File size: 120,642 Bytes
19e67d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
## **Behavior Alignment via** **Reward Function Optimization**

**Dhawal Gupta** _[∗]_ **Yash Chandak** _[∗†]_ **Scott M. Jordan** _[†]_
University of Massachusetts Stanford University University of Alberta


**Philip S. Thomas** **Bruno Castro da Silva**
University of Massachusetts University of Massachusetts


**Abstract**


Designing reward functions for efficiently guiding reinforcement learning (RL)
agents toward specific behaviors is a complex task. This is challenging since it
requires the identification of reward structures that are not sparse and that avoid inadvertently inducing undesirable behaviors. Naively modifying the reward structure
to offer denser and more frequent feedback can lead to unintended outcomes and
promote behaviors that are not aligned with the designer’s intended goal. Although
potential-based reward shaping is often suggested as a remedy, we systematically
investigate settings where deploying it often significantly impairs performance.
To address these issues, we introduce a new framework that uses a bi-level objective to learn _behavior alignment reward functions_ . These functions integrate
auxiliary rewards reflecting a designer’s heuristics and domain knowledge with
the environment’s primary rewards. Our approach automatically determines the
most effective way to blend these types of feedback, thereby enhancing robustness
against heuristic reward misspecification. Remarkably, it can also adapt an agent’s
policy optimization process to mitigate suboptimalities resulting from limitations
and biases inherent in the underlying RL algorithms. We evaluate our method’s
efficacy on a diverse set of tasks, from small-scale experiments to high-dimensional
control challenges. We investigate heuristic auxiliary rewards of varying quality—
some of which are beneficial and others detrimental to the learning process. Our
results show that our framework offers a robust and principled way to integrate
designer-specified heuristics. It not only addresses key shortcomings of existing
approaches but also consistently leads to high-performing solutions, even when
given misaligned or poorly-specified auxiliary reward functions.


**1** **Introduction**


In this paper, we investigate the challenge of enabling reinforcement learning (RL) practitioners, who
may not be experts in the field, to incorporate domain knowledge through heuristic auxiliary reward
functions. Our goal is to ensure that such auxiliary rewards not only induce behaviors that align with
the designer’s intentions but also allow for faster learning. RL practitioners typically model a given
control problem by first designing simple reward functions that directly quantify whether (or how
well) an agent completed a task. These could be, for instance, functions assigning a reward of +1 iff
the agent reaches a specified goal state, and zero otherwise. However, optimizing a policy based on
such a sparse reward function often proves challenging.


_∗_ Both authors contributed equally to this work. _†_ Work done while at the University of Massachusetts.
Corresponding author: Dhawal Gupta (dgupta@cs.umass.edu).


37th Conference on Neural Information Processing Systems (NeurIPS 2023).


Figure 1: Auxiliary rewards can be used to convey to the agent how we (designers) _think_ it should
solve the problem. However, if not carefully designed, they can lead to policies that result in undesired
behaviors. This figure provides a visual illustration of a toy example depicting how the proposed
method works. The star represents the optimal policy, and the red dot represents the fixed point of a
policy optimization process under a “sub-optimal” heuristic; i.e., one that, when naively combined
with _rp_, induces behaviors different from those under the optimal policy for _rp_ . **(Left)** Vector field of
a policy optimization process converging to a sub-optimal policy. **(Middle and Right)** By changing
the influence of auxiliary rewards, our method can dynamically _correct_ the _entire policy optimization_
_process_ steering it towards a policy that results in the desired behavior.


To address this issue, designers often introduce auxiliary reward functions that supplement the original
rewards. Auxiliary rewards are heuristic guidelines aimed at facilitating and speeding up the learning
process. One could, e.g., augment the previously described reward function (which gives a reward of
+1 upon reaching a goal state) with an auxiliary reward accounting for the agent’s distance to the
goal. However, the effectiveness of using auxiliary reward functions largely depends on the problem’s
complexity and the designer’s skill in crafting heuristics that, when combined with the original reward
function, do not induce behaviors different than the ones originally intended [26, 27].


Existing methods like potential-based reward shaping [41] aim to incorporate domain knowledge
without misaligning the behaviors induced by the resulting combined reward functions. However,
as we discuss in Section 3, potential-based shaping has several limitations: _(i)_ it is restricted to
state-based functions; _(ii)_ it amounts to a different initialization of the _q_ -function; _(iii)_ it does not
alter policy gradients in expectation; and _(iv)_ it can increase the variance in policy gradient methods.


To address these challenges, we introduce a scalable algorithm that empowers RL practitioners to
specify potentially imperfect auxiliary reward functions. It ensures that the resulting optimization
process will not inadvertently lead to unintended behaviors and that it will allow for faster learning.
In particular, this paper addresses the following challenges:


**(1) How to incorporate auxiliary reward information:** We introduce a novel bi-level objective
to analyze and automatically fine-tune designer-created auxiliary reward functions. It ensures they
remain aligned with the original reward and do not induce behaviors different from those originally
intended by the designer. Additionally, we formulate the problem to shape the optimization landscape,
biasing our bi-level optimizer toward auxiliary reward functions that facilitate faster learning.


**(2) How to use auxiliary reward to mitigate algorithmic biases:** We show that our framework can
automatically adjust how primary and auxiliary rewards are blended to mitigate limitations or biases
inherent in the underlying RL algorithm (Section 4.1). For instance, many policy-gradient-based RL
algorithms are subject to biases due to issues like discounting mismatch [59] or partial off-policy
correction [51]. These biases can hinder the algorithm’s ability to identify near-optimal policies.


**(3) How to ensure scalability to high-dimensional problems:** We introduce an algorithm that
employs _implicit gradients_ to automatically adjust primary and auxiliary rewards, ensuring that
the combined reward function aligns with the designer’s original expectations (see Figure 1). We
evaluate our method’s efficacy across a range of tasks, from small-scale to high-dimensional control
settings (see Section 6). In these tasks, we experiment with auxiliary rewards of varying quality;
some accelerate learning, while others can be detrimental to finding an optimal policy.


**2** **Notation**


In this paper, we investigate sequential decision-making problems modeled as Markov decision
processes (MDPs). An MDP is defined as a tuple ( _S, A, p, rp, r_ aux _, γ, d_ 0), where _S_ is the state set,
_A_ is the action set, _p_ is the transition function, _rp_ : _S × A →_ R is the _primary_ reward function, _r_ aux :


2


_S × A →_ R is an _optional_ auxiliary reward function (possibly designed by a non-expert in machine
learning, based on domain knowledge), and _d_ 0 is the starting state distribution. Let _πθ_ : _S×A →_ [0 _,_ 1]
be any policy parameterized using _θ ∈_ Θ. For brevity, we will often use _πθ_ and _θ_ interchangeably. Let
_St_ and _At_ be the random variables for the state and action observed at the time _t_ . As in the standard
RL setting, the performance _J_ ( _θ_ ) of a policy _πθ_ is defined as the expected discounted return with
respect to the (primary) reward function, _rp_ ; i.e., _J_ ( _θ_ ) := E _π_ [ [�] _[T]_ _t_ =0 _[γ][t][r][p]_ [(] _[S][t][, A][t]_ [)]][, where] _[ T]_ [ + 1][ is]
the episode length. An optimal policy parameter _θ_ _[∗]_ is defined as _θ_ _[∗]_ _∈_ arg max _θ∈_ Θ _J_ ( _θ_ ). A popular
technique to search for _θ_ _[∗]_ is based on constructing sample estimates ∆( [ˆ] _θ, rp_ ) of the ( _γ_ -dropped)
policy gradient, ∆( _θ, rp_ ), given an agent’s interactions with the environment for one episode [58, 59].
Then, using _ψθ_ ( _s, a_ ) as a shorthand for d ln _πθ_ ( _s, a_ ) _/_ d _θ_, these quantities are defined as follows:



_T_

- _γ_ _[j][][t]_ _rp_ ( _Sj, Aj_ ) _._ (1)


_j_ = _t_




       -        ∆( _θ, rp_ ) = E _πθ_ ˆ∆( _θ, rp_ ) and ˆ∆( _θ, rp_ ) :=



_T_

- _ψθ_ ( _St, At_ )


_t_ =0



**3** **Limitations of Potential Based Reward Shaping**


When the objective function _J_ ( _θ_ ) is defined with respect to a _sparse_ reward function _rp_ (i.e., a reward
function such that _rp_ ( _s, a_ ):= 0 for most _s ∈S_ and _a ∈A_ ), searching for _θ_ _[∗]_ is challenging [24]. A
natural way to provide more frequent (i.e., denser) feedback to the agent, in the hope of facilitating
learning, is to consider an alternate reward function, ˜ _r_ naive := _rp_ + _r_ aux. However, as discussed earlier,
_r_ aux may be a designer-specified auxiliary reward function not perfectly aligned with the objective
encoded in _rp_ . In this case, using ˜ _r_ naive may encourage undesired behavior. An alternative way to
incorporate domain knowledge to facilitate learning was introduced by Ng et al. [41]. They proposed
using a _potential function_, Φ : _S →_ R (analogous to _r_ aux), to define new reward functions of the form
_r_ ˜Φ( _St, At, St_ +1):= _rp_ ( _St, At_ )+ _γ_ Φ( _St_ +1) _−_ Φ( _St_ ). Importantly, they showed that optimal policies
with respect to the objective E[ [�] _[T]_ _t_ =0 _[γ][t][r]_ [˜][Φ][(] _[S][t][, A][t][, S][t]_ [+1][)]][ are also optimal with respect to] _[ J]_ [(] _[θ]_ [)][.]


While potential-based reward shaping can partially alleviate some of the difficulties arising from
sparse rewards, Wiewiora [64] showed that _q_ -learning using ˜ _r_ Φ produces the _exact same sequence_
_of updates_ as _q_ -learning using _rp_ but with a different initialization of _q_ -values. In what follows, we
establish a similar result: we show that performing potential-based reward shaping has _no impact on_
_expected policy gradient_ updates; and that it can, in fact, even increase the variance of the updates.


**Property 1.** E[ ∆( [ˆ] _θ,_ ˜ _r_ Φ)]= E[ ∆( [ˆ] _θ, rp_ )] _and_ Var( ∆( [ˆ] _θ,_ ˜ _r_ Φ)) _can be higher than_ Var( ∆( [ˆ] _θ, rp_ )) _._


All proofs are deferred to Appendix A. The above points highlight some of the limitations of potentialbased shaping for policy gradients and _q_ -learning—both of which form the backbone of the majority
of model-free RL algorithms [58]. Furthermore, potential functions Φ _cannot_ depend on actions [41],
which restricts the class of eligible auxiliary rewards _r_ aux and heuristics functions that may be used.
Finally, notice that Φ is designed independently of the agent’s underlying learning algorithm. As we
will show in the next sections, our method can autonomously discover auxiliary reward functions that
not only facilitate learning but also help mitigate various types of algorithmic limitations and biases.


