium case","rect":[44.10499954223633,94.99400329589844,288.6079895019531,86.2820053100586]},{"page":5,"text":"in static slit confnement displayed in Fig. 1(a), the particles are","rect":[44.10499954223633,105.49400329589844,288.60802001953126,96.7820053100586]},{"page":5,"text":"observed to be orientationally ordered and spatially disordered at","rect":[44.10499954223633,115.99400329589844,288.6080065917969,107.2820053100586]},{"page":5,"text":"this area fraction. The wall–particle interaction favors the parti-","rect":[44.10499954223633,126.34100341796875,288.608052734375,117.7820053100586]},{"page":5,"text":"cles that are parallel to the wall, and the system adopts a planar","rect":[44.10499954223633,136.99400329589845,288.6080124511719,128.28199768066407]},{"page":5,"text":"confguration. For dynamic confnement, the structure of the par-","rect":[44.10499954223633,147.49400329589845,288.60799169921878,138.78199768066407]},{"page":5,"text":"ticles can be manipulated by the amplitude or frequency of the","rect":[44.10499954223633,157.99400329589845,288.60802001953126,149.28199768066407]},{"page":5,"text":"boundary. From Figs. 1(b)–1(d), it can be seen that the ellipsoids","rect":[44.10499954223633,168.49400329589845,288.60799267578127,159.78199768066407]},{"page":5,"text":"experience an Npar–Sper–Scs phase transition at a fxed frequency","rect":[44.10499954223633,179.27130126953126,288.6079897460937,170.28199768066407]},{"page":5,"text":"f = 2.0 as the amplitude increases. At low frequency and small","rect":[44.10499572753906,189.49400329589845,288.60799365234376,180.78199768066407]},{"page":5,"text":"amplitude, the ellipsoids adopt a morphology, Npar, similar to the","rect":[44.10499572753906,200.27130126953126,288.6029846191406,191.28199768066407]},{"page":5,"text":"equilibrium nematic phase observed for molecules in static con-","rect":[44.10499572753906,210.34100341796876,288.60799169921878,201.78199768066407]},{"page":5,"text":"fnement. As the oscillating strength enhances, the orientation of","rect":[44.10499572753906,220.99400329589845,288.6080002441406,212.28199768066407]},{"page":5,"text":"the ellipsoids is changed from parallel to perpendicular to the wall.","rect":[44.10499572753906,231.49400329589845,288.60796923828129,222.78199768066407]},{"page":5,"text":"When the amplitude is higher, the core–shell structure Scs appears","rect":[44.10499572753906,241.99400329589845,288.605001953125,233.28199768066407]},{"page":5,"text":"where the core consists of densely packed and ordered particles","rect":[44.105010986328128,252.49400329589845,288.6080537109375,243.78199768066407]},{"page":5,"text":"surrounded by a shell made up of few particles in complete disor-","rect":[44.105010986328128,262.9939880371094,288.60799169921878,254.28199768066407]},{"page":5,"text":"der. The appearance of the steady core–shell structure is a genetic","rect":[44.105010986328128,273.4939880371094,288.6079948730469,264.7820129394531]},{"page":5,"text":"phenomenon on phase separation in active matter, such as quorum-","rect":[44.105010986328128,283.84100341796877,288.608052734375,275.2820129394531]},{"page":5,"text":"sensing run-and-tumble bacteria33 and binary particles with diffu-","rect":[44.105010986328128,294.4939880371094,288.6050009765625,284.2619934082031]},{"page":5,"text":"sivity difference.34 These dynamic states are essentially unchanged","rect":[44.105010986328128,304.9939880371094,288.60701098632816,294.7619934082031]},{"page":5,"text":"as long as the driving is maintained, so they are named steady struc-","rect":[44.105003356933597,315.4939880371094,288.60799169921878,306.7820129394531]},{"page":5,"text":"tures. On increment of frequency with a fxed amplitude A = 4.0,","rect":[44.105003356933597,325.9939880371094,288.6079997558594,317.2820129394531]},{"page":5,"text":"the system of particles also undergoes different structural arrange-","rect":[44.105003356933597,336.4939880371094,288.6080222167969,327.7820129394531]},{"page":5,"text":"ments, as shown in Figs. 1(d)–1(f). The whole system tilts to the","rect":[44.105003356933597,346.9939880371094,288.60802001953126,338.2820129394531]},{"page":5,"text":"wall with f = 1 and A = 4.0, as shown in Fig. 1(e). The density of","rect":[44.105003356933597,357.4939880371094,288.60803076171876,348.7820129394531]},{"page":5,"text":"particles is very high, and the motion is greatly hindered. A multi-","rect":[44.105003356933597,367.9939880371094,288.60799169921878,359.2820129394531]},{"page":5,"text":"domain structure appears due to the anisotropic geometry of the","rect":[44.105003356933597,378.4939880371094,288.6079895019531,369.7820129394531]},{"page":5,"text":"ellipsoid. Although it is not obvious, disclination lines appear at","rect":[44.105003356933597,388.9939880371094,288.6080065917969,380.2820129394531]},{"page":5,"text":"the interfaces between the domains. The energy input increases due","rect":[44.105003356933597,399.4939880371094,288.6079895019531,390.7820129394531]},{"page":5,"text":"to acceleration of the boundary oscillating velocity, which makes","rect":[44.105003356933597,409.9939880371094,288.6079621582031,401.2820129394531]},{"page":5,"text":"the particles tend to disorder. First, the ellipsoids near the wall","rect":[44.105003356933597,420.34100341796877,288.6079631347656,411.7820129394531]},{"page":5,"text":"become disordered, and the core still possesses orientation and","rect":[44.105003356933597,430.84100341796877,288.60795703125,422.2820129394531]},{"page":5,"text":"translation order [see Fig. 1(d)]; then, the whole system becomes","rect":[44.105003356933597,441.4939880371094,288.60799267578127,432.7820129394531]},{"page":5,"text":"disordered, characterized by random positions and orientations of","rect":[44.105003356933597,451.9939880371094,288.6079697265625,443.2820129394531]},{"page":5,"text":"ellipsoids with a larger amplitude and higher frequency, as shown in","rect":[44.105003356933597,462.4939880371094,288.60799755859378,453.7820129394531]},{"page":5,"text":"Fig. 1(f).","rect":[44.105003356933597,472.9939880371094,74.84900469970704,464.2820129394531]},{"page":5,"text":"In order to characterize and distinguish the four structures, we","rect":[62.03700256347656,483.4939880371094,288.60301513671876,474.7820129394531]},{"page":5,"text":"consider three local felds, namely, density ρ, orientational order","rect":[44.105003356933597,493.9939880371094,288.6049912109375,485.2820129394531]},{"page":5,"text":"parameter