| standard library package ISQThermodynamics { | |
| doc | |
| /* | |
| * International System of Quantities and Units | |
| * Generated on 2022-08-07T14:44:27Z from standard ISO-80000-5:2019 "Thermodynamics" | |
| * see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-5:ed-2:v1:en | |
| * | |
| * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts, | |
| * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks. | |
| * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is | |
| * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) | |
| * or TensorMeasurementReference. | |
| */ | |
| private import ScalarValues::Real; | |
| private import Quantities::*; | |
| private import MeasurementReferences::*; | |
| private import ISQBase::*; | |
| /* Quantity definitions referenced from other ISQ packages */ | |
| /* ISO-80000-5 item 5-1 thermodynamic temperature, temperature */ | |
| /* See package ISQBase for the declarations of ThermodynamicTemperatureValue and ThermodynamicTemperatureUnit */ | |
| alias TemperatureUnit for ThermodynamicTemperatureUnit; | |
| alias TemperatureValue for ThermodynamicTemperatureValue; | |
| alias temperature for thermodynamicTemperature; | |
| /* ISO-80000-5 item 5-2 Celsius temperature */ | |
| attribute def CelsiusTemperatureValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-2 Celsius temperature | |
| * symbol(s): `t`, `θ` | |
| * application domain: generic | |
| * name: CelsiusTemperature | |
| * quantity dimension: Θ^1 | |
| * measurement unit(s): °C | |
| * tensor order: 0 | |
| * definition: temperature difference from the thermodynamic temperature of the ice point is called the Celsius temperature t, which is defined by the quantity equation: `t = T - T_0` where `T` is thermodynamic temperature (item 5-1) and `T_0 = 273,15 K` | |
| * remarks: The unit degree Celsius is a special name for the kelvin for use in stating values of Celsius temperature. The unit degree Celsius is by definition equal in magnitude to the kelvin. A difference or interval of temperature may be expressed in kelvin or in degrees Celsius. The thermodynamic temperature `T_0` is 0,01 K below the thermodynamic temperature of the triple point of water. The symbol °C for the degree Celsius shall be preceded by a space (see ISO 80000-1). Prefixes are not allowed in combination with the unit °C. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: CelsiusTemperatureUnit[1]; | |
| } | |
| attribute celsiusTemperature: CelsiusTemperatureValue[*] nonunique :> scalarQuantities; | |
| attribute def CelsiusTemperatureUnit :> DerivedUnit { | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; } | |
| } | |
| /* ISO-80000-5 item 5-3.1 linear expansion coefficient */ | |
| attribute def LinearExpansionCoefficientValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-3.1 linear expansion coefficient | |
| * symbol(s): `α_l` | |
| * application domain: generic | |
| * name: LinearExpansionCoefficient | |
| * quantity dimension: Θ^-1 | |
| * measurement unit(s): K^-1 | |
| * tensor order: 0 | |
| * definition: relative change of length with temperature: `α_l = 1/l * (dl)/(dT)` where l is length (ISO 80000-3) and `T` is thermodynamic temperature (item 5-1) | |
| * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: LinearExpansionCoefficientUnit[1]; | |
| } | |
| attribute linearExpansionCoefficient: LinearExpansionCoefficientValue[*] nonunique :> scalarQuantities; | |
| attribute def LinearExpansionCoefficientUnit :> DerivedUnit { | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; } | |
| } | |
| /* ISO-80000-5 item 5-3.2 cubic expansion coefficient */ | |
| attribute def CubicExpansionCoefficientValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-3.2 cubic expansion coefficient | |
| * symbol(s): `α_V`, `γ` | |
| * application domain: generic | |
| * name: CubicExpansionCoefficient | |
| * quantity dimension: Θ^-1 | |
| * measurement unit(s): K^-1 | |
| * tensor order: 0 | |
| * definition: relative change of volume with temperature: `α_V = 1/V * (dV)/(dT)` where `V` is volume (ISO 80000-3) and `T` is thermodynamic temperature (item 5-1) | |
| * remarks: Also called volumetric expansion coefficient. The subscripts in the symbols may be omitted when there is no risk of confusion. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: CubicExpansionCoefficientUnit[1]; | |
| } | |
| attribute cubicExpansionCoefficient: CubicExpansionCoefficientValue[*] nonunique :> scalarQuantities; | |
| attribute def CubicExpansionCoefficientUnit :> DerivedUnit { | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; } | |
| } | |
| /* ISO-80000-5 item 5-3.3 relative pressure coefficient */ | |
| attribute def RelativePressureCoefficientValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-3.3 relative pressure coefficient | |
| * symbol(s): `α_p` | |
| * application domain: generic | |
| * name: RelativePressureCoefficient | |
| * quantity dimension: Θ^-1 | |
| * measurement unit(s): K^-1 | |
| * tensor order: 0 | |
| * definition: relative change of pressure with temperature at constant volume: `α_p = 1/p * ((partial p)/(partial T))_V` where `p` is pressure (ISO 80000-4), `T` is thermodynamic temperature (item 5-1), and `V` is volume (ISO 80000-3) | |
| * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: RelativePressureCoefficientUnit[1]; | |
| } | |
| attribute relativePressureCoefficient: RelativePressureCoefficientValue[*] nonunique :> scalarQuantities; | |
| attribute def RelativePressureCoefficientUnit :> DerivedUnit { | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = thermodynamicTemperaturePF; } | |
| } | |
| /* ISO-80000-5 item 5-4 pressure coefficient */ | |
| attribute def PressureCoefficientValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-4 pressure coefficient | |
| * symbol(s): `β` | |
| * application domain: generic | |
| * name: PressureCoefficient | |
| * quantity dimension: L^-1*M^1*T^-2*Θ^-1 | |
| * measurement unit(s): Pa/K, kg*m^-1*s^-2*K^-1 | |
| * tensor order: 0 | |