**4** **Behavior Alignment Reward Function**


In this section, we introduce an objective function designed to tackle the primary challenge investigated in this paper: how to effectively leverage designer-specified auxiliary reward functions to
rapidly induce behaviors envisioned by the designer. The key observation is that naively adding
an auxiliary reward function _r_ aux to _rp_ may produce policies whose corresponding behaviors are
misaligned with respect to the behaviors induced by _rp_ . In these cases, _r_ aux should be ignored during
the search for an optimal policy. On the other hand, if _rp_ and _r_ aux may be combined in a way that
results in the desired behaviors, then combinations that produce frequent and informative feedback to
the agent should be favored, as they are likely to facilitate faster learning.


To tackle the challenges discussed above, we employ a bi-level optimization procedure. This approach
aims to create a _behavior alignment reward_ by combining _r_ aux and _rp_ using a parameterized function.
Our method is inspired by the optimal rewards framework by Singh et al. [52, 53]. Let _γφ ∈_ [0 _,_ 1) be


3


a _discount rate value_ parameterized by _φ ∈_ Γ. [2] Let _rϕ_ : _S ×A →_ R be a _behavior alignment reward_ :
a function of both _rp_ and _r_ aux, parameterized by _ϕ ∈_ Υ, where Υ and Γ are function classes. One
example of a behavior alignment reward function is _rϕ_ ( _s, a_ ):= _fϕ_ 1( _s, a_ )+ _ϕ_ 2 _rp_ ( _s, a_ )+ _ϕ_ 3 _r_ aux( _s, a_ ),
where _fϕ_ : _S × A →_ R and _ϕ_ :=( _ϕ_ 1 _, ϕ_ 2 _, ϕ_ 3). Let Alg be any gradient/semi-gradient/non-gradientbased algorithm that outputs policy parameters. To mitigate possible divergence issues arising
from certain policy optimization algorithms like DQN [60, 1], we make the following simplifying
assumption, which can generally be met with appropriate regularizers and step sizes:

**Assumption 1.** _Given rϕ and γφ, the algorithm Alg_ ( _rϕ, γφ_ ) _converges to a fixed point θ— which we_
_denote as θ_ ( _ϕ, φ_ ) _∈_ Θ _to emphasize its indirect dependence on ϕ and φ through Alg, rϕ, and γφ._


Given this assumption, we now specify the following bi-level objective:



_ϕ_ _[∗]_ _, φ_ _[∗]_ _∈_ arg max
_ϕ∈_ Υ _,φ∈_ Γ



_J_ ( _θ_ ( _ϕ, φ_ )) _−_ _λγγφ,_ where _θ_ ( _ϕ, φ_ ) := Alg( _rϕ, γφ_ ) _._ (2)



Here, _λγ_ serves as the regularization coefficient for the value of _γφ_, and Alg denotes a given policy
optimization algorithm. Let, as an example, Alg be an on-policy gradient algorithm that uses samples
to estimate the gradient ∆( _θ, rp_ ), as in (1). We can then define a corresponding variant of ∆( _θ, rp_ )
that is compatible with our formulation and objective, and which uses both _rϕ_ and _γφ_, as follows:











 _._ (3)



∆on( _θ, ϕ, φ_ ) := E _πθ_



_T__ψθ_ ( _St, At_ )

_t_ =0



_T_





- _γφ_ _[j][][t]_ _rϕ_ ( _Sj, Aj_ )


_j_ = _t_



Notice that the bi-level formulation in (2) is composed of three key components: outer and inner
objectives, and an outer regularization term. In what follows, we discuss the need for these.


**Need for Outer- and Inner-Level Objectives:** The **outer-level objective** in Equation (2) serves
a critical role: it evaluates different parameterizations, denoted by _ϕ_, for the behavior alignment
reward function. These parameterizations influence the induced policy _θ_ ( _ϕ, φ_ ), which is evaluated
using the performance metric _J_ . Recall that this metric quantifies the alignment of a policy with
the designer’s primary reward function, _rp_ . In essence, the outer-level objective seeks to optimize
the behavior alignment reward function to produce policies that are effective according to _rp_ . This
design adds robustness against any misspecification of the auxiliary rewards. [3] In the inner-level
optimization, by contrast, Alg identifies a policy _θ_ ( _ϕ, φ_ ) that is optimal or near-optimal with respect
to _rϕ_ (which combines _r_ aux through the behavior alignment reward). In the **inner-level optimization**,
the algorithm Alg works to identify a policy _θ_ ( _ϕ, φ_ ) that is optimal or near-optimal in terms of _rϕ_
(which incorporates _r_ aux via the behavior alignment reward). By employing a bi-level optimization
structure, several benefits emerge. When _r_ aux is well-crafted, _rϕ_ can exploit its detailed information to
give Alg frequent/dense reward feedback, thus aiding the search for an optimal _θ_ _[∗]_ . Conversely, if _r_ aux
leads to sub-optimal policies, then the influence of auxiliary rewards can be modulated or decreased
accordingly by the optimization process by adjusting _rϕ_ . Consider, for example, a case where the
behavior alignment reward function is defined as _rϕ_ ( _s, a_ ) := _fϕ_ 1( _s, a_ ) + _ϕ_ 2 _rp_ ( _s, a_ ) + _ϕ_ 3 _r_ aux( _s, a_ ).
In an adversarial setting—where the designer-specified auxiliary reward _r_ aux may lead to undesired
behavior—the bi-level optimization process has the ability to set _ϕ_ 3 to 0. This effectively allows
the behavior alignment reward function _rϕ_ to exclude _r_ aux from consideration. Such a bi-level
approach to optimizing the parameters of behavior alignment reward functions can act as a safeguard
against the emergence of sub-optimal behaviors due to a misaligned auxiliary reward, _r_ aux. This
design is particularly valuable because it allows the objective in (2) to leverage the potentially dense
reward structure of _r_ aux to provide frequent action evaluations when the auxiliary reward function is
well-specified. At the same time, the approach maintains robustness against possible misalignments.


**Need for Outer Regularization:** The bi-level optimization problem (2) may have multiple optimal
solutions for _ϕ_ —including the trivial solution where _r_ aux is always ignored. The goal of regularizing
the outer-level objective (in the form of the term _λγγφ_ ) is to incorporate a prior that adds a preference
for solutions, _ϕ_ _[∗]_, that provide useful and frequent evaluative feedback to the underlying RL algorithm.
In the next paragraphs, we discuss the need for such a regularizer and motivate its mathematical form.
First, recall that _sparse_ rewards can pose challenges for policy optimization. An intuitive solution


2Our framework can be generalized to support state-action dependent discount rates, _γ_ .
3“Misspecification” indicates that an optimal policy for _rp_ + _r_ aux may not be optimal for _rp_ alone.


4


to this problem could involve biasing the optimization process towards _denser_ behavior alignment
reward functions, e.g., by penalizing for sparsity of _rϕ_ . Unfortunately, the distinction between sparse
and dense rewards alone may not fully capture the nuances of what designers typically consider to be
a “good” reward function. This is the case because _a reward function can be dense and still may not_
_be informative_ ; e.g., a reward function that provides _−_ 1 to the agent in every non-goal state is dense
but fails to provide useful feedback regarding how to reach a goal state. A better characterization
of how useful (or informative) a reward function is may be constructed in terms of how _instructive_
and _instantaneous_ the evaluation or feedback it generates is. We consider a reward function to be
_instructive_ if it produces rewards that are well-aligned with the designer’s goals. A reward function
is _instantaneous_ if its corresponding rewards are dense, rather than sparse, and are more readily
indicative of the optimal action at any given state. [4] Reward functions that are both instructive and
instantaneous can alleviate issues associated with settings with sparse rewards and long horizons.
To bias our bi-level optimization objective towards this type of reward function, we introduce a
regularizer, _γφ_ . This regularizer favors solutions that can generate policies with high performance
(i.e., high expected return _J_ with respect to _rp_ ) _even when the discount factor γφ is small_ . To see why,
first notice that this regularizer encourages behavior alignment reward functions that provide more
instantaneous feedback to the agent. This has to be the case; otherwise, it would be challenging to
maximize long-term reward should the optimized alignment reward function be sparse. Second, the
regularizer promotes instructive alignment reward functions—i.e., functions that facilitate learning
policies that maximize _J_ . This is equally crucial: effective policies under the metric _J_ are the ones
that align well with the designer’s objectives as outlined in the original reward function, _rp_ .


**4.1** **Overcoming Imperfections of Policy Optimization Algorithms**


The advantages of the bi-level formulation in (2) extend beyond robustness to sub-optimality from
misspecified _r_ aux. Even with a well-specified _r_ aux, RL algorithms often face design choices, such as
the bias-variance trade-off, that can induce sub-optimal solutions. Below we present examples to
show how _bias_ in the underlying RL algorithm may be mitigated by carefully optimizing _rϕ_ and _γφ_ .


**4.1.1 Bias in policy gradients:** Recall that the popular “policy gradient” ∆( _θ, rp_ ) is not, in fact,
the gradient of any function, and using it in gradient methods may result in biased and sub-optimal
policies [44]. However, policy gradient methods based on ∆( _θ, rp_ ) remain vastly popular in the
RL literature since they tend to be sample efficient [59]. Let ∆ _γ_ ( _θ, rp_ ) denote the _unbiased_ policy
gradient, where ∆ _γ_ ( _θ, rp_ ) := E[ [�] _[T]_ _t_ =0 _[γ][t][ψ][θ]_ [(] _[S][t][, A][t]_ [)][] _j_ _[T]_ = _t_ _[γ][j][][t][r][p]_ [(] _[S][j][, A][j]_ [)]][. We can show that with]
a sufficiently expressive parameterization, optimized _rϕ_ and _γφ_ can effectively mimic the updates that
would have resulted from using the _unbiased_ gradient ∆ _γ_ ( _θ, rp_ ), even if the underlying RL algorithm
uses the _biased_ “gradient”, ∆on( _θ, ϕ, φ_ ), as defined in (3). Detailed proofs are in Appendix A.