S, and tilt angle ψ, along the y-direction, as shown in","rect":[44.105010986328128,504.4939880371094,288.60201611328128,495.7820129394531]},{"page":5,"text":"Fig. 2. At small amplitude, the density [Fig. 2(a) blue line] is constant","rect":[44.105010986328128,514.9940185546875,288.60797607421878,506.2820129394531]},{"page":5,"text":"ARTICLE","rect":[374.76800537109377,44.81396484375,406.7449909667969,38.162967681884769]},{"page":5,"text":"scitation.org/journal/adv","rect":[439.6210021972656,48.28499221801758,525.3370322265625,39.851993560791019]},{"page":5,"text":"except in a small region near the walls for the nematic structure Npar.","rect":[306.1050109863281,95.27130126953125,550.604978515625,86.2820053100586]},{"page":5,"text":"The order parameter is approaching 0.9 [Fig. 2(b) blue line], and","rect":[306.10498046875,105.49400329589844,550.6080180664062,96.7820053100586]},{"page":5,"text":"the particles slightly align, tilted by their long axes parallel to the","rect":[306.10498046875,115.99400329589844,550.607958984375,107.2820053100586]},{"page":5,"text":"walls, as displayed by the tilt angle [Fig. 2(c) blue line]. By increas-","rect":[306.10498046875,126.49400329589844,550.6079306640625,117.7820053100586]},{"page":5,"text":"ing the amplitude, the particles aggregate inwardly in order to avoid","rect":[306.10498046875,136.99400329589845,550.60795703125,128.28199768066407]},{"page":5,"text":"collision with the boundary. In the Sper phase, ρ, S(y), and ψ [see","rect":[306.10498046875,147.77130126953126,550.6049682617188,138.78199768066407]},{"page":5,"text":"Figs. 2(a)–2(c) black line] exhibit strong oscillatory behavior due","rect":[306.1050109863281,157.99400329589845,550.6080200195313,149.28199768066407]},{"page":5,"text":"to perpendicular layering of particles. The ellipsoids organize them-","rect":[306.1050109863281,168.49400329589845,550.6079306640625,159.78199768066407]},{"page":5,"text":"selves into a smectic with layered structure, and well defned peaks","rect":[306.1050109863281,178.99400329589845,550.6080537109375,170.28199768066407]},{"page":5,"text":"arise compared to the other phases. The value of the local orien-","rect":[306.1050109863281,189.34100341796876,550.6079306640625,180.78199768066407]},{"page":5,"text":"tational order and the tilt angle is around 1.0 and π2, respectively,","rect":[306.1050109863281,200.8790283203125,550.6069926757813,191.04798889160157]},{"page":5,"text":"indicating a clear smectic order and a nearly perpendicular direc-","rect":[306.10498046875,210.49400329589845,550.6079916992187,201.78199768066407]},{"page":5,"text":"tor to the walls. It can be noted that the distance between adjacent","rect":[306.10498046875,220.99400329589845,550.6079760742188,212.28199768066407]},{"page":5,"text":"peaks is nearly 3σ0 about the long axis of an ellipsoid molecule. The","rect":[306.10498046875,231.49400329589845,550.6029541015626,222.78199768066407]},{"page":5,"text":"period of these oscillations also corresponds to the interlayer spac-","rect":[306.10498046875,241.99400329589845,550.6079916992187,233.28199768066407]},{"page":5,"text":"ing of the ellipsoids. When the amplitude is further increased and","rect":[306.10498046875,252.49400329589845,550.60795703125,243.78199768066407]},{"page":5,"text":"Scs forms, due to the molecules close to the walls becoming isotropic","rect":[306.10498046875,262.9939880371094,550.6069267578125,254.28199768066407]},{"page":5,"text":"and the inner particles aligning themselves parallel to the boundary,","rect":[306.10498046875,273.4939880371094,550.6079692382813,264.7820129394531]},{"page":5,"text":"the local order of particles decreases from the central region to the","rect":[306.10498046875,283.9939880371094,550.607958984375,275.2820129394531]},{"page":5,"text":"wall [Fig. 2(b) green line]. The density is uniform and high [Fig. 2(a)","rect":[306.10498046875,294.4939880371094,550.6080185546875,285.7820129394531]},{"page":5,"text":"green line], and the tilt angle [Fig. 2(c) green line] is small in the","rect":[306.10498046875,304.9939880371094,550.6080200195313,296.2820129394531]},{"page":5,"text":"core region. For the Stilt structure formed at low frequency and large","rect":[306.10498046875,315.4939880371094,550.6019775390626,306.7820129394531]},{"page":5,"text":"amplitude, the particles tilt more heavily toward the boundary, espe-","rect":[306.1049499511719,325.9939880371094,550.6079306640625,317.2820129394531]},{"page":5,"text":"cially at the center. The density, orientational order, and tilt angle","rect":[306.1049499511719,336.4939880371094,550.607958984375,327.7820129394531]},{"page":5,"text":"also oscillate [see Figs. 2(a)–2(c) red line], but the peaks are more","rect":[306.1049499511719,346.9939880371094,550.607958984375,338.2820129394531]},{"page":5,"text":"irregular than those in the Sper phase.","rect":[306.1049499511719,357.77130126953127,439.64898486328129,348.7820129394531]},{"page":5,"text":"To systematically investigate the effect of boundary motion on","rect":[324.0369567871094,367.9939880371094,550.602931640625,359.2820129394531]},{"page":5,"text":"the steady structure, the phase diagram is depicted as shown in Fig.3","rect":[306.1049499511719,378.4939880371094,550.6079638671876,369.7820129394531]},{"page":5,"text":"in the plane of frequency f and amplitude A of the boundary motion.","rect":[306.1049499511719,388.9939880371094,550.607908203125,380.2820129394531]},{"page":5,"text":"In the case of the dynamic boundary, the input energy due to the","rect":[306.1049499511719,399.4939880371094,550.607958984375,390.7820129394531]},{"page":5,"text":"boundary motion plays an important role in determining the struc-","rect":[306.1049499511719,409.9939880371094,550.6079306640625,401.2820129394531]},{"page":5,"text":"ture. Six distinct phases in the parameter range are identifed, which","rect":[306.1049499511719,420.4939880371094,550.6079409179688,411.7820129394531]},{"page":5,"text":"are the near-equilibrium nematic phase, Npar, and smectic phase,","rect":[306.1049499511719,431.27130126953127,550.6010112304688,422.2820129394531]},{"page":5,"text":"Spar, parallel to the wall, the smectic phase perpendicular to the wall,","rect":[306.10498046875,441.77130126953127,550.6009501953125,432.7820129394531]},{"page":5,"text":"Sper, the smectic phase tilted to the wall, Stilt, the planarly ordered","rect":[306.1050109863281,452.27130126953127,550.6020366210937,443.2820129394531]},{"page":5,"text":"core