| * definition: change of pressure with temperature at constant volume: `β = ((partial p)/(partial T))_V` where `p` is pressure (ISO 80000-4), `T` is thermodynamic temperature (item 5-1), and `V` is volume (ISO 80000-3) | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: PressureCoefficientUnit[1]; | |
| } | |
| attribute pressureCoefficient: PressureCoefficientValue[*] nonunique :> scalarQuantities; | |
| attribute def PressureCoefficientUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-5.1 isothermal compressibility */ | |
| attribute def IsothermalCompressibilityValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-5.1 isothermal compressibility | |
| * symbol(s): `ϰ_T` | |
| * application domain: generic | |
| * name: IsothermalCompressibility | |
| * quantity dimension: L^1*M^-1*T^2 | |
| * measurement unit(s): Pa^-1, kg^-1*m*s^2 | |
| * tensor order: 0 | |
| * definition: negative relative change of volume with pressure at constant temperature: `ϰ_T = -1/V * ((partial V)/(partial p))_T` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `T` is thermodynamic temperature (item 5-1) | |
| * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: IsothermalCompressibilityUnit[1]; | |
| } | |
| attribute isothermalCompressibility: IsothermalCompressibilityValue[*] nonunique :> scalarQuantities; | |
| attribute def IsothermalCompressibilityUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } | |
| } | |
| /* ISO-80000-5 item 5-5.2 isentropic compressibility */ | |
| attribute def IsentropicCompressibilityValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-5.2 isentropic compressibility | |
| * symbol(s): `ϰ_S` | |
| * application domain: generic | |
| * name: IsentropicCompressibility | |
| * quantity dimension: L^1*M^-1*T^2 | |
| * measurement unit(s): Pa^-1, kg^-1*m*s^2 | |
| * tensor order: 0 | |
| * definition: negative relative change of volume with pressure at constant entropy: `ϰ_S = -1/V * ((partial V)/(partial p))_S` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `S` is entropy (item 5-18) | |
| * remarks: The subscripts in the symbols may be omitted when there is no risk of confusion. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: IsentropicCompressibilityUnit[1]; | |
| } | |
| attribute isentropicCompressibility: IsentropicCompressibilityValue[*] nonunique :> scalarQuantities; | |
| attribute def IsentropicCompressibilityUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } | |
| } | |
| /* ISO-80000-5 item 5-6.1 heat, amount of heat */ | |
| attribute heat: EnergyValue :> scalarQuantities { | |
| doc | |
| /* | |
| * source: item 5-6.1 heat, amount of heat | |
| * symbol(s): `Q` | |
| * application domain: generic | |
| * name: Heat (specializes Energy) | |
| * quantity dimension: L^2*M^1*T^-2 | |
| * measurement unit(s): J, kg*m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: difference between the increase in the internal energy (item 5-20.2) of a system and the work (ISO 80000-4) done on the system, provided that the amounts of substances within the system are not changed | |
| * remarks: The heat transferred in an isothermal phase transformation should be expressed as the change in the appropriate state functions, e.g. `T ΔS`, where `T` is thermodynamic temperature (item 5-1) and `S` is entropy (item 5-18), or `ΔH`, where `H` is enthalpy (item 5-20.3). NOTE A supply of heat can correspond to an increase in thermodynamic temperature or to other effects, such as phase change or chemical processes; see item 5-6.2. | |
| */ | |
| } | |
| alias amountOfHeat for heat; | |
| /* ISO-80000-5 item 5-6.2 latent heat */ | |
| attribute latentHeat: EnergyValue :> scalarQuantities { | |
| doc | |
| /* | |
| * source: item 5-6.2 latent heat | |
| * symbol(s): `Q` | |
| * application domain: generic | |
| * name: LatentHeat (specializes Energy) | |
| * quantity dimension: L^2*M^1*T^-2 | |
| * measurement unit(s): J, kg*m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: energy released or absorbed by a system during a constant-temperature process | |
| * remarks: Examples of latent heat are latent heat of fusion (melting) and latent heat of vaporization (boiling). | |
| */ | |
| } | |
| /* ISO-80000-5 item 5-7 heat flow rate */ | |
| attribute def HeatFlowRateValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-7 heat flow rate | |
| * symbol(s): `dot(Q)` | |
| * application domain: generic | |
| * name: HeatFlowRate | |
| * quantity dimension: L^2*M^1*T^-3 | |
| * measurement unit(s): W, J/s, kg*m^2*s^-3 | |
| * tensor order: 0 | |
| * definition: time rate at which heat (item 5-6.1) crosses a given surface | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: HeatFlowRateUnit[1]; | |
| } | |
| attribute heatFlowRate: HeatFlowRateValue[*] nonunique :> scalarQuantities; | |
| attribute def HeatFlowRateUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } | |
| } | |
| /* ISO-80000-5 item 5-8 density of heat flow rate */ | |
| attribute def DensityOfHeatFlowRateValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-8 density of heat flow rate | |
| * symbol(s): `q`, `φ` | |
| * application domain: generic | |
| * name: DensityOfHeatFlowRate | |
| * quantity dimension: M^1*T^-3 | |
| * measurement unit(s): W/m^2, kg*s^-3 | |
| * tensor order: 0 | |
| * definition: quotient of heat flow rate and area: `q = dot Q / A` where `dot Q` is heat flow rate (item 5-7) and A is area (ISO 80000-3) of a given surface | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: DensityOfHeatFlowRateUnit[1]; | |
| } | |
| attribute densityOfHeatFlowRate: DensityOfHeatFlowRateValue[*] nonunique :> scalarQuantities; | |
| attribute def DensityOfHeatFlowRateUnit :> DerivedUnit { | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); } | |
| } | |
| /* ISO-80000-5 item 5-9 thermal conductivity */ | |
| attribute def ThermalConductivityValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-9 thermal conductivity | |
| * symbol(s): `λ_l`, `(ϰ)` | |
| * application domain: generic | |
| * name: ThermalConductivity | |
| * quantity dimension: L^1*M^1*T^-3*Θ^-1 | |
| * measurement unit(s): W/(m*K), kg*m*s^-3*K^-1 | |
| * tensor order: 0 | |