**Property 2.** _There exists rϕ_ : _S × A →_ R _and γφ ∈_ [0 _,_ 1) _such that_ ∆on( _θ, ϕ, φ_ ) = ∆ _γ_ ( _θ, rp_ ) _._



**4.1.2 Off-policy learning without importance sampling:** To increase sample efficiency when
evaluating a given policy _πθ_, it is often useful to use off-policy data collected by a different policy, _β_ .
Under the assumption that _∀s ∈S, ∀a ∈A,_ _[π]_ _β_ _[θ]_ ( [(] _s,a_ _[s,a]_ ) [)] _[<][]_ [, importance ratios] _[ ρ][j]_ [ :=][] _k_ _[j]_ =0 _πβθ_ (( _s,as,a_ )) [can]

be used to adjust the updates and account for the distribution shift between trajectories generated by
_β_ and _πθ_ . However, to avoid the high variance stemming from _ρj_, many methods tend to drop most
of the importance ratios and thus only partially correct for the distribution shift—-which can lead to
bias [51]. We can show (given a sufficiently expressive parameterization for the behavior alignment
reward function) that this type of bias can also be mitigated by carefully optimizing _rϕ_ and _γφ_ .


Let us denote the unbiased off-policy update with full-distribution correction as ∆off( _θ, rp_ ) :=
E _β_ [ [�] _[T]_ _t_ =0 _[γ][t][ψ][θ]_ [(] _[S][t][, A][t]_ [)][] _j_ _[T]_ = _t_ _[ρ][j][γ][j][r][p]_ [(] _[S][j][, A][j]_ [)]][. Now consider an extreme scenario where off-policy]
evaluation is attempted _without any correction for distribution shift_ . In this situation, and with a slight
abuse of notation, we define ∆off( _θ, ϕ, φ_ ) := E _β_ [ [�] _[T]_ _t_ =0 _[ψ][θ]_ [(] _[S][t][, A][t]_ [)][] _j_ _[T]_ = _t_ _[γ]_ _φ_ _[j][][t]_ _rϕ_ ( _Sj, Aj_ )].

**Property 3.** _There exists rϕ_ : _S × A →_ R _and γφ ∈_ [0 _,_ 1) _such that_ ∆off( _θ, ϕ, φ_ ) = ∆off( _θ, rp_ ) _._


**Remark 1.** _Our method is capable of mitigating various types of algorithmic biases and imperfections_
_in underlying RL algorithms, without requiring any specialized learning rules. Additionally, thanks_


4E.g., if _rϕ ≈_ _q∗_, then its corresponding rewards are instantly indicative of the optimal action at any state.


5


_to the γφ∗_ _regularization, it favors reward functions that lead to faster learning of high-performing_
_policies aligned with the designer’s objectives, as outlined in the original reward function rp._


**5** **BARFI: Implicitly Learning Behavior Alignment Rewards**


Having introduced our bi-level objective and discussed the benefits of optimizing _rϕ_ and _γφ_, an
important question arises: Although _θ_ ( _ϕ, φ_ ) can be optimized using any policy learning algorithm,
how can we efficiently identify the optimal _ϕ_ _[∗]_ and _φ_ _[∗]_ in equation (2)? Given the practical advantages
of gradient-based methods, one would naturally consider using them for optimizing _ϕ_ _[∗]_ and _φ_ _[∗]_ as well.
However, a key challenge in our setting lies in computing d _J_ ( _θ_ ( _ϕ, φ_ )) _/_ d _ϕ_ and d _J_ ( _θ_ ( _ϕ, φ_ )) _/_ d _φ_ .
These computations require an analytical characterization of the impact that _rϕ_ and _γφ_ have on the
_entire optimization process_ of the inner-level algorithm, Alg.


In addressing this challenge, we initially focus on an Alg that employs policy gradients for updating
_πθ_ . Similar extensions for other update rules can be derived similarly. We start by re-writing the
expression for d _J_ ( _θ_ ( _ϕ, φ_ )) _/_ d _ϕ_ using the chain rule:



d _J_ ( _θ_ ( _ϕ, φ_ ))



d _θ_ ( _ϕ, φ_ )

d _ϕ_

 - ~~�~~ - ~~�~~
( _b_ )



( _ϕ, φ_ )) = [d] _[J]_ [(] _[θ]_ [(] _[ϕ, φ]_ [))]

d _ϕ_ d _θ_ ( _ϕ, φ_ )



d _θ_ ( _ϕ, φ_ )

- ~~��~~ ~~�~~
( _a_ )



_,_ (4)



where _**(a)**_ is the policy gradient at _θ_ ( _ϕ, φ_ ), and _**(b)**_ can be computed via implicit bi-level optimization,
as discussed below.


**Implicit Bi-Level Optimization:** We compute (4) by leveraging implicit gradients [14, 34, 19],
an approach previously employed, e.g., in few-shot learning [38, 49] and model-based RL algorithms [50]. First, observe that when Alg converges to _θ_ ( _ϕ, φ_ ), then it follows that


∆( _θ_ ( _ϕ, φ_ ) _, ϕ, φ_ ) = 0 _._ (5)


Let _∂f_ denote the partial derivative with respect to the immediate arguments of _f_, and d _f_ be the total
derivative as before. That is, if _f_ ( _x, g_ ( _x_ )) := _xg_ ( _x_ ), then _[∂f]_ _∂x_ [(] _[x, g]_ [(] _[x]_ [)) =] _[ g]_ [(] _[x]_ [)][ and] [d] d _[f]_ _x_ [(] _[x, g]_ [(] _[x]_ [)) =]

_g_ ( _x_ ) + _x_ _[∂g]_ [(] _[x]_ [)][. Therefore, taking the total derivative of (][5][) with respect to] _[ ϕ]_ [ yields]




_[∂f]_ [d] _[f]_

_∂x_ [(] _[x, g]_ [(] _[x]_ [)) =] _[ g]_ [(] _[x]_ [)][ and] d _x_



_∂x_ [(] _[x]_ [)][. Therefore, taking the total derivative of (][5][) with respect to] _[ ϕ]_ [ yields]



) _, ϕ, φ_ )

= _[∂]_ [∆(] _[θ]_ [(] _[ϕ, φ]_ [)] _[, ϕ, φ]_ [)]
d _ϕ_ _∂ϕ_




_[θ]_ [(] _[ϕ, φ]_ [)] _[, ϕ, φ]_ [)] _∂θ_ ( _ϕ, φ_ )

_∂θ_ ( _ϕ, φ_ ) _∂ϕ_



= 0 _._ (6)
_∂ϕ_



d∆( _θ_ ( _ϕ, φ_ ) _, ϕ, φ_ )




[)] _[, ϕ, φ]_ [)]

+ _[∂]_ [∆(] _[θ]_ [(] _[ϕ, φ]_ [)] _[, ϕ, φ]_ [)]
_∂ϕ_ _∂θ_ ( _ϕ, φ_ )



By re-arranging terms in (6), we obtain the term _**(b)**_ in (4). In particular,



( _ϕ, φ_ ) - _∂_ ∆( _θ_ ( _ϕ, φ_ ) _, ϕ, φ_ )

= _−_
_∂ϕ_ _∂θ_ ( _ϕ, φ_ )




- _−_ 1 _∂_ ∆( _θ_ ( _ϕ, φ_ ) _, ϕ, φ_ )

_._ (7)
_∂ϕ_



_∂θ_ ( _ϕ, φ_ )



_∂θ_ ( _ϕ, φ_ )



Furthermore, by combining (7) and (4) we obtain the desired gradient expression for _ϕ_ :




- _−_ 1
_∂_ ∆( _θ_ ( _ϕ, φ_ ) _, ϕ, φ_ )

_∂ϕ_

   - ~~�~~   - ~~�~~
**A**



_∂J_ ( _θ_ ( _ϕ, φ_ ))



( _ϕ, φ_ ))

= _−_ _[∂J]_ [(] _[θ]_ [(] _[ϕ, φ]_ [))]
_∂ϕ_ _∂θ_ ( _ϕ, φ_ )



_∂θ_ ( _ϕ, φ_ )




_∂_ ∆( _θ_ ( _ϕ, φ_ ) _, ϕ, φ_ )

_∂θ_ ( _ϕ, φ_ )

 - ~~�~~  - ~~�~~
**H**



_._ (8)



Similarly, a gradient expression for _φ_ can be derived; the full derivation is detailed in Appendix E.
Using _θ_ _[∗]_ as shorthand for _θ_ ( _ϕ, φ_ ), we find that the terms **A** and **H** can be expressed as




- _j_ = _t_ _γφ_ _[j][][t]_ _∂rϕ_ ( _∂ϕSj_ _, Aj_ )











_∂ϕ_







 _.__⊤_ []







_T_- _γφ_ _[j][][t]_ _rϕ_ ( _Sj_ _, Aj_ )

_j_ = _t_



_T_

 



 _T__t_ =0



_∂ψθ∗_ ( _St, At_ )

_∂θ_ _[∗]_



**A** = E _D_



_T__ψθ∗_ ( _St, At_ )

_t_ =0



 _,_ **H** = E _D_







When working with the equations above, we assume the inverse of **H** _[−]_ [1] exists. To mitigate the risk of
ill-conditioning, we discuss regularization strategies for Alg in Appendix D. Notice that equations (8)
and (15) are the key elements needed to calculate the updates to _ϕ_ and _φ_ in our bi-level optimization’s
outer loop. However, computing **A** and **H** directly can be impractical for high-dimensional problems
due to the need for outer products and second derivatives. To address this, we employ two strategies:
_(1)_ We approximate **H** _[−]_ [1] using the Neumann series [40], and _(2)_ we calculate (8) and (15) via
Hessian-vector products [47], which are readily available in modern auto-diff libraries [46]. These
methods eliminate the need for explicit storage or computation of **H** or **A** .


6


The mathematical approach outlined above results in an algorithm with linear compute and memory
footprint, having _O_ ( _d_ ) complexity, where _d_ is the number of parameters for both the policy and the
reward function. Details can be found in Appendix C. We refer to our method as BARFI, an acronym
for _behavior_ _alignment_ _reward_ _function’s_ _implicit_ optimization. [5] BARFI is designed to iteratively
solve the bi-level optimization ~~pr~~ oblem defined in (2). With policy regularization, the updates to _rϕ_
and _γφ_ incrementally modify _θ_ ( _ϕ, φ_ ). This enables us to initialize Alg using the fixed point achieved
in the previous inner optimization step, further reducing the time for subsequent inner optimizations.


**6** **Empirical Analyses**


Our experiments serve multiple purposes and include detailed ablation studies. First, we demonstrate
our bi-level objective’s efficacy in discovering behavior alignment reward functions that facilitate
learning high-performing policies. We focus especially on its robustness in situations where designers
provide poorly specified or misaligned auxiliary rewards that could disrupt the learning process
(Section 6.1). Second, we present a detailed analysis of the limitations of potential-based reward
shaping, showing how it can lead to suboptimal policies (Section 6.2). We then provide a qualitative
illustration of the behavior alignment reward function learned by BARFI (Section 6.3). Finally, we
evaluate how well BARFI scales to problems with high-dimensional, continuous action and state
spaces (Section 6.4).