particle and shell disordered Scs structure, and the orientation-","rect":[306.10504150390627,462.34100341796877,550.6050009765625,453.7820129394531]},{"page":5,"text":"ally and translationally disordered D phase. When the boundary","rect":[306.1050109863281,472.9939880371094,550.60805078125,464.2820129394531]},{"page":5,"text":"starts to oscillate with a small amplitude and low frequency, the","rect":[306.1050109863281,483.4939880371094,550.6080200195313,474.7820129394531]},{"page":5,"text":"near-equilibrium planar nematic and smectic phases appear. Further","rect":[306.1050109863281,493.84100341796877,550.6079819335938,485.2820129394531]},{"page":5,"text":"increasing A or f may lead to the appearance of out-of-equilibrium","rect":[306.1050109863281,504.4939880371094,550.608060546875,495.7820129394531]},{"page":5,"text":"Sper, Stilt, and Scs steady structures. With a larger amplitude or higher","rect":[306.1050109863281,515.2713012695313,550.6060288085938,506.2820129394531]},{"page":5,"text":"FIG. 2. Local felds vs y plots of the four steady structures in Fig. 1 (black: Sper, red: Stilt, green: Scs, and blue: Npar): the (a) density profle ρ, (b) order parameter profle S,","rect":[48.09000015258789,679.5088500976563,546.6190439453125,671.5360107421875]},{"page":5,"text":"and (c) tilt angle profle ψ.","rect":[48.09002685546875,688.447998046875,123.12102758789063,680.5760498046875]},{"page":5,"text":"AIP Advances 10, 065307 (2020); doi: 10.1063/5.0009727","rect":[29.160999298095704,738.8690185546875,198.40001416015626,731.373046875]},{"page":5,"text":"© Author(s) 2020","rect":[29.161041259765626,751.8889770507813,79.20904278564453,744.3930053710938]},{"page":5,"text":"10, 065307-4","rect":[517.2219848632813,737.2930297851563,555.886037109375,731.4450073242188]},{"page":6,"text":"AIP Advances","rect":[35.137996673583987,45.53744125366211,107.7547204732895,37.75001525878906]},{"page":6,"text":"FIG. 3. Structural phase diagram as a function of frequency f and amplitude A,","rect":[48.09000015258789,267.94696044921877,284.61995947265629,260.4269714355469]},{"page":6,"text":"including close to equilibrium parallel structures Npar and Spar, non-equilibrium","rect":[48.090003967285159,277.3837585449219,284.6160080566406,269.41094970703127]},{"page":6,"text":"structures Sper, Stilt, and Scs, the alternative phase Spar–Sper between two","rect":[48.09002685546875,286.3837585449219,284.6210224609375,278.41094970703127]},{"page":6,"text":"structures Spar and Sper, and the disordered structure D.","rect":[48.09002685546875,295.3837585449219,211.2650095214844,287.41094970703127]},{"page":6,"text":"frequency, the disordered state may occur because the boundary","rect":[44.105018615722659,339.7219543457031,288.60805078125,331.0099792480469]},{"page":6,"text":"oscillation is so intense that the collective motion of particles is","rect":[44.105018615722659,350.0689697265625,288.60799267578127,341.5099792480469]},{"page":6,"text":"broken.","rect":[44.105018615722659,358.5169677734375,71.87002368164063,352.0099792480469]},{"page":6,"text":"The tilt angle ψ, representing the angle between the director of","rect":[62.037017822265628,371.22198486328127,288.60098120117189,362.5099792480469]},{"page":6,"text":"the whole system and the x axis, is used to quantify the structural","rect":[44.10499572753906,381.72198486328127,288.60799365234376,373.010009765625]},{"page":6,"text":"transition. If the ψ is 0, it means the whole system aligns parallel to","rect":[44.10499572753906,392.22198486328127,288.600986328125,383.510009765625]},{"page":6,"text":"the wall. When ψ is π2, it means the particles are perpendicular to the","rect":[44.105003356933597,403.6070251464844,288.6010009765625,393.7760009765625]},{"page":6,"text":"wall. Figures 4(a) and 4(b) provide the tilt angle ψ, Ekin, and Epot by","rect":[44.10499572753906,415.0743103027344,288.6049379882812,406.08502197265627]},{"page":6,"text":"averaging 1000 periods of boundary oscillation to refect the struc-","rect":[44.104949951171878,425.2969970703125,288.6079306640625,416.58502197265627]},{"page":6,"text":"tural transition after the steady structure is achieved. It shows that","rect":[44.104949951171878,435.7969970703125,288.60797607421878,427.08502197265627]},{"page":6,"text":"thestructureundergoesNpar →Sper →Scs transitionwiththeincrease","rect":[44.104949951171878,446.5743103027344,288.60191650390626,437.58502197265627]},{"page":6,"text":"in the amplitude at a fxed frequency f = 2.0, as shown in Fig. 4(a),","rect":[44.104949951171878,456.7969970703125,288.60796923828129,448.08502197265627]},{"page":6,"text":"whereψ revealsabruptjumps.Theabruptchangeinψ suggestsellip-","rect":[44.104949951171878,467.2969970703125,288.60698461914066,458.58502197265627]},{"page":6,"text":"soid orientations ranging from planar to perpendicular and then to","rect":[44.10499572753906,477.7969970703125,288.6080053710937,469.08502197265627]},{"page":6,"text":"inner planar in reference to the boundary. ψ is slightly higher for","rect":[44.10499572753906,488.2969970703125,288.6049912109375,479.58502197265627]},{"page":6,"text":"Scs than that for Npar due to a part of the particles near the bound-","rect":[44.10499572753906,499.0743103027344,288.60799169921878,490.08502197265627]},{"page":6,"text":"ary being orientationally isotropic. As the frequency is increased ata","rect":[44.10498809814453,509.2969970703125,288.6079519042969,500.58502197265627]},{"page":6,"text":"fxed amplitude A = 4.0, as shown in Fig. 4(b), the structure changes","rect":[44.10498809814453,519.7970581054688,288.6080231933594,511.0850524902344]},{"page":6,"text":"from Sper → Stilt → Scs → D. An abrupt change still can be found","rect":[44.10498809814453,530.5743408203125,288.6059733886719,521.5850219726563]},{"page":6,"text":"AIP Advances 10, 065307 (2020); doi: 10.1063/5.0009727","rect":[29.160999298095704,738.8690185546875,198.40001416015626,731.373046875]},{"page":6,"text":"© Author(s) 2020","rect":[29.161041259765626,751.8889770507813,79.20904278564453,744.3930053710938]},{"page":6,"text":"ARTICLE","rect":[374.76800537109377,44.81396484375,406.7449909667969,38.162967681884769]},{"page":6,"text":"scitation.org/journal/adv","rect":[439.6210021972656,48.28499221801758,525.3370322265625,39.851993560791019]},{"page":6,"text":"in the transition Sper → Stilt and Scs → D, while the transition Stilt","rect":[306.10498046875,95.2713623046875,549.9117611913681,86.28206634521485]},{"page":6,"text":"→ Scs