| * definition: quotient of density of heat flow rate (item 5-8) and thermodynamic temperature gradient that has the same direction as the heat flow | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: ThermalConductivityUnit[1]; | |
| } | |
| attribute thermalConductivity: ThermalConductivityValue[*] nonunique :> scalarQuantities; | |
| attribute def ThermalConductivityUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-10.1 coefficient of heat transfer */ | |
| attribute def CoefficientOfHeatTransferValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-10.1 coefficient of heat transfer | |
| * symbol(s): `K`, `(k)` | |
| * application domain: generic | |
| * name: CoefficientOfHeatTransfer | |
| * quantity dimension: M^1*T^-3*Θ^-1 | |
| * measurement unit(s): W/(m^2*K), kg*s^-3*K^-1 | |
| * tensor order: 0 | |
| * definition: quotient of density of heat flow rate (item 5-8) and thermodynamic temperature (item 5-1) difference | |
| * remarks: In building technology, the coefficient of heat transfer is often called thermal transmittance, with the symbol U (no longer recommended). See remark to item 5-13. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: CoefficientOfHeatTransferUnit[1]; | |
| } | |
| attribute coefficientOfHeatTransfer: CoefficientOfHeatTransferValue[*] nonunique :> scalarQuantities; | |
| attribute def CoefficientOfHeatTransferUnit :> DerivedUnit { | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-10.2 surface coefficient of heat transfer */ | |
| attribute def SurfaceCoefficientOfHeatTransferValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-10.2 surface coefficient of heat transfer | |
| * symbol(s): `h`, `(α)` | |
| * application domain: generic | |
| * name: SurfaceCoefficientOfHeatTransfer | |
| * quantity dimension: M^1*T^-3*Θ^-1 | |
| * measurement unit(s): W/(m^2*K), kg*s^-3*K^-1 | |
| * tensor order: 0 | |
| * definition: quotient of density of heat flow rate and the difference of the temperature at the surface and a reference temperature: `h = q / (T_s - T_r)` where q is density of heat flow rate (item 5-8), `T_s` is the thermodynamic temperature (item 5-1) at the surface, and `T_r` is a reference thermodynamic temperature characterizing the adjacent surroundings | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: SurfaceCoefficientOfHeatTransferUnit[1]; | |
| } | |
| attribute surfaceCoefficientOfHeatTransfer: SurfaceCoefficientOfHeatTransferValue[*] nonunique :> scalarQuantities; | |
| attribute def SurfaceCoefficientOfHeatTransferUnit :> DerivedUnit { | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-11 thermal insulance, coefficient of thermal insulance */ | |
| attribute def ThermalInsulanceValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-11 thermal insulance, coefficient of thermal insulance | |
| * symbol(s): `M` | |
| * application domain: generic | |
| * name: ThermalInsulance | |
| * quantity dimension: M^-1*T^3*Θ^1 | |
| * measurement unit(s): m^2*K/W, kg^-1*s^3*K | |
| * tensor order: 0 | |
| * definition: inverse of coefficient of heat transfer `K`: `M = 1/K` where `K` is coefficient of heat transfer (item 5-10.1) | |
| * remarks: In building technology, this quantity is often called thermal resistance, with the symbol R. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: ThermalInsulanceUnit[1]; | |
| } | |
| attribute thermalInsulance: ThermalInsulanceValue[*] nonunique :> scalarQuantities; | |
| attribute def ThermalInsulanceUnit :> DerivedUnit { | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| alias CoefficientOfThermalInsulanceUnit for ThermalInsulanceUnit; | |
| alias CoefficientOfThermalInsulanceValue for ThermalInsulanceValue; | |
| alias coefficientOfThermalInsulance for thermalInsulance; | |
| /* ISO-80000-5 item 5-12 thermal resistance */ | |
| attribute def ThermalResistanceValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-12 thermal resistance | |
| * symbol(s): `R` | |
| * application domain: generic | |
| * name: ThermalResistance | |
| * quantity dimension: L^-2*M^-1*T^3*Θ^1 | |
| * measurement unit(s): K/W, kg^-1*m^-2*s^3*K | |
| * tensor order: 0 | |
| * definition: quotient of thermodynamic temperature (item 5-1) difference and heat flow rate (item 5-7) | |
| * remarks: See remark to item 5-11. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: ThermalResistanceUnit[1]; | |
| } | |
| attribute thermalResistance: ThermalResistanceValue[*] nonunique :> scalarQuantities; | |
| attribute def ThermalResistanceUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-13 thermal conductance */ | |
| attribute def ThermalConductanceValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-13 thermal conductance | |
| * symbol(s): `G`, `(H)` | |
| * application domain: generic | |
| * name: ThermalConductance | |
| * quantity dimension: L^2*M^1*T^-3*Θ^-1 | |
| * measurement unit(s): W/K, kg*m^2*s^-3*K^-1 | |
| * tensor order: 0 | |
| * definition: inverse of thermal resistance `R`: `G = 1/R` where `R` is thermal resistance (item 5-12) | |
| * remarks: See remark to item 5-11. This quantity is also called heat transfer coefficient. See item 5-10.1. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: ThermalConductanceUnit[1]; | |
| } | |
| attribute thermalConductance: ThermalConductanceValue[*] nonunique :> scalarQuantities; | |
| attribute def ThermalConductanceUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-14 thermal diffusivity */ | |
| attribute def ThermalDiffusivityValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-14 thermal diffusivity | |
| * symbol(s): `a` | |
| * application domain: generic | |
| * name: ThermalDiffusivity | |
| * quantity dimension: L^2*T^-1 | |
| * measurement unit(s): m^2*s^-1 | |
| * tensor order: 0 | |
| * definition: quotient of thermal conductivity and the product of mass density and specific heat capacity: `a = λ / (ρ C_p)` where `λ` is thermal conductivity (item 5-9), `ρ` is mass density (ISO 80000-4), and `c_p` is specific heat capacity at constant pressure (item 5-16.2) | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: ThermalDiffusivityUnit[1]; | |
| } | |
| attribute thermalDiffusivity: ThermalDiffusivityValue[*] nonunique :> scalarQuantities; | |