In the sections that follow, we examine a range of methods and reward combinations for comparison:


- _Baseline RL methods_ : We consider baseline RL methods that employ a naive reward combination
strategy: ˜ _r_ naive( _s, a_ ) := _rp_ ( _s, a_ ) + _r_ aux( _s, a_ ). In this case, the auxiliary reward from the designer
is simply added to the original reward without checks for alignment. Both the REINFORCE and
Actor-Critic algorithms are used for optimization.

- _Potential-based shaping_ : To assess how well potential-based reward shaping performs, we introduce
variants of the baseline methods. Specifically, we investigate the effectiveness of the reward function
_r_ ˜Φ( _s, a, s_ _[′]_ ) := _rp_ ( _s, a_ ) + _γr_ aux( _s_ _[′]_ ) _−_ _r_ aux( _s_ ).

- BARFI: We use REINFORCE as the underlying RL algorithm when implementing BARFI and
define _rϕ_ ( _s, a_ ) := _ϕ_ 1( _s, a_ ) + _ϕ_ 2( _s_ ) _rp_ ( _s, a_ ) + _ϕ_ 3( _s_ ) _r_ aux( _s, a_ ). Our implementation includes a
warm-up period wherein the agent collects data for a fixed number of episodes, using ˜ _r_ naive, prior
to performing the first updates to _ϕ_ and _φ_ (See Appendix 5 for the complete algorithm).


We evaluate each algorithm across four distinct environments: GridWorld, MountainCar [58], CartPole [16], and HalfCheetah-v4 [9]. These domains offer increasing levels of complexity and are
intended to assess the algorithms’ adaptability. Furthermore, we examine their performance under a
variety of auxiliary reward functions, ranging from well-aligned to misaligned with respect to the
designer’s intended objectives.


In our experiments, we investigate different types of auxiliary reward functions for each environment:
some are action-dependent, while others are designed to reward actions aligned with either effective
or ineffective known policies. These functions, therefore, vary in their potential to either foster rapid
learning or inadvertently mislead the agent away from the designer’s primary objectives, hindering the
efficiency of the learning process. Comprehensive details of each environment and their corresponding
auxiliary reward functions can be found in Appendix F.


**6.1** **BARFI’s Robustness to Misaligned Auxiliary Reward Functions**


In this section, we evaluate the performance of various methods for reward combination, particularly
in scenarios where auxiliary reward functions can either be well-aligned with a designer’s intended
goals or be misaligned or poorly specified, thus inadvertently hindering efficient learning. We
introduce two types of auxiliary reward functions for CartPole. First, we used domain knowledge to
design an _r_ aux that provides bonuses when the agent’s actions align with a known effective policy
in this domain. Second, we designed an adversarial example where the auxiliary reward function
rewards actions that are consistent with a particularly poorly performing policy. For MountainCar, we
first leveraged knowledge about an _energy pumping policy_ (i.e., a well-known effective policy [18]) to


5“BARFI” commonly refers to a type of south-Asian sweet confectionery, typically pronounced as ‘bur-fee’.


7


Table 1: Summary of the performance of various reward combination methods and types of _r_ aux


CartPole MountainCar
Method for Reward Combination


Well-aligned _r_ aux Misaligned _r_ aux Well-aligned _r_ aux Partially-aligned _r_ aux
(w.r.t. _energy policy_ ) (w.r.t. _high velocity policy_ )


BARFI ( _our method_ ) 487 _._ 2 _±_ 9 _._ 4 475 _._ 5 _±_ 15 _._ 5 0 _._ 99 _±_ 0 _._ 0 0 _._ 90 _±_ 0 _._ 1
_r_ ˜naive ( _naive reward combination_ ) 498 _._ 9 _±_ 1 _._ 0 9 _._ 04 _±_ 0 _._ 2 0 _._ 99 _±_ 0 _._ 0 0 _._ 63 _±_ 0 _._ 1
_r_ ˜Φ ( _potential-based shaping_ ) 8 _._ 98 _±_ 0 _._ 2 500 _±_ 0 _._ 0 0 _._ 00 _±_ 0 _._ 0 0 _._ 00 _±_ 0 _._ 0


BARFI’s performance compared to two baselines that use: ˜ _r_ naive and ˜ _r_ Φ, respectively. CartPole uses
an action-dependent _r_ aux function that either rewards agents when actions align with a known effective
policy ( _well-aligned raux_ ) or with a poorly-performing policy ( _misaligned raux_ ). MountainCar uses
either an action-dependent function aligned with an energy-pumping policy [18] or a partially-aligned
function incentivizing higher velocities. BARFI consistently achieves near-optimal performance
across scenarios, even if given poorly specified/misaligned auxiliary rewards. Competitors, by
contrast, often induce suboptimal policies. Performances significantly below the optimal are shown
in red, above.


craft an auxiliary reward function that provides bonuses for actions in line with such a control strategy.
We also experimented with a partially-aligned auxiliary function that rewards high velocity—a factor
not particularly indicative of high performance.


Table 1 summarizes the results across different reward functions and combination methods. The results
suggest that if auxiliary rewards provide positive feedback when agents’ actions align with effective
policies, naive combination methods perform well. In such cases, auxiliary rewards effectively
“nudge” agents towards emulating expert actions. However, our experimental results also indicate that
_all_ baseline methods are susceptible to poor performance when auxiliary rewards are not well aligned
with the designer’s goals. We provide more discussion for potential-based shaping in Section 6.2.


The key takeaway from the experimental results in Table 1 is that BARFI consistently performs
well across various domains and under different types of auxiliary rewards. Specifically, when
designer-specified feedback is appropriate and can assist in accelerating learning, BARFI
efficiently exploits it to produce high-performing policies. Conversely, if auxiliary rewards are
misaligned with the designer’s intended goals, BARFI is capable of adapting and effectively
dismissing “misleading rewards”. This adaptability ensures that high-performing policies can
be reliably identified. Other methods, by contrast, succeed only in some of these scenarios.
Importantly, the unpredictability of whether a given auxiliary reward function will aid or hinder
learning makes such alternative methods less reliable, as they may fail to learn effective policies.


**6.2** **Pitfalls of potential-based reward shaping**


We now turn our attention to the (possibly negative) influence of action-dependent auxiliary rewards,
particularly when used in combination with potential-based reward shaping. Our results in Table 1
reveal a key limitation: potential-based shaping struggles to learn efficient policies even when
auxiliary rewards are well-aligned with effective strategies. This shortcoming is attributable to
the action-dependent nature of the auxiliary rewards, which compromises the potential shaping
technique’s guarantee of policy optimality.


As there is no prescribed way for designing potential shaping when _r_ aux is action-dependent, we
use a direct extension of the original formulation [41] by considering ˜ _r_ Φ( _s, a, s_ _[′]_ _, a_ _[′]_ ) := _rp_ ( _s, a_ ) +
_γr_ aux( _s_ _[′]_ _, a_ _[′]_ ) _−_ _r_ aux( _s, a_ ). Furthermore, we designed an auxiliary reward function, _r_ aux, that is well
aligned: it provides positive reward signals of fixed magnitude both for ( _s, a_ ) and ( _s_ _[′]_ _, a_ _[′]_ ) whenever
the agent’s actions coincide with the optimal policy. Notice, however, that if <_ 1, the resultant

value from _γr_ aux( _s_ _[′]_ _, a_ _[′]_ ) __ _r_ aux( _s, a_ ) is _negative_ . Such a negative component may deter the agent

from selecting actions that are otherwise optimal, depending on how _r_ aux and _rp_ differ in magnitude.

Conversely, potential-based shaping can also occasionally perform well under misaligned rewards. In

these cases, the shaping function may yield a _positive_ value whenever the agent selects an optimal

action, which could induce well-performing behaviors.





8





**GridWorld**











100































0





20





|Col1|Col2|Col3|Col4|Goal<br>+100|

|---|---|---|---|---|

||||||

|||+50|||

||||||

|~~_s_~~0|||||







**6.3** **What does** _rϕ_ **learn?**


We now investigate BARFI’s performance and robustness in the GridWorld when operating under
misspecified auxiliary reward functions. Consider the reward function depicted in Figure 2 [left].
This reward function provides the agent with a bonus for visiting the state at the center, akin to
providing intermediate feedback to the agent when it makes progress towards the goal. However,
such intermediate positive feedback can lead to behaviors where the agent repeatedly cycles around
the middle state (i.e., behaviors that are misaligned with the original objective of reaching the goal
state at the top right corner of the grid). Importantly, BARFI is capable of autonomously realizing
that it should disregard such misleading incentives (Figure 2 [center left]), thereby avoiding poorlyperforming behaviors that focus on revisiting irrelevant central states. Similarly, when Cartpole
operates under a misspecified _r_ aux (Figure 2 [right]), BARFI is capable of rapidly adapting (after
a warm-up period) and effectively disregarding misleading auxiliary reward signals. These results
highlight once again BARFI’s robustness when faced with reward misspecification.


**6.4** **Scalability to High-Dimensional Continuous Control**


One might wonder whether computing implicit gradients for _ϕ_ and _φ_ would be feasible in highdimensional problems, due to the computational cost of inverting Hessians. To address this concern,
we leverage Neumann series approximation with Hessian-vector products (See Appendix C) and conduct further experiments, as shown in Figure 3. These experiments focus on evaluating the scalability
of BARFI in control problems with high-dimensional state spaces and continuous actions—scenarios
that often rely on neural networks for both the policy and critic function approximators. For a more
comprehensive evaluation, we also introduced an alternative method named BARFI unrolled.
Unlike BARFI, which uses implicit bi-level optimization, BARFI unrolled employs path-wise
bi-level optimization. It maintains a complete record of the optimization path to determine updates
for _ϕ_ and _φ_ . Further details regarding this alternative method can be found in Appendix C.6.


We conducted experiments on the HalfCheetah-v4 domain and investigated, in particular, a reward
function comprising two components with varying weights. This empirical analysis was designed
to help us understand how different weight assignments to each reward component could influence
the learning process. Specifically, in HalfCheetah-v4, the agent receives a positive reward _rp_
proportional to how much it moved forward. It also incurs a small negative reward (concretely, an
auxiliary reward, _r_ aux( _s, a_ ) := _c∥a∥_ [2] 2 [, known as a] _[ control cost]_ [) for the torque applied to its joints.]
A hyperparameter _c_ determines the balance between these rewards. The naive combination of such
primary and auxiliary rewards is defined as ˜ _r_ naive( _s, a_ ) = _rp_ ( _s, a_ ) + _r_ aux( _s, a_ ). Figure 3 [left] shows
that the baselines and both variants of BARFI appear to learn effectively. With alternative reward
weighting schemes, however, only BARFI and BARFI unrolled show learning progress, as seen
in Figure 3 [middle]. It is worth noting that path-wise bi-level optimization can become impractical as
the number of update steps in (4) increases, due to growing computational and memory requirements
(Figure 3 [right]). Although we do not recommend BARFI unrolled, we include its results
for completeness. Additional ablation studies on _(a)_ the effect of the inner optimization step; _(b)_
Neumann approximations; _(c)_ decay of _γ_ ; and _(d)_ returns based on _rϕ_, are provided in Appendix H.