is not apparent. Average kinetic and potential energies are also","rect":[306.10491943359377,105.49406433105469,550.603916015625,96.78206634521485]},{"page":6,"text":"given in Figs. 4(a) and 4(b), which display a continuous increase.","rect":[306.10491943359377,115.99406433105469,550.607908203125,107.28206634521485]},{"page":6,"text":"The increase in kinetic energy is obviously larger than the increase","rect":[306.10491943359377,126.49406433105469,550.6078979492188,117.78206634521485]},{"page":6,"text":"in potential energy, indicating that kinetic energy is dominant in","rect":[306.10491943359377,136.9940643310547,550.6079365234375,128.2820587158203]},{"page":6,"text":"structural transition.","rect":[306.10491943359377,145.2890625,380.6069011230469,138.7820587158203]},{"page":6,"text":"In order to illustrate the major factor maintaining the steady","rect":[324.0379333496094,157.9940643310547,550.603900390625,149.2820587158203]},{"page":6,"text":"structure from the energy point of view, we present the kinetic","rect":[306.10491943359377,168.4940643310547,550.6079033203125,159.7820587158203]},{"page":6,"text":"energy, potential energy, and total energy for the four steady states","rect":[306.10491943359377,178.9940643310547,550.6078706054688,170.2820587158203]},{"page":6,"text":"in Figs. 5(a)–5(d). The kinetic energy is Ek′in(t) = ∑Ni=1(12mvi2(t)","rect":[306.10491943359377,190.3790283203125,550.5979575195313,179.1102752685547]},{"page":6,"text":"+ 12Iωi2(t)), where i denotes the ith particle, the potential energy","rect":[306.1049499511719,202.67498779296876,550.601947265625,191.4944305419922]},{"page":6,"text":"Ep′ot(t) originates in the GB potential of the system, and the total","rect":[306.10498046875,213.150146484375,550.6089091796876,202.63697814941407]},{"page":6,"text":"energy is the sum of kinetic energy and potential energy. Periodi-","rect":[306.1049499511719,222.7898406982422,550.6079306640625,214.0778350830078]},{"page":6,"text":"cal oscillations are found in all profles, where work is carried out on","rect":[306.1049499511719,233.1368408203125,550.6079365234375,224.5778350830078]},{"page":6,"text":"the system as the boundary contracts and the system works exter-","rect":[306.1049499511719,243.7898406982422,550.6079306640625,235.0778350830078]},{"page":6,"text":"nally as the boundary expands. The frequency of energy oscillation","rect":[306.1049499511719,254.2898406982422,550.6079365234375,245.5778350830078]},{"page":6,"text":"is consistent with the frequency of boundary motion, refecting the","rect":[306.1049499511719,264.7898254394531,550.607958984375,256.0778503417969]},{"page":6,"text":"characteristics of the system driven by the boundary oscillation. The","rect":[306.1049499511719,275.2898254394531,550.607958984375,266.5778503417969]},{"page":6,"text":"percentage of potential energy is increased, as shown in Figs. 5(a)–","rect":[306.1049499511719,285.7898254394531,550.6079174804687,277.0778503417969]},{"page":6,"text":"5(d), because of the inward strengthened aggregation of the particles","rect":[306.1049499511719,296.2898254394531,550.607931640625,287.5778503417969]},{"page":6,"text":"leading to close packing of ellipsoids. It is observed that the kinetic","rect":[306.1049499511719,306.7898254394531,550.6079643554688,298.0778503417969]},{"page":6,"text":"energy accounts for a large proportion of the total energy in all four","rect":[306.1049499511719,317.2898254394531,550.6079208984376,308.5778503417969]},{"page":6,"text":"profles, which suggests kinetic energy has a major effect in main-","rect":[306.1049499511719,327.7898254394531,550.6079916992187,319.0778503417969]},{"page":6,"text":"taining the steady structure, and most of the work performed on the","rect":[306.1049499511719,338.2898254394531,550.607958984375,329.5778503417969]},{"page":6,"text":"system is converted to kinetic energy.","rect":[306.1049499511719,348.7898254394531,440.91595263671879,340.0778503417969]},{"page":6,"text":"Translational and rotational kinetic energy distributions per","rect":[324.0369567871094,359.2898254394531,550.6029770507813,350.5778503417969]},{"page":6,"text":"particle for four steady structures Npar, Sper, Scs, and Stilt are given in","rect":[306.1049499511719,370.067138671875,550.602931640625,361.0778503417969]},{"page":6,"text":"Figs. 6(a) and 6(b), which are used to characterize particle motion.","rect":[306.1049499511719,380.2898254394531,550.6079692382813,371.5778503417969]},{"page":6,"text":"The translational and rotational kinetic energy are calculated from","rect":[306.1049499511719,390.7898254394531,550.6079384765625,382.0778503417969]},{"page":6,"text":"Etra = ⟨n1 ∑ i=n1 12mvi2⟩ and Erot = ⟨n1 ∑ i=n1 21Iωi2⟩, respectively. Here,n","rect":[306.1049499511719,413.81329345703127,550.6050166015625,392.8802795410156]},{"page":6,"text":"represents the number of particles in y → y + Δy, and ⟨⋯⟩ repre-","rect":[306.10504150390627,424.9079895019531,550.6050620117187,415.8269958496094]},{"page":6,"text":"sents the ensemble average. The translational motion is the main way","rect":[306.10504150390627,435.4079895019531,550.60805078125,426.6960144042969]},{"page":6,"text":"in particle collective motion compared to the rotational motion, as","rect":[306.10504150390627,445.7550048828125,550.6080537109375,437.1960144042969]},{"page":6,"text":"shown in Fig. 6. The active boundary works as an energy input in","rect":[306.10504150390627,456.4079895019531,550.60805859375,447.6960144042969]},{"page":6,"text":"the monolayer by collisions between boundary and particles, which","rect":[306.10504150390627,466.9079895019531,550.6081240234375,458.1960144042969]},{"page":6,"text":"results in the increase in particle mobility. The ellipsoids have low","rect":[306.10504150390627,477.4079895019531,550.6079931640625,468.6960144042969]},{"page":6,"text":"translational speed in the whole region for Npar, except the several","rect":[306.10504150390627,488.185302734375,550.607078125,479.1960144042969]},{"page":6,"text":"particlescloseto theboundary[Fig.6(a)blueline].Astheamplitude","rect":[306.1051025390625,498.4079895019531,550.6080810546876,489.6960144042969]},{"page":6,"text":"increases, the particles in the central region still remain motionless,","rect":[306.1051025390625,508.9079895019531,550.6080302734375,500.1960144042969]},{"page":6,"text":"while ellipsoids outside gain increased translational kinetic energy","rect":[306.1051025390625,519.4080200195313,550.6081118164062,510.6960144042969]},{"page":6,"text":"for