| attribute def ThermalDiffusivityUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } | |
| } | |
| /* ISO-80000-5 item 5-15 heat capacity */ | |
| attribute def HeatCapacityValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-15 heat capacity | |
| * symbol(s): `C` | |
| * application domain: generic | |
| * name: HeatCapacity | |
| * quantity dimension: L^2*M^1*T^-2*Θ^-1 | |
| * measurement unit(s): J/K, kg*m^2*s^-2*K^-1 | |
| * tensor order: 0 | |
| * definition: derivative of added heat with respect to thermodynamic temperature of a system: `C = (dQ)/(dT)` where `Q` is amount of heat (item 5-6.1) and `T` is thermodynamic temperature (item 5-1) | |
| * remarks: Heat capacity is not completely defined unless specified as seen in items 5-16.2, 5-16.3 and 5-16.4. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: HeatCapacityUnit[1]; | |
| } | |
| attribute heatCapacity: HeatCapacityValue[*] nonunique :> scalarQuantities; | |
| attribute def HeatCapacityUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-16.1 specific heat capacity */ | |
| attribute def SpecificHeatCapacityValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-16.1 specific heat capacity | |
| * symbol(s): `c` | |
| * application domain: generic | |
| * name: SpecificHeatCapacity | |
| * quantity dimension: L^2*T^-2*Θ^-1 | |
| * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 | |
| * tensor order: 0 | |
| * definition: quotient of heat capacity and mass: `c = C/m` where `C` is heat capacity (item 5-15) and `m` is mass (ISO 80000-4) | |
| * remarks: For the corresponding quantities related to the amount of substance, see ISO 80000-9. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: SpecificHeatCapacityUnit[1]; | |
| } | |
| attribute specificHeatCapacity: SpecificHeatCapacityValue[*] nonunique :> scalarQuantities; | |
| attribute def SpecificHeatCapacityUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-16.2 specific heat capacity at constant pressure */ | |
| attribute def SpecificHeatCapacityAtConstantPressureValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-16.2 specific heat capacity at constant pressure | |
| * symbol(s): `c_p` | |
| * application domain: generic | |
| * name: SpecificHeatCapacityAtConstantPressure | |
| * quantity dimension: L^2*T^-2*Θ^-1 | |
| * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 | |
| * tensor order: 0 | |
| * definition: specific heat capacity (item 5-16.1) at constant pressure (ISO 80000-4) | |
| * remarks: Also called specific isobaric heat capacity. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: SpecificHeatCapacityAtConstantPressureUnit[1]; | |
| } | |
| attribute specificHeatCapacityAtConstantPressure: SpecificHeatCapacityAtConstantPressureValue[*] nonunique :> scalarQuantities; | |
| attribute def SpecificHeatCapacityAtConstantPressureUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-16.3 specific heat capacity at constant volume */ | |
| attribute def SpecificHeatCapacityAtConstantVolumeValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-16.3 specific heat capacity at constant volume | |
| * symbol(s): `c_V` | |
| * application domain: generic | |
| * name: SpecificHeatCapacityAtConstantVolume | |
| * quantity dimension: L^2*T^-2*Θ^-1 | |
| * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 | |
| * tensor order: 0 | |
| * definition: specific heat capacity (item 5-16.1) at constant volume (ISO 80000-3) | |
| * remarks: Also called specific isochoric heat capacity. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: SpecificHeatCapacityAtConstantVolumeUnit[1]; | |
| } | |
| attribute specificHeatCapacityAtConstantVolume: SpecificHeatCapacityAtConstantVolumeValue[*] nonunique :> scalarQuantities; | |
| attribute def SpecificHeatCapacityAtConstantVolumeUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-16.4 specific heat capacity at saturated vapour pressure */ | |
| attribute def SpecificHeatCapacityAtSaturatedVapourPressureValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-16.4 specific heat capacity at saturated vapour pressure | |
| * symbol(s): `c_"sat"` | |
| * application domain: generic | |
| * name: SpecificHeatCapacityAtSaturatedVapourPressure | |
| * quantity dimension: L^2*T^-2*Θ^-1 | |
| * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 | |
| * tensor order: 0 | |
| * definition: specific heat capacity (item 5-16.1) at saturated vapour pressure (ISO 80000-4) | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: SpecificHeatCapacityAtSaturatedVapourPressureUnit[1]; | |
| } | |
| attribute specificHeatCapacityAtSaturatedVapourPressure: SpecificHeatCapacityAtSaturatedVapourPressureValue[*] nonunique :> scalarQuantities; | |
| attribute def SpecificHeatCapacityAtSaturatedVapourPressureUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-17.1 ratio of specific heat capacities */ | |
| attribute def RatioOfSpecificHeatCapacitiesValue :> DimensionOneValue { | |
| doc | |
| /* | |
| * source: item 5-17.1 ratio of specific heat capacities | |
| * symbol(s): `γ` | |
| * application domain: generic | |
| * name: RatioOfSpecificHeatCapacities (specializes DimensionOneQuantity) | |
| * quantity dimension: 1 | |
| * measurement unit(s): 1 | |
| * tensor order: 0 | |
| * definition: quotient of specific heat capacity at constant pressure and specific heat capacity at constant volume: `γ = c_p/c_V` where `c_p` is specific heat capacity at constant pressure (item 5-16.2) and `c_V` is specific heat capacity at constant volume (item 5-16.3) | |
| * remarks: This quantity can also be expressed by `γ = C_p/C_V` where `C_p` is heat capacity at constant pressure and `C_V` is heat capacity at constant volume. | |
| */ | |
| } | |
| attribute ratioOfSpecificHeatCapacities: RatioOfSpecificHeatCapacitiesValue :> scalarQuantities; | |
| /* ISO-80000-5 item 5-17.2 isentropic exponent, isentropic expansion factor */ | |
| attribute def IsentropicExponentValue :> DimensionOneValue { | |
| doc | |
| /* | |
| * source: item 5-17.2 isentropic exponent, isentropic expansion factor | |
| * symbol(s): `ϰ` | |