9


Figure 3: Results for MuJoCo environment. ( **Left** ) Auxiliary reward is defined to be _−c∥a∥_ [2] 2 [, where] _[ c]_ [ is a]
positive hyperparameter and _a_ is the continuous high-dimensional action vector. ( **Middle** ) Similar setting as
before, but uses an amplified variant of the auxiliary reward: _−_ 4 _c∥a∥_ [2] 2 [. It is worth highlighting that even under]
alternative reward weighting schemes, both variants of our (behavior-aligned) bi-level optimization methods
demonstrate successful learning. Learning curves correspond to mean return over 15 trials, and the shaded
regions correspond to one standard error. ( **Right** ) Required compute and memory for BARFI unrolled,
compared to BARFI, as a function of the number of inner-optimization updates. This figure also showcases
BARFI’s characteristics under various orders of Neumann approximation.


**7** **Related work**


This paper focuses primarily on how to efficiently leverage auxiliary rewards _r_ aux. Notice, however,
that in the absence of _r_ aux, the resulting learned behavior alignment rewards _rϕ_ may be interpreted
as _intrinsic rewards_ [70, 71]. Furthermore, several prior works have investigated meta-learning
techniques, which are methods akin to the bi-level optimization procedures used in our work. Such
prior works have employed meta-learning in various settings, including automatically inferring the
effective return of trajectories [68, 62, 7, 71], parameters of potential functions [72, 28, 17], targets
for TD learning [69], rewards for planning [54, 23], and even fully specified reinforcement learning
update rules [33, 45]. Additionally, various other relevant considerations to effectively learning
rewards online have been discussed by Armstrong et al. [5]. Our work complements these efforts
by focusing on the reward alignment problem, specifically in settings where auxiliary information
is available. An extended discussion on related works can be found in Appendix B. It is worth
mentioning that among the above-mentioned techniques, most rely on path-wise meta-gradients.
As discussed in Section 6.4, this approach can be disadvantageous as it often performs only one or
a few inner-optimization steps, which limits its ability to fully characterize the result of the inner
optimization [67]. Further, it requires caching intermediate steps, which increases computational and
memory costs. BARFI, by contrast, exploits implicit gradients to alleviate these issues by directly
characterizing the fixed point of Alg induced by learned behavior alignment rewards.


Finally, it is also important to highlight that a concurrent work on reward alignment using bi-level
optimization was made publicly available after our manuscript was submitted for peer-reviewing
at NeurIPS [10]. While our work analyses drawbacks of potential-based shaping and establishes
different forms of correction that can be performed via bi-level optimization, this concurrent work
provides complementary analyses on the convergence rates of bi-level optimization, as well as a
discussion on its potential applications to Reinforcement Learning from Human Feedback (RLHF).


**8** **Conclusion and Future Work**


In this paper, we introduced BARFI, a novel framework that empowers RL practitioners—who may
not be experts in the field—to incorporate domain knowledge through heuristic auxiliary reward
functions. Our framework allows for more expressive reward functions to be learned while ensuring
they remain aligned with a designer’s original intentions. BARFI can also identify reward functions
that foster faster learning while mitigating various limitations and biases in underlying RL algorithms.
We empirically show that BARFI is effective in training agents in sparse-reward scenarios where
(possibly poorly-specified) auxiliary reward information is available. If the provided auxiliary rewards
are determined to be misaligned with the designer’s intended goals, BARFI autonomously adapts
and effectively disincentivizes their use as needed. This adaptability results in a reliable pathway
to identifying high-performing policies. The conceptual insights offered by this work provide RL
practitioners with a structured way to design more robust and easy-to-optimize reward functions. We
believe this will contribute to making RL more accessible to a broader audience.


10


**Acknowledgement and Funding Disclosures**


We thank Andy Barto for invaluable discussions and insightful feedback on an earlier version of this
manuscript, which significantly improved the quality of our work.


This work is partially supported by the National Science Foundation under grant no. CCF-2018372
and by a gift from the Berkeley Existential Risk Initiative.


**References**


[1] Joshua Achiam, Ethan Knight, and Pieter Abbeel. Towards characterizing divergence in deep
q-learning. _arXiv preprint arXiv:1903.08894_, 2019.


[2] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and Zico
Kolter. Differentiable convex optimization layers. _arXiv preprint arXiv:1910.12430_, 2019.


[3] Ron Amit, Ron Meir, and Kamil Ciosek. Discount factor as a regularizer in reinforcement
learning. In _International Conference on Machine Learning_, 2020.


[4] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In _International Conference on Machine Learning_, 2017.


[5] Stuart Armstrong, Jan Leike, Laurent Orseau, and Shane Legg. Pitfalls of learning a reward
function online. _arXiv preprint arXiv:2004.13654_, 2020.


[6] Karl J Åström and Tore Hägglund. Pid control. _IEEE Control Systems Magazine_, 2006.


[7] Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Grefenstette, Ludovic Righetti,
Gaurav Sukhatme, and Franziska Meier. Meta-learning via learned loss. _arXiv preprint_
_arXiv:1906.05374_, 2019.


[8] Yoshua Bengio. Gradient-based optimization of hyperparameters. _Neural computation_, 2000.


[9] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. _arXiv preprint arXiv:1606.01540_, 2016.


[10] Souradip Chakraborty, Amrit Singh Bedi, Alec Koppel, Dinesh Manocha, Huazheng Wang,
Furong Huang, and Mengdi Wang. Aligning agent policy with externalities: Reward design via
bilevel rl. _arXiv preprint arXiv:2308.02585_, 2023.


[11] Xu Chu Dennis Ding, Stephen L Smith, Calin Belta, and Daniela Rus. LTL control in uncertain
environments with probabilistic satisfaction guarantees. _IFAC Proceedings Volumes_, 2011.


[12] Chuong B Do, Chuan-Sheng Foo, and Andrew Y Ng. Efficient multiple hyperparameter learning
for log-linear models. In _Advances in Neural Information Processing Systems_, 2007.


[13] Justin Domke. Generic methods for optimization-based modeling. In _Artificial Intelligence and_
_Statistics_, 2012.


[14] Asen L Dontchev and R Tyrrell Rockafellar. _Implicit functions and solution mappings_, volume
543. Springer, 2009.


[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In, _Proceedings of the 34th International Conference on Machine_
_Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017_, 2017.


[16] Razvan V Florian. Correct equations for the dynamics of the cart-pole system. _Center for_
_Cognitive and Neural Studies (Coneural), Romania_, 2007.


[17] Zhao-Yang Fu, De-Chuan Zhan, Xin-Chun Li, and Yi-Xing Lu. Automatic successive reinforcement learning with multiple auxiliary rewards. In _IJCAI_, 2019.


11


[18] Sina Ghiassian, Banafsheh Rafiee, Yat Long Lo, and Adam White. Improving performance in
reinforcement learning by breaking generalization in neural networks. In, _Proceedings of the_
_19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’20,_
_Auckland, New Zealand, May 9-13, 2020_, 2020.


[19] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and
Edison Guo. On differentiating parameterized argmin and argmax problems with application to
bi-level optimization. _arXiv preprint arXiv:1607.05447_, 2016.


[20] Edward Grefenstette, Brandon Amos, Denis Yarats, Artem Molchanov, Franziska Meier, and
Kyunghyun Cho. higher: A pytorch meta-learning library. 2020.


[21] Ricardo Grunitzki, Bruno C da Silva, and Ana LC Bazzan. A flexible approach for designing
optimal reward functions. In _Proceedings of the 16th Conference on Autonomous Agents and_
_MultiAgent Systems_, 2017.


[22] Ricardo Grunitzki, Bruno C da Silva, and LC Ana Bazzan. Towards designing optimal reward functions in multi-agent reinforcement learning problems. In _2018 International Joint_
_Conference on Neural Networks (IJCNN)_, 2018.


[23] Xiaoxiao Guo, Satinder Singh, Richard Lewis, and Honglak Lee. Deep learning for reward
design to improve monte carlo tree search in atari games. _arXiv preprint arXiv:1604.07095_,
2016.


[24] Joshua Hare. Dealing with sparse rewards in reinforcement learning. _arXiv preprint_
_arXiv:1910.09281_, 2019.


[25] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. _Cited on_, 2012.


[26] Mark K Ho, Michael L Littman, Fiery Cushman, and Joseph L Austerweil. Teaching with
rewards and punishments: Reinforcement or communication? In _CogSci_, 2015.


[27] Mark K Ho, Fiery Cushman, Michael L Littman, and Joseph L Austerweil. People teach with
rewards and punishments as communication, not reinforcements. _Journal of Experimental_
_Psychology: General_, 2019.


[28] Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu,
and Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping.
_Advances in Neural Information Processing Systems_, 2020.


[29] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward
machines for high-level task specification and decomposition in reinforcement learning. In
_International Conference on Machine Learning_, 2018.


[30] Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and
Sheila McIlraith. Learning reward machines for partially observable reinforcement learning.
_Advances in Neural Information Processing Systems_, 2019.


[31] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward
machines: Exploiting reward function structure in reinforcement learning. _arXiv preprint_
_arXiv:2010.03950_, 2020.


[32] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In, _3rd_
_International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May_
_7-9, 2015, Conference Track Proceedings_, 2015.


[33] Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving generalization in
meta reinforcement learning using learned objectives. _arXiv preprint arXiv:1910.04098_, 2019.


[34] Steven G Krantz and Harold R Parks. _The implicit function theorem: history, theory, and_
_applications_ . Springer Science & Business Media, 2012.


[35] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Temporal-logic-based reactive
mission and motion planning. _IEEE Transactions on Robotics_, 2009.


12


[36] Karl Kunisch and Thomas Pock. A bilevel optimization approach for parameter learning in
variational models. _SIAM Journal on Imaging Sciences_, 2013.


[37] Jan Larsen, Lars Kai Hansen, Claus Svarer, and M Ohlsson. Design and regularization of neural
networks: the optimal use of a validation set. In _Neural Networks for Signal Processing VI._
_Proceedings of the 1996 IEEE Signal Processing Society Workshop_, 1996.