Sper [Fig. 6(a) black line]. In addition, the curve fuctuates due","rect":[306.1051025390625,530.185302734375,550.6031372070313,521.1959838867188]},{"page":6,"text":"FIG. 4. Structural transition driven by","rect":[429.05999755859377,615.3259887695313,546.621064453125,607.8059692382813]},{"page":6,"text":"(a) varying the amplitude at a fxed fre-","rect":[429.05999755859377,624.3259887695313,546.6199741210937,616.8300170898438]},{"page":6,"text":"quency f = 2.0 and (b) varying the fre-","rect":[429.05999755859377,633.3259887695313,546.6199741210937,625.8300170898438]},{"page":6,"text":"quency at a fxed amplitude A = 4.0.","rect":[429.05999755859377,642.3259887695313,533.5479990234375,634.8300170898438]},{"page":6,"text":"10, 065307-5","rect":[517.2219848632813,737.2930297851563,555.886037109375,731.4450073242188]},{"page":7,"text":"AIP Advances","rect":[35.137996673583987,45.53744125366211,107.7547204732895,37.75001525878906]},{"page":7,"text":"to the characteristic of the structure. The motion of inner parti-","rect":[44.105010986328128,587.0799560546875,288.608052734375,578.5209350585938]},{"page":7,"text":"cles is signifcantly increased, and the slow speed region decreases","rect":[44.105010986328128,597.7329711914063,288.607931640625,589.0209350585938]},{"page":7,"text":"with a larger amplitude in the Scs phase [see Fig. 6(a) green line].","rect":[44.105010986328128,608.2329711914063,288.60601611328129,599.5209350585938]},{"page":7,"text":"The translational energy is nonlinearly increased from the center to","rect":[44.105018615722659,618.7329711914063,288.6079748535156,610.0209350585938]},{"page":7,"text":"the wall and then declines near the wall due to reduced particles.","rect":[44.105018615722659,629.0799560546875,288.6080302734375,620.5209350585938]},{"page":7,"text":"For the Stilt structure formed at low frequency and large amplitude,","rect":[44.105018615722659,639.7329711914063,288.604001953125,631.0209350585938]},{"page":7,"text":"the profle [see Fig. 6(a) red line] is close to a parabolic increment","rect":[44.10501480102539,650.2329711914063,288.608037109375,641.5209350585938]},{"page":7,"text":"from the center to the boundary, and the particles inside are mainly","rect":[44.10501480102539,660.7329711914063,288.60802026367187,652.0209350585938]},{"page":7,"text":"immovable due to crowded ellipsoids with limited motion. The rota-","rect":[44.10501480102539,671.0799560546875,288.60796118164066,662.5209350585938]},{"page":7,"text":"tional kinetic energy curves [Fig. 6(b)] are similar to the transla-","rect":[44.10501480102539,681.7329711914063,288.60799169921878,673.0209350585938]},{"page":7,"text":"tional energy curves for these structures. It can be concluded that","rect":[44.10501480102539,692.2329711914063,288.60806762695315,683.5209350585938]},{"page":7,"text":"AIP Advances 10, 065307 (2020); doi: 10.1063/5.0009727","rect":[29.160999298095704,738.8690185546875,198.40001416015626,731.373046875]},{"page":7,"text":"© Author(s) 2020","rect":[29.161041259765626,751.8889770507813,79.20904278564453,744.3930053710938]},{"page":7,"text":"ARTICLE","rect":[374.76800537109377,44.81396484375,406.7449909667969,38.162967681884769]},{"page":7,"text":"FIG. 5. [(a)–(d)] Energy vs time plots cor-","rect":[429.05999755859377,214.2230224609375,546.6160068359375,206.70301818847657]},{"page":7,"text":"responding to the four steady structures","rect":[429.05999755859377,223.2230224609375,546.6200268554687,215.72702026367188]},{"page":7,"text":"in Figs. 1(b)–1(e), in which the blue, red,","rect":[429.05999755859377,232.2230224609375,546.6200205078125,224.72702026367188]},{"page":7,"text":"and black lines represent the total energy","rect":[429.05999755859377,241.2230224609375,546.6200268554687,233.82302856445313]},{"page":7,"text":"Et′ot, kinetic energy Ek′in, and potential","rect":[429.05999755859377,251.3145294189453,546.6209780273438,242.57513427734376]},{"page":7,"text":"energy Ep′ot, respectively.","rect":[429.0599670410156,260.9554748535156,502.78093969726566,251.5750732421875]},{"page":7,"text":"FIG. 6. (a) Translational kinetic energy","rect":[429.05999755859377,462.0669860839844,546.6180126953125,454.5469970703125]},{"page":7,"text":"Etra and (b) rotational kinetic energy Erot","rect":[429.05999755859377,471.0669860839844,545.9251764431,463.57098388671877]},{"page":7,"text":"distribution per ellipsoid along the y axis","rect":[429.05999755859377,480.0669860839844,546.6200268554687,472.6669921875]},{"page":7,"text":"for the four steady states in Figs. 1(b)–","rect":[429.05999755859377,489.0669860839844,546.6199848632813,481.57098388671877]},{"page":7,"text":"1(e).","rect":[429.05999755859377,498.0669860839844,442.5479990234375,490.57098388671877]},{"page":7,"text":"translational speed is dominant in the steady structure and vibrating","rect":[306.1050109863281,587.2329711914063,550.60799609375,578.5209350585938]},{"page":7,"text":"walls lead to inhomogeneous motion profles along the y axis.","rect":[306.1050109863281,597.7329711914063,527.6759624023438,589.0209350585938]},{"page":7,"text":"IV. CONCLUSIONS","rect":[306.1050109863281,622.7210083007813,386.98799853515626,616.322021484375]},{"page":7,"text":"In this article, we have introduced a novel confning slit vibra-","rect":[324.0370178222656,639.9630126953125,550.6030478515625,631.2509765625]},{"page":7,"text":"tion system to study colloidal LCs by means of Langevin dynam-","rect":[306.1050109863281,650.4630126953125,550.6079916992187,641.7509765625]},{"page":7,"text":"ics simulations. A tunable boundary is used so that the orientation","rect":[306.1050109863281,660.9630126953125,550.6079365234375,652.2509765625]},{"page":7,"text":"of the particles can be varied while interaction between the parti-","rect":[306.1050109863281,671.3099975585938,550.6079916992187,662.7509765625]},{"page":7,"text":"cles and boundary remains constant. The moving boundary leads","rect":[306.1050109863281,681.9630126953125,550.6080537109375,673.2509765625]},{"page":7,"text":"to different alignments compared with static bulk confnement. We","rect":[306.1050109863281,692.4630126953125,550.6080200195313,683.7509765625]},{"page":7,"text":"10, 065307-6","rect":[517.2219848632813,737.2930297851563,555.886037109375,731.4450073242188]},{"page":8,"text":"AIP Advances","rect":[35.137996673583987,45.53744125366211,107.7547204732895,37.75001525878906]},{"page":8,"text":"have analyzed the structures by calculating