| * application domain: generic | |
| * name: IsentropicExponent (specializes DimensionOneQuantity) | |
| * quantity dimension: 1 | |
| * measurement unit(s): 1 | |
| * tensor order: 0 | |
| * definition: the negative of relative pressure change, divided by relative volume change, at constant entropy: `ϰ = -V/p * ((partial p)/(partial V))_S` where `V` is volume (ISO 80000-3), `p` is pressure (ISO 80000-4), and `S` is entropy (item 5-18) | |
| * remarks: For an ideal gas, `ϰ` is equal to `γ` (item 5-17.1). | |
| */ | |
| } | |
| attribute isentropicExponent: IsentropicExponentValue :> scalarQuantities; | |
| alias isentropicExpansionFactor for isentropicExponent; | |
| /* ISO-80000-5 item 5-18 entropy */ | |
| attribute def EntropyValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-18 entropy | |
| * symbol(s): `S` | |
| * application domain: generic | |
| * name: Entropy | |
| * quantity dimension: L^2*M^1*T^-2*Θ^-1 | |
| * measurement unit(s): J/K, kg*m^2*s^-2*K^-1 | |
| * tensor order: 0 | |
| * definition: natural logarithm of number of equally probable microscopic configurations in a macroscopic system, multiplied by the Boltzmann constant: `S = k lnW` where `W` is number of configurations and `k` is the Boltzmann constant (ISO 80000-1) | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: EntropyUnit[1]; | |
| } | |
| attribute entropy: EntropyValue[*] nonunique :> scalarQuantities; | |
| attribute def EntropyUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-19 specific entropy */ | |
| attribute def SpecificEntropyValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-19 specific entropy | |
| * symbol(s): `s` | |
| * application domain: generic | |
| * name: SpecificEntropy | |
| * quantity dimension: L^2*T^-2*Θ^-1 | |
| * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 | |
| * tensor order: 0 | |
| * definition: quotient of entropy and mass: `s = S/m` where `S` is entropy (item 5-18) and `m` is mass (ISO 80000-4) | |
| * remarks: For the corresponding quantity related to amount of substance, see ISO 80000-9. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: SpecificEntropyUnit[1]; | |
| } | |
| attribute specificEntropy: SpecificEntropyValue[*] nonunique :> scalarQuantities; | |
| attribute def SpecificEntropyUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-20.1 energy */ | |
| attribute def EnergyValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-20.1 energy | |
| * symbol(s): `E` | |
| * application domain: thermodynamics | |
| * name: Energy | |
| * quantity dimension: L^2*M^1*T^-2 | |
| * measurement unit(s): J, kg*m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: ability of a system to do work (ISO 80000-4) | |
| * remarks: Energy exists in different forms that are mutually transformable into each other, either totally or partially. In contrast to internal energy (item 5-20.2), energy is not a state function. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: EnergyUnit[1]; | |
| } | |
| attribute energy: EnergyValue[*] nonunique :> scalarQuantities; | |
| attribute def EnergyUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } | |
| } | |
| /* ISO-80000-5 item 5-20.2 internal energy, thermodynamic energy */ | |
| attribute internalEnergy: EnergyValue :> scalarQuantities { | |
| doc | |
| /* | |
| * source: item 5-20.2 internal energy, thermodynamic energy | |
| * symbol(s): `U` | |
| * application domain: generic | |
| * name: InternalEnergy (specializes Energy) | |
| * quantity dimension: L^2*M^1*T^-2 | |
| * measurement unit(s): J, kg*m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: energy of a system whose change is given by the amount of the heat (item 5-6.1) transferred to the system and the work (ISO 80000-4) done on the system, provided that the system is closed and no chemical reactions occur | |
| * remarks: In thermodynamic text books, usually the formula `ΔU = Q + W` is used. Note that the zero of the energy is undefined. | |
| */ | |
| } | |
| alias thermodynamicEnergy for internalEnergy; | |
| /* ISO-80000-5 item 5-20.3 enthalpy */ | |
| attribute enthalpy: EnergyValue :> scalarQuantities { | |
| doc | |
| /* | |
| * source: item 5-20.3 enthalpy | |
| * symbol(s): `H` | |
| * application domain: generic | |
| * name: Enthalpy (specializes Energy) | |
| * quantity dimension: L^2*M^1*T^-2 | |
| * measurement unit(s): J, kg*m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: sum of internal energy of the system and the product of pressure and volume of the system: `H = U + p*V` where U is internal energy (item 5-20.2), `p` is pressure (ISO 80000-4), and `V` is volume (ISO 80000-3) | |
| * remarks: None. | |
| */ | |
| } | |
| /* ISO-80000-5 item 5-20.4 Helmholtz energy, Helmholtz function */ | |
| attribute helmholtzEnergy: EnergyValue :> scalarQuantities { | |
| doc | |
| /* | |
| * source: item 5-20.4 Helmholtz energy, Helmholtz function | |
| * symbol(s): `A`, `F` | |
| * application domain: generic | |
| * name: HelmholtzEnergy (specializes Energy) | |
| * quantity dimension: L^2*M^1*T^-2 | |
| * measurement unit(s): J, kg*m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: difference of internal energy of the system and the product of thermodynamic temperature and entropy of the system: `A = U - TS` where `U` is internal energy (item 5-20.2), `T` is thermodynamic temperature (item 5-1), and `S` is entropy (item 5-18) | |
| * remarks: The name Helmholtz free energy is also used. However, this term is not recommended. | |
| */ | |
| } | |
| alias helmholtzFunction for helmholtzEnergy; | |
| /* ISO-80000-5 item 5-20.5 Gibbs energy, Gibbs function */ | |
| attribute gibbsEnergy: EnergyValue :> scalarQuantities { | |
| doc | |
| /* | |
| * source: item 5-20.5 Gibbs energy, Gibbs function | |
| * symbol(s): `G` | |
| * application domain: generic | |
| * name: GibbsEnergy (specializes Energy) | |
| * quantity dimension: L^2*M^1*T^-2 | |
| * measurement unit(s): J, kg*m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: difference of the enthalpy and the product of thermodynamic temperature and entropy of the system: `G = H - T*S` where H is enthalpy (item 5-20.3), `T` is thermodynamic temperature (item 5-1), and `S` is entropy (item 5-18) | |