[38] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In _Proceedings of the IEEE/CVF Conference on Computer_
_Vision and Pattern Recognition_, 2019.


[39] Michael L Littman, Ufuk Topcu, Jie Fu, Charles Isbell, Min Wen, and James MacGlashan.
Environment-independent task specifications via GLTL. _arXiv preprint arXiv:1704.04341_,
2017.


[40] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In _International Conference on Artificial Intelligence and Statistics_,
2020.


[41] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In _ICML_, 1999.


[42] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
_CoRR_, 2018.


[43] Scott Niekum, Andrew G Barto, and Lee Spector. Genetic programming for reward function
search. _IEEE Transactions on Autonomous Mental Development_, 2010.


[44] Chris Nota and Philip S. Thomas. Is the policy gradient a gradient? _arXiv preprint_
_arXiv:1906.07073_, 2020.


[45] Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado van Hasselt, Satinder
Singh, and David Silver. Discovering reinforcement learning algorithms. _arXiv preprint_
_arXiv:2007.08794_, 2020.


[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In _Advances in Neural Information Processing Systems_
_32_ . Curran Associates, Inc., 2019.


[47] Barak A Pearlmutter. Fast exact multiplication by the hessian. _Neural computation_, 1994.


[48] Silviu Pitis. Rethinking the discount factor in reinforcement learning: A decision theoretic
approach. In _Proceedings of the AAAI Conference on Artificial Intelligence_, 2019.


[49] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. In _Advances in Neural Information Processing Systems_, 2019.


[50] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model
based reinforcement learning. _arXiv preprint arXiv:2004.07804_, 2020.


[51] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. _arXiv preprint arXiv:1707.06347_, 2017.


[52] Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from. In
_Proceedings of the Annual Conference of the Cognitive Science Society_, 2009.


[53] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically motivated
reinforcement learning: An evolutionary perspective. _IEEE Transactions on Autonomous Mental_
_Development_, 2010.


[54] Jonathan Sorg, Richard L Lewis, and Satinder Singh. Reward design via online gradient ascent.
_Advances in Neural Information Processing Systems_, 2010.


13


[55] Jonathan Sorg, Satinder P Singh, and Richard L Lewis. Internal rewards mitigate agent
boundedness. In _Proceedings of the 27th international conference on machine learning (ICML-_
_10)_, 2010.


[56] Jonathan Sorg, Satinder P Singh, and Richard L Lewis. Optimal rewards versus leaf-evaluation
heuristics in planning agents. In _Proceedings of the AAAI Conference on Artificial Intelligence_,
2011.


[57] Jonathan Daniel Sorg. _The Optimal Reward Problem: Designing Effective Reward for Bounded_
_Agents._ PhD thesis, University of Michigan, 2011.


[58] Richard S Sutton and Andrew G Barto. _Reinforcement learning: An introduction_ . MIT press,
2018.


[59] Philip Thomas. Bias in natural actor-critic algorithms. In _International Conference on Machine_
_Learning_, 2014.


[60] John N Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with
function approximation. _IEEE Transactions on Automatic Control_, 1997.


[61] Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differentiation
of blackbox combinatorial solvers. _arXiv preprint arXiv:1912.02175_, 2019.


[62] Yufei Wang, Qiwei Ye, and Tie-Yan Liu. Beyond exponentially discounted sum: Automatic
learning of return function. _arXiv preprint arXiv:1905.11591_, 2019.


[63] Martha White. Unifying task specification in reinforcement learning. In _International Confer-_
_ence on Machine Learning_, 2017.


[64] Eric Wiewiora. Potential-based shaping and q-value initialization are equivalent. _Journal of_
_Artificial Intelligence Research_, 2003.


[65] Eric M Wolff, Ufuk Topcu, and Richard M Murray. Robust control of uncertain markov decision
processes with temporal logic specifications. In _2012 IEEE 51st IEEE Conference on Decision_
_and Control (CDC)_, 2012.


[66] David H Wolpert and Kagan Tumer. Optimal reward functions in distributed reinforcement
learning. In _Intelligent agent technology: Research and development_ . World Scientific, 2001.


[67] Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. _arXiv preprint arXiv:1803.02021_, 2018.


[68] Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. In
_Advances in Neural Information Processing Systems_, 2018.


[69] Zhongwen Xu, Hado P van Hasselt, Matteo Hessel, Junhyuk Oh, Satinder Singh, and David
Silver. Meta-gradient reinforcement learning with an objective discovered online. _Advances in_
_Neural Information Processing Systems_, 2020.


[70] Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In _Advances in Neural Information Processing Systems_, 2018.


[71] Zeyu Zheng, Junhyuk Oh, Matteo Hessel, Zhongwen Xu, Manuel Kroiss, Hado Van Hasselt,
David Silver, and Satinder Singh. What can learned intrinsic rewards capture? In _International_
_Conference on Machine Learning_, 2020.


[72] Haosheng Zou, Tongzheng Ren, Dong Yan, Hang Su, and Jun Zhu. Reward shaping via
meta-learning. _arXiv preprint arXiv:1901.09330_, 2019.


14


**Behavior Alignment via Reward Function Optimization**
**(Supplemental Material)**


Table 2: Notations

**Symbol** **Description**


_θ_ Parameters for policy _π_
_ϕ_ Parameters for reward function
_φ_ Parameters for learned _γ_
_πθ, rϕ, γφ_ Functional form of policy, reward and _γ_ with their respective parameters
_αθ, αϕ, αφ_ Step sizes for the respective parameters
_λθ, λϕ, λφ_ Regularization for policy, reward and _γ_ function
_δ_ Number of on-policy samples collected between subsequent updates to
_ϕ, φ_
_η_ Neumann Approximator Eigen value scaling factor
_n_ Number of loops used in Neumann Approximation
optim Any standard optimizer like Adam, RMSprop, SGD, which takes input
as gradients and outputs the appropriate update
_E_ Total Number of episodes to sample from the environment
_Ni_ Number of updates to be performed for updating the _π_ by Alg
_N_ 0 Number of initial updates to be peformed
_τ_ Sample of a trajectory from a full episode


**A** **Proofs for Theoretical Results**


In this section, we provide proofs for Property 1, Property 2, and Property 3. For the purpose of these
proofs, we introduce some additional notation. To have a unified MDP notation for goal-based and
time-based tasks, we first consider that in the the time-based task, time is a part of the state such that
Markovian dynamics is ensured.


The (un-normalized) discounted and (un-normalized) undiscounted visitation probability is denoted
as



_d_ _[π]_ _γ_ [(] _[s, a]_ [) :=]


_d_ ¯ _[π]_ ( _s, a_ ) :=



_T_

- _γ_ _[t]_ Pr( _St_ = _s, At_ = _a_ ; _π_ ) _,_ (9)


_t_ =0


_T_

- Pr( _St_ = _s, At_ = _a_ ; _π_ ) _._ (10)


_t_ =0



We can normalize it so that it is a distribution as follows :


_d_ ¯ _[π]_ ( _s, a_ )
_d_ _[π]_ ( _s, a_ ) :=

~~�~~

_s_ _[]_ _∈S,a_ _[]_ _∈A_ _[d]_ ~~[¯]~~ _[π]_ [(] _[s][][, a][]_ [)] _[.]_


**Property 1.** _The expected update performed by the biased policy gradient update is same when_
_using the primary reward and reward modified with potential-based shaping, i.e.,_ ∆( _θ,_ ˜ _r_ ) = ∆( _θ, rp_ ) _._
_Further, the variance of the update when using potential-based reward shaping can be higher than the_

                        -                        -                        -                        _variance of the update performed using the primary reward, i.e.,_ Var ˆ∆( _θ,_ ˜ _r_ ) _≥_ Var ˆ∆( _θ, rp_ ) _._


15


_Proof._ **Part 1: Equality of the expected update**_T_





- _γ_ _[j][][t]_ _r_ ˜( _Sj, Aj_ )


_j_ = _t_







∆( _θ,_ ˜ _r_ ) = E _πθ_


= E _πθ_


= E _πθ_



_T__T__ψθ_ ( _St, At_ )

_t_ =0



_ψθ_ ( _St, At_ )

_t_ =0















_T_









_T__ψθ_ ( _St, At_ )

_t_ =0




- _γ_ _[j][][t]_ ( _rp_ ( _Sj, Aj_ ) + _γ_ Φ( _Sj_ +1) _−_ Φ( _Sj_ ))


_j_ = _t_















_T_- _γ_ _[j][][t]_ _rp_ ( _Sj, Aj_ )


_j_ = _t_











 + E _πθ__T__ψθ_ ( _St, At_ )

_t_ =0



_T_





- _γ_ _[j][][t]_ ( _γ_ Φ( _Sj_ +1) _−_ Φ( _Sj_ ))


_j_ = _t_











_T_





- _γ_ _[j][][t]_ ( _γ_ Φ( _Sj_ +1) _−_ Φ( _Sj_ ))


_j_ = _t_



= ∆( _θ, rp_ ) + E _πθ_


( _a_ )
= ∆( _θ, rp_ ) + E _πθ_


( _b_ )
= ∆( _θ, rp_ ) + E _πθ_


( _c_ )
= ∆( _θ, rp_ ) + E _πθ_


( _d_ )
= ∆( _θ, rp_ ) _,_



_T__ψθ_ ( _St, At_ )

_t_ =0








- _T_

 







- _ψθ_ ( _St, At_ )( _γ_ _[T][][t]_ [+1] Φ( _ST_ +1) _−_ Φ( _St_ ))


_t_ =0




- _T_

 







- _ψθ_ ( _St, At_ )( _γ_ _[T][][t]_ [+1] _c −_ Φ( _St_ ))


_t_ =0




- _T_

 








( _γ_ _[T][][t]_ [+1] _c −_ Φ( _St_ ))E _πθ_ [ _ψθ_ ( _St, At_ ) _|St_ ]
_t_ =0



where (a) holds because on the expansion of future return, intermediate potential values cancel out,
(b) holds because _ST_ +1 is the terminal state and potential function is defined to be a fixed constant _c_
for any terminal state [41], (c) holds from the law of total expectation, and (d) holds because,




- _πθ_ ( _St, a_ ) _[]_ [ln] _[ π][θ]_ [(] _[S][t][, a]_ [)]

_∂θ_

_a∈A_



_∂πθ_ ( _St, a_ )




   E _πθ_ [ _ψθ_ ( _St, At_ ) _|St_ ] =




_[θ]_ _[t]_ = 
_∂θ_




- _πθ_ ( _St, a_ ) = 0 _._


_a∈A_



_a∈A_



( _St, a_ )

= _[∂]_
_∂θ_ _∂θ_



_∂θ_



In the stochastic setting, i.e., when using sample average estimates instead of the true expectation,
_γ_ _[T][][t]_ [+1] _c −_ _ϕ_ ( _St_ ) is analogous to a state-dependent baseline for the sum of discounted future primary
rewards. It may reduce or increase the variance of ∆( _θ, rp_ ), depending on this baseline’s co-variance
with [] _j_ _[T]_ = _t_ _[γ][j][][t][r][p]_ [(] _[S][j][, A][j]_ [)][.]