the local felds for four","rect":[44.10499954223633,94.99400329589844,288.6080124511719,86.2820053100586]},{"page":8,"text":"steady structures Npar, Sper, Scs, and Stilt. These structural transitions","rect":[44.10499954223633,105.77130126953125,288.6010041503906,96.7820053100586]},{"page":8,"text":"are attributed to the particle aggregation and the increased mobility","rect":[44.10499572753906,115.99400329589844,288.6079592285156,107.2820053100586]},{"page":8,"text":"due to boundary oscillation. Furthermore, the oscillating bound-","rect":[44.10499572753906,126.49400329589844,288.6080222167969,117.7820053100586]},{"page":8,"text":"ary induces inhomogeneous mobility along the y axis. Our results","rect":[44.10499572753906,136.99400329589845,288.60799267578127,128.28199768066407]},{"page":8,"text":"reveal a strategy for new adaptable materials by designing dynamic","rect":[44.10499572753906,147.49400329589845,288.6079948730469,138.78199768066407]},{"page":8,"text":"organizing principles. We expect this non-equilibrium model to be","rect":[44.10499572753906,157.99400329589845,288.6079895019531,149.28199768066407]},{"page":8,"text":"helpful in addressing the ordered steady structure and the response","rect":[44.10499572753906,168.49400329589845,288.607958984375,159.78199768066407]},{"page":8,"text":"to external perturbations of liquid crystalline systems applied in","rect":[44.10499572753906,178.99400329589845,288.6079670410156,170.28199768066407]},{"page":8,"text":"displays, sensors, and active materials.","rect":[44.10499572753906,189.49400329589845,181.57096667480469,180.78199768066407]},{"page":8,"text":"ACKNOWLEDGMENTS","rect":[44.10499572753906,214.1709747314453,144.23900561523437,207.77197265625]},{"page":8,"text":"This work was supported by the National Natural Science","rect":[62.03699493408203,231.4139862060547,288.60301513671876,222.7019805908203]},{"page":8,"text":"Foundation of China (Grant No. 51802051) and the Science and","rect":[44.10499572753906,241.1309814453125,288.6080791015625,233.2019805908203]},{"page":8,"text":"Technology Base and Talent Special Project of Guangxi Province","rect":[44.10499572753906,252.4139862060547,288.6079895019531,243.7019805908203]},{"page":8,"text":"(Grant No. 2018AD19098). We are grateful to the High Performance","rect":[44.10499572753906,262.9139709472656,288.607958984375,254.2019805908203]},{"page":8,"text":"Computing Center (HPCC) of Nanjing University for performing","rect":[44.10499572753906,273.4139709472656,288.60799609375,264.7019958496094]},{"page":8,"text":"the numerical calculations in this paper on its blade cluster system.","rect":[44.10499572753906,283.9139709472656,284.71996875,275.2019958496094]},{"page":8,"text":"DATA AVAILABILITY","rect":[44.10499572753906,308.5459899902344,134.4920009765625,302.2460021972656]},{"page":8,"text":"The data that support the fndings of this study are available","rect":[62.03699493408203,327.3279724121094,288.6029541015625,318.6159973144531]},{"page":8,"text":"from the corresponding author upon reasonable request.","rect":[44.10499572753906,337.8279724121094,248.67497058105469,329.1159973144531]},{"page":8,"text":"REFERENCES","rect":[44.10499572753906,360.0140075683594,105.18799548339844,353.614990234375]},{"page":8,"text":"1J. Karjalainen, J. Vaara, M. Straka, and P. Lantto, “Xenon NMR of liquid crys-","rect":[44.10499572753906,376.86700439453127,288.6029833984375,368.0589904785156]},{"page":8,"text":"tals confned to cylindrical nanocavities: A simulation study,” Phys. Chem. Chem.","rect":[44.10499572753906,385.86700439453127,288.6050500488281,378.60699462890627]},{"page":8,"text":"Phys. 17, 7158–7171 (2015).","rect":[44.10499572753906,394.86700439453127,128.55498596191408,387.60699462890627]},{"page":8,"text":"2S. Ishihara, “How far has the molecular alignment of liquid crystals been","rect":[44.10499572753906,404.8630065917969,288.60298828125,396.0249938964844]},{"page":8,"text":"elucidated?,” J. Disp. Technol. 1, 30 (2005).","rect":[44.10499572753906,413.7355041503906,173.39699645996095,406.6029968261719]},{"page":8,"text":"3S. Varga, Y. Martínez-Ratón, and E. Velasco, “Hard rods in a cylindrical pore:","rect":[44.10499572753906,423.8590087890625,288.60300537109375,415.0559997558594]},{"page":8,"text":"The nematic-to-smectic phase transition,” J. Phys.: Condens. Matter 26, 075104","rect":[44.10499572753906,432.8590087890625,288.6045166015625,425.5989990234375]},{"page":8,"text":"(2014).","rect":[44.10499572753906,441.20648193359377,65.40499588012695,434.6139831542969]},{"page":8,"text":"4G. P. Bryan-Brown, C. V. Brown, I. C. Sage, and V. C. Hui, “Voltage-dependent","rect":[44.10499572753906,451.85601806640627,288.6029907226563,443.0480041503906]},{"page":8,"text":"anchoring of a nematic liquid crystal on a grating surface,” Nature 392, 365–367","rect":[44.10499572753906,460.85601806640627,288.60601196289067,453.59600830078127]},{"page":8,"text":"(1998).","rect":[44.105010986328128,469.2034912109375,65.40501113891601,462.6109924316406]},{"page":8,"text":"5G. Barbero and V. Popa-Nita, “Model for the planar-homeotropic anchoring","rect":[44.105010986328128,479.8520202636719,288.60295654296876,471.04400634765627]},{"page":8,"text":"transition induced by trans-cis isomerization,” Phys. Rev. E 61, 6696 (2000).","rect":[44.105010986328128,488.8520202636719,272.45700927734375,481.5920104980469]},{"page":8,"text":"6C.-M. Chen and F. C. MacKintosh, “Structural phase transitions in liquid-crystal","rect":[44.105010986328128,498.8480224609375,288.60300537109375,490.010009765625]},{"page":8,"text":"flms induced by an applied electric feld,” Europhys. Lett. 30, 215 (1995).","rect":[44.105010986328128,507.8480224609375,263.84702392578125,500.5880126953125]},{"page":8,"text":"7J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crys-","rect":[44.105010986328128,517.843994140625,288.6029528808594,509.0360107421875]},{"page":8,"text":"tals,” Nature 362, 525–527 (1993).","rect":[44.105010986328128,526.1915283203125,146.72699829101564,519.583984375]},{"page":8,"text":"8P. Jagemalm and L. Komitov, “Temperature induced anchoring transition in","rect":[44.105010986328128,536.8410034179688,288.6029577636719,528.0030517578125]},{"page":8,"text":"nematic liquid crystals with two-fold degenerate alignment,” Liq. Cryst. 