| * remarks: The name Gibbs free energy is also used. However, this term is not recommended. | |
| */ | |
| } | |
| alias gibbsFunction for gibbsEnergy; | |
| /* ISO-80000-5 item 5-21.1 specific energy */ | |
| attribute def SpecificEnergyValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-21.1 specific energy | |
| * symbol(s): `e` | |
| * application domain: generic | |
| * name: SpecificEnergy | |
| * quantity dimension: L^2*T^-2 | |
| * measurement unit(s): J/kg, m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: quotient of energy and mass: `e = E/m` where `E` is energy (item 5-20.1) and `m` is mass (ISO 80000-4) | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: SpecificEnergyUnit[1]; | |
| } | |
| attribute specificEnergy: SpecificEnergyValue[*] nonunique :> scalarQuantities; | |
| attribute def SpecificEnergyUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } | |
| } | |
| /* ISO-80000-5 item 5-21.2 specific internal energy, specific thermodynamic energy */ | |
| attribute specificInternalEnergy: SpecificEnergyValue :> scalarQuantities { | |
| doc | |
| /* | |
| * source: item 5-21.2 specific internal energy, specific thermodynamic energy | |
| * symbol(s): `u` | |
| * application domain: generic | |
| * name: SpecificInternalEnergy (specializes SpecificEnergy) | |
| * quantity dimension: L^2*T^-2 | |
| * measurement unit(s): J/kg, m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: quotient of internal energy and mass: `u = U/m` where `U` is internal energy (item 5-20.2) and `m` is mass (ISO 80000-4) | |
| * remarks: None. | |
| */ | |
| } | |
| alias specificThermodynamicEnergy for specificInternalEnergy; | |
| /* ISO-80000-5 item 5-21.3 specific enthalpy */ | |
| attribute def SpecificEnthalpyValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-21.3 specific enthalpy | |
| * symbol(s): `h` | |
| * application domain: generic | |
| * name: SpecificEnthalpy | |
| * quantity dimension: L^2*T^-2 | |
| * measurement unit(s): J/kg, m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: quotient of enthalpy and mass: `h = H/m` where `H` is enthalpy (item 5-20.3) and `m` is mass (ISO 80000-4) | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: SpecificEnthalpyUnit[1]; | |
| } | |
| attribute specificEnthalpy: SpecificEnthalpyValue[*] nonunique :> scalarQuantities; | |
| attribute def SpecificEnthalpyUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } | |
| } | |
| /* ISO-80000-5 item 5-21.4 specific Helmholtz energy, specific Helmholtz function */ | |
| attribute specificHelmholtzEnergy: SpecificEnergyValue :> scalarQuantities { | |
| doc | |
| /* | |
| * source: item 5-21.4 specific Helmholtz energy, specific Helmholtz function | |
| * symbol(s): `a`, `f` | |
| * application domain: generic | |
| * name: SpecificHelmholtzEnergy (specializes SpecificEnergy) | |
| * quantity dimension: L^2*T^-2 | |
| * measurement unit(s): J/kg, m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: quotient of Helmholtz energy and mass: `a = A/m` where A is Helmholtz energy (item 5-20.4) and m is mass (ISO 80000-4) | |
| * remarks: The name specific Helmholtz free energy is also used. However, this term is not recommended. | |
| */ | |
| } | |
| alias specificHelmholtzFunction for specificHelmholtzEnergy; | |
| /* ISO-80000-5 item 5-21.5 specific Gibbs energy, specific Gibbs function */ | |
| attribute specificGibbsEnergy: SpecificEnergyValue :> scalarQuantities { | |
| doc | |
| /* | |
| * source: item 5-21.5 specific Gibbs energy, specific Gibbs function | |
| * symbol(s): `g` | |
| * application domain: generic | |
| * name: SpecificGibbsEnergy (specializes SpecificEnergy) | |
| * quantity dimension: L^2*T^-2 | |
| * measurement unit(s): J/kg, m^2*s^-2 | |
| * tensor order: 0 | |
| * definition: quotient of Gibbs energy and mass: `g = G/m` where `G` is Gibbs energy (item 5-20.5) and `m` is mass (ISO 80000-4) | |
| * remarks: The name specific Gibbs free energy is also used. However, this term is not recommended. | |
| */ | |
| } | |
| alias specificGibbsFunction for specificGibbsEnergy; | |
| /* ISO-80000-5 item 5-22 Massieu function */ | |
| attribute def MassieuFunctionValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-22 Massieu function | |
| * symbol(s): `J` | |
| * application domain: generic | |
| * name: MassieuFunction | |
| * quantity dimension: L^2*M^1*T^-2*Θ^-1 | |
| * measurement unit(s): J/K, kg*m^2*s^-2*K^-1 | |
| * tensor order: 0 | |
| * definition: quotient of the negative of Helmholtz energy and temperature: `J = -A/T` where `A` is Helmholtz energy (item 5-20.4) and `T` is thermodynamic temperature (item 5-1) | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: MassieuFunctionUnit[1]; | |
| } | |
| attribute massieuFunction: MassieuFunctionValue[*] nonunique :> scalarQuantities; | |
| attribute def MassieuFunctionUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-23 Planck function */ | |
| attribute def PlanckFunctionValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-23 Planck function | |
| * symbol(s): `Y` | |
| * application domain: generic | |
| * name: PlanckFunction | |
| * quantity dimension: L^2*M^1*T^-2*Θ^-1 | |
| * measurement unit(s): J/K, kg*m^2*s^-2*K^-1 | |
| * tensor order: 0 | |
| * definition: quotient of the negative of Gibbs energy and temperature: `Y = -G/T` where G is Gibbs energy (item 5-20.5) and `T` is thermodynamic temperature (item 5-1) | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: PlanckFunctionUnit[1]; | |
| } | |
| attribute planckFunction: PlanckFunctionValue[*] nonunique :> scalarQuantities; | |
| attribute def PlanckFunctionUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-24 Joule-Thomson coefficient */ | |
| attribute def JouleThomsonCoefficientValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-24 Joule-Thomson coefficient | |
| * symbol(s): `μ_"JT"` | |
| * application domain: generic | |
| * name: JouleThomsonCoefficient | |
| * quantity dimension: L^1*M^-1*T^2*Θ^1 | |