**Note:** As we encountered the potential at the terminal state to be _c_, as it is a constant, we will use
the value of _c_ = 0 in accordance with [41].


**Part 2: Variance characterization**


For this result that discusses the possibility of the variance being higher when using potential-based
reward shaping, we demonstrate the result using a simple example. We will consider the single-step
case wherein an episode lasts for one time step. That is, the agent takes an action _A_ 0 at the starting
state _S_ 0 and then transitions to the terminal state. Hence, the stochastic update ∆( [ˆ] _θ,_ ˜ _r_ ) can be written
as:


ˆ∆( _θ,_ ˜ _r_ ) = _ψθ_ ( _S_ 0 _, A_ 0)˜ _r_ ( _S_ 0 _, A_ 0)
= _ψθ_ ( _S_ 0 _, A_ 0)( _rp_ ( _S_ 0 _, A_ 0) _−_ Φ( _S_ 0)) _,_


wherein, we assume that Φ for terminal states is 0 and similarly, ∆( [ˆ] _θ, rp_ ) = _ψθ_ ( _S_ 0 _, A_ 0) _rp_ ( _S_ 0 _, A_ 0).


For the purpose of this proof we will consider the case wherein we have a scalar _θ_, i.e., _θ ∈_ R, such
that, _ψθ_ ( _., ._ ) _∈_ R.


16


    -     Hence, Var ˆ∆( _θ,_ ˜ _r_ ) can be written as:


  -  -  -  - �2
Var ˆ∆( _θ,_ ˜ _r_ ) =E ˆ∆( _θ,_ ˜ _r_ ) [2][] _−_ E ˆ∆( _θ,_ ˜ _r_ )


=E�( _ψθ_ ( _S_ 0 _, A_ 0)( _rp_ ( _S_ 0 _, A_ 0) _−_ Φ( _S_ 0))) [2][] _−_ E[ _ψθ_ ( _S_ 0 _, A_ 0)( _rp_ ( _S_ 0 _, A_ 0) _−_ Φ( _S_ 0))] [2]

(= _a_ )E� _ψθ_ ( _S_ 0 _, A_ 0) [2] ( _rp_ ( _S_ 0 _, A_ 0) [2] + Φ( _S_ 0) [2] _−_ 2Φ( _S_ 0) _rp_ ( _S_ 0 _, A_ 0))� _−_ E[ _ψθ_ ( _S_ 0 _, A_ 0)( _rp_ ( _S_ 0 _, A_ 0))] [2]

=E� _ψθ_ ( _S_ 0 _, A_ 0) [2] (Φ( _S_ 0) [2] _−_ 2Φ( _S_ 0) _rp_ ( _S_ 0 _, A_ 0))� +



E� _ψθ_ ( _S_ 0 _, A_ 0) [2] _rp_ ( _S_ 0 _, A_ 0) [2][] _−_ E[ _ψθ_ ( _S_ 0 _, A_ 0)( _rp_ ( _S_ 0 _, A_ 0))] [2]

- ~~��~~ 
Var(∆( [ˆ] _θ,rp_ ))



_._



Therefore,


Var�ˆ∆( _θ,_ ˜ _r_ )� _−_ Var�ˆ∆( _θ, rp_ )� = E� _ψθ_ ( _S_ 0 _, A_ 0) [2] (Φ( _S_ 0) [2] _−_ 2Φ( _S_ 0) _rp_ ( _S_ 0 _, A_ 0))� _._


Subsequently, variance of ∆( [ˆ] _θ,_ ˜ _r_ ) will be higher than that of ∆( [ˆ] _θ, rp_ ) if E� _ψθ_ ( _S_ 0 _, A_ 0) [2] Φ( _S_ 0) [2][] _−_
2E� _ψθ_ ( _S_ 0 _, A_ 0) [2] Φ( _S_ 0) _rp_ ( _S_ 0 _, A_ 0)� _>_ 0.


**Example:** Let us look at an example where the above condition can be true. Let us consider an
MDP with a single state and a single-step horizon. In that case, we can consider the variance of the
update to the policy at the said state, i.e.,


Var _π_ �ˆ∆( _θ,_ ˜ _r_ )� _−_ Var _π_ �ˆ∆( _θ, rp_ )� = Φ( _s_ ) [2] E _π_  - _ψθ_ ( _s, A_ ) [2][] _−_ 2Φ( _s_ )E _π_  - _ψθ_ ( _s, A_ ) [2] ( _rp_ ( _s, A_ ))� _,_


where _s_ is the fixed state. Hence, the variance of the potential-based method might be more than the
variance from using only the primary reward when


Φ( _s_ ) [2] E _π_  - _ψθ_ ( _s, A_ ) [2][] _−_ 2Φ( _s_ )E _π_  - _ψθ_ ( _s, A_ ) [2] ( _rp_ ( _s, A_ ))� _>_ 0

Φ( _s_ ) [2] E _π_               - _ψθ_ ( _s, A_ ) [2][] _>_ 2Φ( _s_ )E _π_               - _ψθ_ ( _s, A_ ) [2] ( _rp_ ( _s, A_ ))� _._


Further, let us consider the case where Φ( _s_ ) _̸_ = 0, because otherwise the variance of the update for
those states would be same, and Φ( _s_ ) _>_ 0.


Φ( _s_ ) [2][] E _π_         - _ψθ_ ( _s, A_ ) [2][] _>_ 2�Φ( [�]         - _s_ )E _π_         - _ψθ_ ( _s, A_ ) [2] ( _rp_ ( _s, A_ ))�

Φ( _s_ )E _π_         - _ψθ_ ( _s, A_ ) [2][] _>_ 2E _π_         - _ψθ_ ( _s, A_ ) [2] ( _rp_ ( _s, A_ ))� _._


We can see that the above condition can be satisfied by choosing a potential function that might be
overly optimistic about the average reward of the state _s_, i.e. any Φ( _s_ ) _,_ s.t. Φ( _s_ ) _>_ 2 _rp_ ( _s, a_ ) _∀a_
would lead to an increase in variance. A common place where this might be true is the use of an
optimal value function (as hinted by [41]) as a baseline for a bad/mediocre policy initially.


**Property 2.** _There exists rϕ_ : _S × A →_ R _and γφ ∈_ [0 _,_ 1) _such that__on_ ( _θ, ϕ, φ_ ) = ∆ _γ_ ( _θ, rp_ ) _._


_Proof._ Recall the definition of ∆ _γ_ ( _θ, rp_ ) from Section 4.1:



_γ_ _[t]_ _ψθ_ ( _St, At_ )


17







 _._



_T_





- _γ_ _[j][][t]_ _rp_ ( _Sj, Aj_ )


_j_ = _t__γ_ ( _θ, rp_ ) = E _πθ__T__t_ =0


Using the law of total expectation,







_St, At_
������



















_T_- _γ_ _[j][][t]_ _rp_ ( _Sj, Aj_ )


_j_ = _t__γ_ ( _θ, rp_ ) = E _πθ_


= E _πθ__T__t_ =0


- _T_



_t_ =0



_γ_ _[t]_ _ψθ_ ( _St, At_ )E _πθ_




         

_γ_ _[t]_ _ψθ_ ( _St, At_ ) _q_ _[π][θ]_ ( _St, At_ )




= 

_s∈S,a∈A_



_T_



_t_ =0



_γ_ _[t]_ Pr( _St_ = _s, At_ = _a_ ; _πθ_ ) _ψθ_ ( _s, a_ ) _q_ _[π][θ]_ ( _s, a_ )



= - _ψθ_ ( _s, a_ ) _q_ _[π][θ]_ ( _s, a_ )


_s∈S,a∈A_



_T_



_t_ =0



_γ_ _[t]_ Pr( _St_ = _s, At_ = _a_ ; _πθ_ )



=       - _ψθ_ ( _s, a_ ) _q_ _[π][θ]_ ( _s, a_ ) _d_ _[π]_ _γ_ _[θ]_ [(] _[s, a]_ [)] _[.]_ (11)

_s∈S,a∈A_


Notice from (9) and (10) that for any ( _s, a_ ) pair, if _d_ _[π]_ _γ_ _[θ]_ [(] _[s, a]_ [)] _[ >]_ [ 0][, then][ ¯] _[d][π][θ]_ [(] _[s, a]_ [)] _[ >]_ [ 0][ since] _[ γ][]_ [0][.]
Therefore, dividing and multiplying by _d_ [¯] _[π][θ]_ ( _s, a_ ) leads to:


∆ _γ_ ( _θ, rp_ ) =    - _d_ ¯ _[π]_ _θ_ ( _s, a_ ) _ψθ_ ( _s, a_ ) _q_ _[π]_ _θ_ ( _s, a_ ) _[d]_ _d_ ~~¯~~ _γ_ _[π]_ _π_ _[θ]_ _θ_ [(] ( _[s, a]_ _s, a_ ) [)]

_s∈S,a∈A_



= 

_s∈S,a∈A_



_T_

- _γ_ [(] _[s, a]_ [)]

Pr( _St_ = _s, At_ = _a_ ; _πθ_ ) _ψθ_ ( _s, a_ ) _q_ _[π][θ]_ ( _s, a_ ) _[d]_ _d_ ~~¯~~ _π_ _[π][θ]_ _θ_ ( _s, a_ )
_t_ =0







= E _πθ_




- _T_

- _γ_ [(] _[S][t][, A][t]_ [)]

_t_ =0 _ψθ_ ( _St, At_ ) _q_ _[π][θ]_ ( _St, At_ ) _[d]_ _d_ ~~¯~~ _[π]_ _π_ _[θ]_ _θ_ ( _St, At_ )



_._



_πθ_
Now, notice that if _γφ_ = 0 and _rϕ_ ( _s, a_ ) = _q_ _[π][θ]_ ( _s, a_ ) _[d]_ _d_ ~~¯~~ _γ_ _[π]_ _θ_ ( [(] _[s,a]_ _s,a_ [)] ) [, for all] _[ s][ ∈S]_ [ and] _[ a][ ∈A]_ [, then]