23, 1–8","rect":[44.105010986328128,545.8410034179688,288.6045166015625,538.5809936523438]},{"page":8,"text":"(1997).","rect":[44.105010986328128,554.1885375976563,65.40501113891601,547.5960083007813]},{"page":8,"text":"9R. Barberi, M. Giocondo, M. Iovane, I. Dozov, and E. Polossat, “Nematic anchor-","rect":[44.105010986328128,563.02197265625,288.60301391601566,555.9990844726563]},{"page":8,"text":"ing transitions on bistable SiO flms driven by temperature and impurities,” Liq.","rect":[44.105010986328128,573.8369750976563,288.6050500488281,566.5769653320313]},{"page":8,"text":"Cryst. 25, 23–29 (1998).","rect":[44.105010986328128,582.8369750976563,115.98500915527343,575.5919799804688]},{"page":8,"text":"10B. Jérôme, J. O’Brien, Y. Ouchi, C. Stanners, and Y. R. Shen, “Bulk reorientation","rect":[44.105010986328128,592.1430053710938,288.6055212402344,584.0050048828125]},{"page":8,"text":"driven by orientational transition in a liquid crystal monolayer,” Phys. Rev. Lett.","rect":[44.105010986328128,601.8330078125,288.60508056640625,594.572998046875]},{"page":8,"text":"71, 758 (1993).","rect":[44.105010986328128,610.1805419921875,88.82001586914062,603.5880126953125]},{"page":8,"text":"11D. Shenoy, L. Beresnev, D. Holt, and R. Shashidhar, “Tuning polar anchoring","rect":[44.105010986328128,620.8290405273438,288.605458984375,612.02099609375]},{"page":8,"text":"energy through chemical modifcation of photodimerized surfaces,” Appl. Phys.","rect":[44.105010986328128,629.8290405273438,288.60501953125,622.5690307617188]},{"page":8,"text":"Lett. 80, 1538–1540 (2002).","rect":[44.105010986328128,638.1765747070313,125.93000122070312,631.5840454101563]},{"page":8,"text":"AIP Advances 10, 065307 (2020); doi: 10.1063/5.0009727","rect":[29.160999298095704,738.8690185546875,198.40001416015626,731.373046875]},{"page":8,"text":"© Author(s) 2020","rect":[29.161041259765626,751.8889770507813,79.20904278564453,744.3930053710938]},{"page":8,"text":"ARTICLE","rect":[374.76800537109377,44.81396484375,406.7449909667969,38.162967681884769]},{"page":8,"text":"scitation.org/journal/adv","rect":[439.6210021972656,48.28499221801758,525.3370322265625,39.851993560791019]},{"page":8,"text":"12P. K. Jha, V. Kuzovkov, B. A. Grzybowski, and M. O. de la Cruz, “Dynamic","rect":[306.1050109863281,94.61000061035156,550.6055444335938,85.77200317382813]},{"page":8,"text":"self-assembly","rect":[306.1050109863281,103.61000061035156,346.1100109863281,96.35000610351563]},{"page":8,"text":"of","rect":[351.4875183105469,102.0,357.5325,96.35000610351563]},{"page":8,"text":"photo-switchable","rect":[362.90252685546877,103.48250579833985,414.99749755859377,96.35000610351563]},{"page":8,"text":"nanoparticles,”","rect":[420.375,103.48250579833985,465.72753173828127,96.35000610351563]},{"page":8,"text":"Soft","rect":[471.10504150390627,101.79500579833985,482.9925476074219,96.35000610351563]},{"page":8,"text":"Matter","rect":[488.37005615234377,101.77249908447266,508.8900439453125,96.81500244140625]},{"page":8,"text":"8,","rect":[514.2659912109375,102.0,519.7259912109375,96.92750549316406]},{"page":8,"text":"227–234","rect":[525.103515625,102.0,550.6034790039063,96.92750549316406]},{"page":8,"text":"(2012).","rect":[306.10498046875,111.95750427246094,327.4049768066406,105.36500549316406]},{"page":8,"text":"13X.-Q. Shi and Y.-Q Ma, “Topological structure dynamics revealing collective","rect":[306.10498046875,122.60597229003906,550.60546875,113.79798126220703]},{"page":8,"text":"evolution in active nematics,” Nat. Commun. 4, 3013 (2013).","rect":[306.10498046875,130.95347595214845,488.4300012207031,124.34597778320313]},{"page":8,"text":"14X.-Q. Shi and Y.-Q. Ma, “Understanding phase behavior of plant cell cor-","rect":[306.10498046875,141.6029815673828,550.6054858398437,132.79498291015626]},{"page":8,"text":"tex microtubule organization,” Proc. Natl. Acad. Sci. U. S. A. 107, 11709–11714","rect":[306.10498046875,150.6029815673828,550.6034790039063,143.34298706054688]},{"page":8,"text":"(2010).","rect":[306.10498046875,158.9504852294922,327.4049768066406,152.3579864501953]},{"page":8,"text":"15J. Boekhoven, A. M. Brizard, K. N. K. Kowlgi, G. J. M. Koper, R. Eelkema,","rect":[306.10498046875,169.5989532470703,550.6055078125,160.79095458984376]},{"page":8,"text":"and J. H. van Esch, “Dissipative self-assembly of a molecular gelator by usinga","rect":[306.10498046875,178.5989532470703,550.605,171.33895874023438]},{"page":8,"text":"chemical fuel,” Angew. Chem., Int. Ed. 49, 4825–4828 (2010).","rect":[306.10498046875,187.5989532470703,490.97998901367188,180.33895874023438]},{"page":8,"text":"16B. A. Grzybowski, H. A. Stone, and G. M. Whitesides, “Dynamic self-assembly","rect":[306.10498046875,197.5949249267578,550.6054638671875,188.75692749023438]},{"page":8,"text":"of magnetized, millimetre-sized objects rotating at a liquid–air interface,” Nature","rect":[306.10498046875,206.5949249267578,550.6049194335938,199.33493041992188]},{"page":8,"text":"405, 1033–1036 (2000).","rect":[306.10498046875,214.9424285888672,376.46997924804688,208.3499298095703]},{"page":8,"text":"17V. Narayan, S. Ramaswamy, and N. Menon, “Long-lived giant number fuctua-","rect":[306.10498046875,225.5908966064453,550.6054248046875,216.78289794921876]},{"page":8,"text":"tions in a swarming granular nematic,” Science 317, 105–108 (2007).","rect":[306.10498046875,234.5908966064453,512.2419519042969,227.33090209960938]},{"page":8,"text":"18F. F. Chung, S.-S. Liaw, and M. C. Ho, “Energy and phase transition","rect":[306.10498046875,244.58790588378907,550.6054296875,235.74990844726563]},{"page":8,"text":"in a horizontally vibrating granular system,” Granular Matter 12, 369–374","rect":[306.10498046875,253.58790588378907,550.6049438476563,246.32791137695313]},{"page":8,"text":"(2010).","rect":[306.1049499511719,261.9353942871094,327.4049462890625,255.34291076660157]},{"page":8,"text":"19P. Cordero, D. Risso, and R. Soto, “Effect of the vibration profle on shallow","rect":[306.1049499511719,272.4563903808594,550.6054565429688,263.7458801269531]},{"page":8,"text":"granular systems,” Philos. Trans. R. Soc., A 373, 20150116 (2015).","rect":[306.1049499511719,281.5838928222656,503.37696166992188,274.3238830566406]},{"page":8,"text":"20I. S. Aranson, D. Volfson, and L. S. Tsimring, “Swirling motion in a system of","rect":[306.1049499511719,291.57989501953127,550.6053759765625,282.74188232421877]},{"page":8,"text":"vibrated elongated particles,” Phys. Rev. E 75, 051301 (2007).","rect":[306.1049499511719,300.57989501953127,489.336953125,293.31988525390627]},{"page":8,"text":"21I. S. Aranson, A. Snezhko, J. S. Olafsen, and J. S. Urbach, “Comment on “long-","rect":[306.10498046875,310.5758972167969,550.6054858398437,301.7378845214844]},{"page":8,"text":"lived giant number fuctuations in a swarming granular nematic”,” Science 320,","rect":[306.10498046875,319.5758972167969,550.6049584960938,312.3158874511719]},{"page":8,"text":"612c–612 (2008).","rect":[306.10498046875,327.9233703613281,357.7799768066406,321.33087158203127]},{"page":8,"text":"22P. M. Reis, R. A. Ingale, and M. D. Shattuck, “Crystallization of a quasi-two-","rect":[306.10498046875,338.5729064941406,550.6054858398437,329.7348937988281]},{"page":8,"text":"dimensional granular fuid,” Phys. Rev. Lett. 96, 258001 (2006).","rect":[306.10498046875,347.5729064941406,496.09497924804688,340.3128967285156]},{"page":8,"text":"23P. M. Reis, R. A. Ingale, and M. D. Shattuck, “Caging dynamics in a granular","rect":[306.10498046875,357.56890869140627,550.6054370117188,348.73089599609377]},{"page":8,"text":"fuid,” Phys. Rev. Lett. 98, 188301 (2007).","rect":[306.10498046875,366.56890869140627,429.7649621582031,359.30889892578127]},{"page":8,"text":"24K. To, P.-Y. Lai, and H. K. Pak, “Jamming of granular fow in a two-dimensional","rect":[306.10498046875,376.5649108886719,550.6054467773438,367.7268981933594]},{"page":8,"text":"hopper,” Phys. Rev. Lett. 86, 71 (2001).","rect":[306.10498046875,385.5649108886719,423.074990234375,378.3049011230469]},{"page":8,"text":"25M. A. Bates and G. R. Luckhurst, “Computer simulation studies of anisotropic","rect":[306.10498046875,395.43341064453127,550.6054833984375,386.722900390625]},{"page":8,"text":"systems. XXX. The phase behavior and structure of a Gay–Berne mesogen,”","rect":[306.10498046875,404.5609130859375,550.6049731445313,397.3009033203125]},{"page":8,"text":"J. Chem. Phys. 110, 7087–7108 (1999).","rect":[306.10498046875,413.5609130859375,421.9199914550781,406.3009033203125]},{"page":8,"text":"26R. Berardi, A. Costantini, L. Muccioli, S. Orlandi, and C. Zannoni, “A com-","rect":[306.10498046875,422.0,550.6054248046875,414.7189025878906]},{"page":8,"text":"puter simulation study of the formation of liquid crystal nanodroplets from a","rect":[306.10498046875,432.55792236328127,550.605,425.29791259765627]},{"page":8,"text":"homogeneous solution,” J. Chem. Phys. 126, 044905 (2007).","rect":[306.10498046875,441.55792236328127,485.96997924804688,434.29791259765627]},{"page":8,"text":"27J. A. Moreno-Razo, E. J. Sambriski, N. L. Abbott, J. P. Hernández-Ortiz, and","rect":[306.10498046875,450.8639221191406,550.6055078125,442.7159118652344]},{"page":8,"text":"J. J. De Pablo, “Liquid-crystal-mediated self-assembly at nanodroplet interfaces,”","rect":[306.10498046875,460.5539245605469,550.6049731445313,453.2939147949219]},{"page":8,"text":"Nature 485, 86–89 (2012).","rect":[306.10498046875,468.9013977050781,384.8769921875,462.30889892578127]},{"page":8,"text":"28J. G. Gay and B. J. Berne, “Modifcation of the overlap potential to mimic a linear","rect":[306.10498046875,479.5499267578125,550.6054370117188,470.7119140625]},{"page":8,"text":"site–site potential,” J. Chem. Phys. 74, 3316–3319 (1981).","rect":[306.10498046875,488.5499267578125,477.4869775390625,481.2899169921875]},{"page":8,"text":"29Q. Ji, R. Lefort, R. Busselez, and D. Morineau, “Structure and dynamics of a","rect":[306.10498046875,498.5459289550781,550.60548828125,489.7079162597656]},{"page":8,"text":"Gay–Berne liquid crystal confned in cylindrical nanopores,” J. Chem. Phys. 130,","rect":[306.10498046875,507.5459289550781,550.6049584960938,500.2859191894531]},{"page":8,"text":"234501 (2009).","rect":[306.10498046875,515.8934326171875,350.7074670410156,509.3009033203125]},{"page":8,"text":"30S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,”","rect":[306.10498046875,526.5429077148438,550.6055224609376,517.7138671875]},{"page":8,"text":"J. Comput. Phys. 117, 1–19 (1995).","rect":[306.10498046875,535.5429077148438,410.7519921875,528.2828979492188]},{"page":8,"text":"31W.-D. Tian, Y. Gu, Y.-K. Guo, and K. Chen, “Anomalous boundary defor-","rect":[306.10498046875,545.5388793945313,550.6054248046875,536.73095703125]},{"page":8,"text":"mation induced by enclosed active particles,” Chin. Phys. B 26, 100502","rect":[306.10498046875,554.5388793945313,550.601953125,547.2788696289063]},{"page":8,"text":"(2017).","rect":[306.10498046875,562.8864135742188,327.4049768066406,556.2938842773438]},{"page":8,"text":"32T. Geigenfeind, S. Rosenzweig, M. Schmidt, and D. de Las Heras, “Confnement","rect":[306.10498046875,573.534912109375,550.6054931640625,564.6969604492188]},{"page":8,"text":"of two-dimensional rods in slit pores and square cavities,” J. Chem. Phys. 142,","rect":[306.10498046875,582.534912109375,550.6049584960938,575.27490234375]},{"page":8,"text":"174701 (2015).","rect":[306.10498046875,590.8824462890625,350.7074670410156,584.2899169921875]},{"page":8,"text":"33M. Rein, N. Heinß, F. Schmid, and T. Speck, “Collective behavior of quorum-","rect":[306.10498046875,601.4034423828125,550.605546875,592.7279052734375]},{"page":8,"text":"sensing","rect":[306.10498046875,610.5309448242188,328.5224816894531,603.8184814453125]},{"page":8,"text":"run-and-tumble","rect":[332.4524841308594,609.0,381.3224792480469,603.2709350585938]},{"page":8,"text":"particles","rect":[385.2449951171875,610.4034423828125,410.55749267578127,603.2709350585938]},{"page":8,"text":"under","rect":[414.48748779296877,609.0,432.502470703125,603.2709350585938]},{"page":8,"text":"confnement,”","rect":[436.42498779296877,609.0,479.2649768066406,603.2709350585938]},{"page":8,"text":"Phys.","rect":[483.1949768066406,610.5309448242188,499.32749267578125,603.2709350585938]},{"page":8,"text":"Rev.","rect":[503.2574768066406,609.0,516.284951171875,603.7359619140625]},{"page":8,"text":"Lett.","rect":[520.2149658203125,609.0,533.722451171875,603.7359619140625]},{"page":8,"text":"116,","rect":[537.6449584960938,609.48095703125,550.6049584960938,603.803466796875]},{"page":8,"text":"058102 (2016).","rect":[306.10498046875,618.8784790039063,350.7074670410156,612.2859497070313]},{"page":8,"text":"34S. N. Weber, C. A. Weber, and E. Frey, “Binary mixtures of particles with","rect":[306.10498046875,629.5269165039063,550.6054638671875,620.7189331054688]},{"page":8,"text":"different diffusivities demix,” Phys. Rev. Lett. 116, 058301 (2016).","rect":[306.10498046875,638.5269165039063,502.64197631835938,631.2669067382813]},{"page":8,"text":"10, 065307-7","rect":[517.2219848632813,737.2930297851563,555.886037109375,731.4450073242188]}]}