| * measurement unit(s): K/Pa, kg^-1*m*s^2*K | |
| * tensor order: 0 | |
| * definition: change of thermodynamic temperature with respect to pressure in a Joule-Thomson process at constant enthalpy: `μ_(JT) = ((partial T)/(partial p))_H` where `T` is thermodynamic temperature (item 5-1), `p` is pressure (ISO 80000-4) and H is enthalpy (item 5-20.3) | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: JouleThomsonCoefficientUnit[1]; | |
| } | |
| attribute jouleThomsonCoefficient: JouleThomsonCoefficientValue[*] nonunique :> scalarQuantities; | |
| attribute def JouleThomsonCoefficientUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = 1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-25.1 thermal efficiency */ | |
| attribute def ThermalEfficiencyValue :> DimensionOneValue { | |
| doc | |
| /* | |
| * source: item 5-25.1 thermal efficiency | |
| * symbol(s): `η` | |
| * application domain: thermodynamics | |
| * name: ThermalEfficiency (specializes DimensionOneQuantity) | |
| * quantity dimension: 1 | |
| * measurement unit(s): 1 | |
| * tensor order: 0 | |
| * definition: quotient of work (ISO 80000-4) delivered by a heat engine and supplied heat: `η = W/Q` where `W` is work (ISO 80000-4) and `Q` is heat (item 5-6.1) | |
| * remarks: None. | |
| */ | |
| } | |
| attribute thermalEfficiency: ThermalEfficiencyValue :> scalarQuantities; | |
| /* ISO-80000-5 item 5-25.2 maximum thermal efficiency */ | |
| attribute def MaximumThermalEfficiencyValue :> DimensionOneValue { | |
| doc | |
| /* | |
| * source: item 5-25.2 maximum thermal efficiency | |
| * symbol(s): `η_"max"` | |
| * application domain: generic | |
| * name: MaximumThermalEfficiency (specializes DimensionOneQuantity) | |
| * quantity dimension: 1 | |
| * measurement unit(s): 1 | |
| * tensor order: 0 | |
| * definition: efficiency determined by the quotient of the temperatures of the hot source and the cold sink: `η_max = 1 - T_c/T_h` where `T_c` is the thermodynamic temperature (item 5-1) of the cold sink and `T_h` is the thermodynamic temperature (item 5-1) of the hot source | |
| * remarks: An ideal heat engine operating according to the Carnot process is delivering the maximum efficiency. | |
| */ | |
| } | |
| attribute maximumThermalEfficiency: MaximumThermalEfficiencyValue :> scalarQuantities; | |
| /* ISO-80000-5 item 5-26 specific gas constant */ | |
| attribute def SpecificGasConstantValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-26 specific gas constant | |
| * symbol(s): `R_s` | |
| * application domain: generic | |
| * name: SpecificGasConstant | |
| * quantity dimension: L^2*T^-2*Θ^-1 | |
| * measurement unit(s): J/(kg*K), m^2*s^-2*K^-1 | |
| * tensor order: 0 | |
| * definition: quotient of the Boltzmann constant `k` (ISO 80000-1) and the mass `m` (ISO 80000-4) of the gas particle | |
| * remarks: None. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: SpecificGasConstantUnit[1]; | |
| } | |
| attribute specificGasConstant: SpecificGasConstantValue[*] nonunique :> scalarQuantities; | |
| attribute def SpecificGasConstantUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
| private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
| private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, thermodynamicTemperaturePF); } | |
| } | |
| /* ISO-80000-5 item 5-27 mass concentration of water */ | |
| attribute def MassConcentrationOfWaterValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-27 mass concentration of water | |
| * symbol(s): `w` | |
| * application domain: generic | |
| * name: MassConcentrationOfWater | |
| * quantity dimension: L^-3*M^1 | |
| * measurement unit(s): kg*m^-3 | |
| * tensor order: 0 | |
| * definition: quotient of mass of water and a specified volume: `w = m/V` where `m` is mass (ISO 80000-4) of water, irrespective of the form of aggregation state, and `V` is volume (ISO 80000-3) | |
| * remarks: Mass concentration of water at saturation is denoted `w_"sat"`. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: MassConcentrationOfWaterUnit[1]; | |
| } | |
| attribute massConcentrationOfWater: MassConcentrationOfWaterValue[*] nonunique :> scalarQuantities; | |
| attribute def MassConcentrationOfWaterUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); } | |
| } | |
| /* ISO-80000-5 item 5-28 mass concentration of water vapour absolute humidity */ | |
| attribute def MassConcentrationOfWaterVapourAbsoluteHumidityValue :> ScalarQuantityValue { | |
| doc | |
| /* | |
| * source: item 5-28 mass concentration of water vapour absolute humidity | |
| * symbol(s): `v` | |
| * application domain: generic | |
| * name: MassConcentrationOfWaterVapourAbsoluteHumidity | |
| * quantity dimension: L^-3*M^1 | |
| * measurement unit(s): kg*m^-3 | |
| * tensor order: 0 | |
| * definition: quotient of mass of water vapour and a specified volume: `v = m/V` where m is mass (ISO 80000-4) of water vapour and `V` is volume (ISO 80000-3) | |
| * remarks: Mass concentration of water vapour at saturation is denoted `v_"sat"`. | |
| */ | |
| attribute :>> num: Real; | |
| attribute :>> mRef: MassConcentrationOfWaterVapourAbsoluteHumidityUnit[1]; | |
| } | |
| attribute massConcentrationOfWaterVapourAbsoluteHumidity: MassConcentrationOfWaterVapourAbsoluteHumidityValue[*] nonunique :> scalarQuantities; | |
| attribute def MassConcentrationOfWaterVapourAbsoluteHumidityUnit :> DerivedUnit { | |
| private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } | |
| private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } | |
| attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); } | |
| } | |
| /* ISO-80000-5 item 5-29 mass ratio of water to dry matter */ | |
| attribute def MassRatioOfWaterToDryMatterValue :> DimensionOneValue { | |
| doc | |
| /* | |
| * source: item 5-29 mass ratio of water to dry matter | |
| * symbol(s): `u` | |
| * application domain: generic | |
| * name: MassRatioOfWaterToDryMatter (specializes DimensionOneQuantity) | |
| * quantity dimension: 1 | |
| * measurement unit(s): 1 | |
| * tensor order: 0 | |
| * definition: quotient of mass of water and mass of dry matter: `u = m/m_d` where `m` is mass (ISO 80000-4) of water and `m_d` is mass of dry matter | |
| * remarks: Mass ratio of water to dry matter at saturation is denoted `u_"sat"`. | |
| */ | |
| } | |
| attribute massRatioOfWaterToDryMatter: MassRatioOfWaterToDryMatterValue :> scalarQuantities; | |
| /* ISO-80000-5 item 5-30 mass ratio of water vapour to dry gas */ | |
| attribute def MassRatioOfWaterVapourToDryGasValue :> DimensionOneValue { | |
| doc | |
| /* | |
| * source: item 5-30 mass ratio of water vapour to dry gas | |
| * symbol(s): `r`, `(x)` | |
| * application domain: generic | |
| * name: MassRatioOfWaterVapourToDryGas (specializes DimensionOneQuantity) | |
| * quantity dimension: 1 | |
| * measurement unit(s): 1 | |
| * tensor order: 0 | |
| * definition: quotient of mass of water vapour and mass of dry gas: `r = m/m_d` where `m` is mass (ISO 80000-4) of water vapour and `m_d` is mass of dry gas | |
| * remarks: Mass ratio of water vapour to dry gas at saturation is denoted `r_"sat"`. Mass ratio of water vapour to dry gas is also called mixing ratio. | |
| */ | |
| } | |
| attribute massRatioOfWaterVapourToDryGas: MassRatioOfWaterVapourToDryGasValue :> scalarQuantities; | |
| /* ISO-80000-5 item 5-31 mass fraction of water */ | |
| attribute def MassFractionOfWaterValue :> DimensionOneValue { | |
| doc | |
| /* | |
| * source: item 5-31 mass fraction of water | |
| * symbol(s): `w_(H_(2)O)` | |
| * application domain: generic | |
| * name: MassFractionOfWater (specializes DimensionOneQuantity) | |
| * quantity dimension: 1 | |
| * measurement unit(s): 1 | |
| * tensor order: 0 | |
| * definition: quantity given by: `w_(H_(2)O) = u/(1+u)` where `u` is mass ratio of water to dry matter (item 5-29) | |
| * remarks: None. | |
| */ | |
| } | |
| attribute massFractionOfWater: MassFractionOfWaterValue :> scalarQuantities; | |
| /* ISO-80000-5 item 5-32 mass fraction of dry matter */ | |
| attribute def MassFractionOfDryMatterValue :> DimensionOneValue { | |
| doc | |
| /* | |
| * source: item 5-32 mass fraction of dry matter | |
| * symbol(s): `w_d` | |
| * application domain: generic | |
| * name: MassFractionOfDryMatter (specializes DimensionOneQuantity) | |
| * quantity dimension: 1 | |
| * measurement unit(s): 1 | |
| * tensor order: 0 | |
| * definition: quantity given by: `w_d = 1 - w_(H_(2)O)` where `w_(H_(2)O)` is mass fraction of water (item 5-31) | |
| * remarks: None. | |
| */ | |
| } | |
| attribute massFractionOfDryMatter: MassFractionOfDryMatterValue :> scalarQuantities; | |
| /* ISO-80000-5 item 5-33 relative humidity */ | |
| attribute def RelativeHumidityValue :> DimensionOneValue { | |
| doc | |
| /* | |
| * source: item 5-33 relative humidity | |
| * symbol(s): `φ` | |
| * application domain: generic | |
| * name: RelativeHumidity (specializes DimensionOneQuantity) | |
| * quantity dimension: 1 | |
| * measurement unit(s): 1 | |
| * tensor order: 0 | |
| * definition: quotient of partial pressure of water vapour and partial pressure at its saturation: `φ = p/p_"sat"` where `p` is partial pressure (ISO 80000-4) of vapour and `p_"sat"` is its partial pressure at saturation at the same temperature | |
| * remarks: Relative humidity is often referred to as RH and expressed in percent. See also remark in item 5-35. | |
| */ | |
| } | |
| attribute relativeHumidity: RelativeHumidityValue :> scalarQuantities; | |
| /* ISO-80000-5 item 5-34 relative mass concentration of vapour */ | |
| attribute def RelativeMassConcentrationOfVapourValue :> DimensionOneValue { | |
| doc | |
| /* | |
| * source: item 5-34 relative mass concentration of vapour | |
| * symbol(s): `φ` | |
| * application domain: generic | |
| * name: RelativeMassConcentrationOfVapour (specializes DimensionOneQuantity) | |
| * quantity dimension: 1 | |
| * measurement unit(s): 1 | |
| * tensor order: 0 | |
| * definition: quotient of mass concentration of water vapour and mass concentration at its saturation: `φ = v/v_"sat"` where `v` is mass concentration of water vapour (item 5-28) and `v_"sat"` is its mass concentration of water vapour at saturation of the same temperature | |
| * remarks: For water vapour concentrations up to 1 kg/m^3, the relative humidity (item 5-33) is assumed to be equal to relative mass concentration of vapour. For details see Reference [8]. | |
| */ | |
| } | |
| attribute relativeMassConcentrationOfVapour: RelativeMassConcentrationOfVapourValue :> scalarQuantities; | |
| /* ISO-80000-5 item 5-35 relative mass ratio of vapour */ | |
| attribute def RelativeMassRatioOfVapourValue :> DimensionOneValue { | |
| doc | |
| /* | |
| * source: item 5-35 relative mass ratio of vapour | |
| * symbol(s): `ψ` | |
| * application domain: generic | |
| * name: RelativeMassRatioOfVapour (specializes DimensionOneQuantity) | |
| * quantity dimension: 1 | |
| * measurement unit(s): 1 | |
| * tensor order: 0 | |
| * definition: quotient of mass ratio of water vapour to dry gas and mass ratio of water vapour to dry gas at saturation: `ψ = r/r_"sat"` where `r` is mass ratio of water vapour to dry gas (item 5-30) and `r_"sat"` is its mass ratio of water vapour to dry gas at saturation of the same temperature | |
| * remarks: This quantity is also used as an approximation of relative humidity (item 5-33). | |
| */ | |
| } | |
| attribute relativeMassRatioOfVapour: RelativeMassRatioOfVapourValue :> scalarQuantities; | |
| /* ISO-80000-5 item 5-36 dew-point temperature */ | |
| attribute dewPointTemperature: ThermodynamicTemperatureValue :> scalarQuantities { | |
| doc | |
| /* | |
| * source: item 5-36 dew-point temperature | |
| * symbol(s): `T_d` | |
| * application domain: generic | |
| * name: DewPointTemperature (specializes ThermodynamicTemperature) | |
| * quantity dimension: Θ^1 | |
| * measurement unit(s): K | |
| * tensor order: 0 | |
| * definition: temperature at which water vapour in the air reaches saturation under isobaric conditions | |
| * remarks: The corresponding Celsius temperature, denoted `t_d`, is still called dew-point temperature. The unit for the corresponding Celsius temperature is degree Celsius, symbol °C. | |
| */ | |
| } | |
| } | |