∆on( _θ, ϕ, φ_ ) = ∆ _γ_ ( _θ, rp_ ) _._


**Property 3.** _There exists rϕ_ : _S × A →_ R _and γφ ∈_ [0 _,_ 1) _such that__off_ ( _θ, ϕ, φ_ ) = ∆ _off_ ( _θ, rp_ ) _._


_Proof._ This proof follows a similar technique as the proof for Property 2. Recall the definition of
∆off( _θ, rp_ ):



_γ_ _[t]_ _ρtψθ_ ( _St, At_ )


18







_T_





- _γ_ _[j][][t]_ _ρjrp_ ( _Sj, Aj_ )


_j_ = _t_







∆off( _θ, rp_ ) := E _β_


:= E _β__T__t_ =0


 _T__t_ =0



_γ_ _[t]_ _ψθ_ ( _St, At_ )







 _._



_T_





- _γ_ _[j][][t]_ _ρj−trp_ ( _Sj, Aj_ )


_j_ = _t_


Now using the law of total expectations,




- _γ_ _[j][][t]_ _ρj−trp_ ( _Sj, Aj_ )


_j_ = _t__St, At_
������











∆off( _θ, rp_ ) = E _β__T__γ_ _[t]_ _ρtψθ_ ( _St, At_ )E _β_

_t_ =0



_T_

 







_St, At_
������







_T_- _γ_ _[j][][t]_ _rp_ ( _Sj, Aj_ )


_j_ = _t_







= E _πθ_


= E _πθ__T__t_ =0


- _T_



_t_ =0



_γ_ _[t]_ _ψθ_ ( _St, At_ )E _πθ_




         

_γ_ _[t]_ _ψθ_ ( _St, At_ ) _q_ _[π][θ]_ ( _Sj, Aj_ )




= - _ψθ_ ( _s, a_ ) _q_ _[π][θ]_ ( _s, a_ ) _d_ _[π]_ _γ_ _[θ]_ [(] _[s, a]_ [)] _[,]_

_s∈S,a∈A_



where the last line follows similar to (11). Now, notice that for any ( _s, a_ ) pair, the assumption
that _πθ_ ( _s, a_ ) _/β_ ( _s, a_ ) _< ∞_ for all _s ∈S, a ∈A_, implies _d_ _[π]_ _γ_ _[θ]_ [(] _[s, a]_ [)] _[/d]_ _γ_ _[β]_ [(] _[s, a]_ [)] _[ <][]_ [. Further, if]
_d_ _[β]_ _γ_ [(] _[s, a]_ [)] _[ >]_ [ 0][ it has to be that] _[ d][β]_ [(] _[s, a]_ [)] _[ >]_ [ 0][ as well. Therefore,] _[ d][π]_ _γ_ _[θ]_ [(] _[s, a]_ [)] _[/d][β]_ [(] _[s, a]_ [)] _[ <][]_ [as well.]
Multiplying and dividing by _d_ _[β]_ ( _s, a_ ) results in:

∆off( _θ, rp_ ) =      - _d_ ¯ _[β]_ ( _s, a_ ) _ψθ_ ( _s, a_ ) _q_ _[π]_ _θ_ ( _s, a_ ) _[d]_ _d_ ~~¯~~ _γ_ _[π]_ _β_ _[θ]_ ( [(] _s, a_ _[s, a]_ ) [)]

_s∈S,a∈A_



_T_

 - - _γ_ [(] _[s, a]_ [)]
= Pr( _St_ = _s, At_ = _a_ ; _β_ ) _ψθ_ ( _s, a_ ) _q_ _[π][θ]_ ( _s, a_ ) _[d]_ _d_ ~~¯~~ _[π]_ _β_ _[θ]_ ( _s, a_ )

_s∈S,a∈A_ _t_ =0







= E _β_




- _T_

- _γ_ [(] _[S][t][, A][t]_ [)]

_t_ =0 _ψθ_ ( _St, At_ ) _q_ _[π][θ]_ ( _St, At_ ) _[d]_ _d_ ~~¯~~ _[π]_ _β_ _[θ]_ ( _St, At_ )



_._



_πθ_
Finally, notice that if _γφ_ = 0 and _rϕ_ ( _s, a_ ) = _q_ _[π][θ]_ ( _s, a_ ) _[d]_ _d_ ~~¯~~ _γβ_ ( [(] _s,a_ _[s,a]_ ) [)] [for all] _[ s][ ∈S]_ [ and] _[ a][ ∈A]_ [,]


∆off( _θ, ϕ, φ_ ) = ∆off( _θ, rp_ ) _._


**Remark 2.** _Notice that as with any optimization problem, issues of realizability and identifiability of_
_the desired rϕ must be taken into account. The examples provided in this section aim to highlight the_
_capability of optimized behavior alignment reward functions. In particular, they not only improve_
_and accelerate the learning process but are also capable of inducing updates capable of ‘fixing’_
_imperfections in the underlying RL algorithm._


**B** **Extended Related Works**


The bi-level objective draws inspiration from the seminal work of Singh et al. [52, 53] that provides an
optimal-rewards framework for an agent. Prior works have built upon it to explore search techniques
using evolutionary algorithms [43, 21], develop extensions for multi-agent setting [66, 22], and
mitigate sub-optimality due to use of inaccurate models [55–57]. Our work also builds upon this
direction and focuses on various aspects of leveraging auxiliary rewards _r_ aux, while staying robust
against its misspecification.


Apart from specifying auxiliary rewards _r_ aux directly, other techniques for reward specification
include linear temporal logic [35, 11, 65, 39] or reward machines [29–31] that allow exposing the
reward functions as a white-box to the agent.


Recent works also explore _γ_ that is state-action dependent [63, 48], or establishes connection between
_γ_ and value function regularization in TD learning Amit et al. [3]. These ideas are complementary to
our proposed work and combining these with BARFI remains interesting directions for the future.


The concept of path-based meta-learning was initially popularized for few-shot task learning in
supervised learning [15, 42]. Similar path-based approaches have been adopted in reinforcement


19


learning (RL) in various forms [28, 62, 69, 71]. Initially designed for stochastic gradient descent,
these methods have been extended to other optimizers such as Adam [32] and RMSprop [25], treating
them as differentiable counterparts [20].


**C** **Algorithm**


In this section we discuss the algorithm for the proposed method. As the proposed method does
behavior alignment reward function’s implicit optimization, we name it BARFI. Pseudo-code for
BARFI is presented in Algorithm 5. We will first build on some preliminaries to understand the
concepts.


**C.1** **Vector Jacobian Product**


Let us assume that, _x ∈_ R _[d]_ _, y ∈_ R _[m]_ _, f_ ( _x, y_ ) _∈_ R. Then, we know that _∂f_ ( _x, y_ ) _/∂x ∈_
R _[d]_ _, ∂f_ ( _x, y_ ) _/∂y ∈_ R _[m]_ _, ∂_ [2] _f_ ( _x, y_ ) _/∂y∂x ∈_ R _[d][×][m]_ . Let us also assume that we have a vector
_v ∈_ R _[d]_, and if we need to calculate the following, we can pull the derivative outside as shown:







= _[∂]_

_∂y_



_._





_v_ _,_ _[∂f]_ _∂x_ [(] _[x,y]_ [)]
����
R _[d]_  - ~~�~~  - ~~�~~

R _[d]_



_v_
����
R _[d]_



_∂_ [2] _f_ ( _x, y_ )



���� _∂y∂x_
R _[d]_

  - ~~��~~ ~~�~~
R _[d][×][m]_

~~�~~ R ~~�~~ _[m]_ - ~~�~~




~~�~~ ~~��~~ ~~�~~
R [1]

~~�~~ R ~~��~~ _[m]_ ~~�~~



As we can see, the vector Jacobian product can be broken down into differentiating a vector product
but shifting the place of multiplication, in which case we assume that the gradient passes through
_v_ w.r.t. _y_ and hence we don’t ever have to deal with large multiplications. Also note that the outer
partial w.r.t. can easily be handled by autodiff packages. A pseudo-code is show in Algorithm 1.


**Algorithm 1:** Jacobian Vector Product

**1 Input:** _f_ ( _x, y_ ) _∈_ R [1] _, x ∈_ R _[d]_ _, y ∈_ R _[m]_ _, v ∈_ R _[d]_

**2** _f_ _[′]_ _←_ grad( _f_ ( _x, y_ ) _, x_ )

**3** jvp _←_ grad( _f_ _[′]_ _, y,_ grad_outputs = _v_ )

**4 Return:** jvp


**C.2** **Neumann Series Approximation for Hessian Inverse**


Recall, that for a given real number _β ∈_ R, such that 0 _≤_ <_ 1, we know that the geomertric series

of this has a closed form solution, i.e.,

_s_ = 1 + _β_ [1] + _β_ [2] + _β_ [3] + _· · ·_ +





1

=

1 __ _β_ _[.]_



Similarly, given we have a value _α_ such that _β_ = 1 __ _α_, we can write _α_ _[−]_ [1] as follows:

1

1 __ _β_ [= 1 +] _[ β]_ [ +] _[ β]_ [2][ +] _[ β]_ [3][ +] _[ · · ·]_ [ +]



1

1 __ (1 __ _α_ ) [= 1 + (1] _[ −]_ _[α]_ [) + (1] _[ −]_ _[α]_ [)][2][ + (1] _[ −]_ _[α]_ [)][3][ +] _[ · · ·]_ [ +]



_α_ _[−]_ [1] = 1 + (1 __ _α_ ) + (1 __ _α_ ) [2] + (1 __ _α_ ) [3] + _· · ·_ +







_α_ _[−]_ [1] =







_∞_

�(1 __ _α_ ) _[i]_ _._





_i_ =0







The same can be generalized for a matrix, i.e., given a matrix **A** __ R _[d][×][d]_, we can write **A** _[−]_ [1] as

follows:







**A** _[−]_ [1] =







_∞_

�( **I** __ **A** ) _[i]_ _._





_i_ =0





20





Note for the above to hold, matrix **A**, where we represent eig( **A** ) as the eigenvalues of matrix **A**,

we should have the following condition to hold, 0 _<_ eig( **A** ) _<_ 1. Note here we would regularize **A**

to ensure that all eigenvalues are positive, and then we can always scale the matrix **A**, by its biggest

eigenvalue to ensure that the above condition holds. Let say _η_ = 1 _/_ max eig( **A** ). Then we can

write the following:



**A** _[−]_ [1] = _[η]_



_η_ **[A]** _[−]_ [1]



= _η_ ( _η_ **A** ) _[−]_ [1]







= _η_







__

�( **I** __ _η_ **A** ) _[i]_ _._





_i_ =0







As _η_ **A** would always satisfy the above condition.





**C.3** **Neumann Approximation for Hessian Vector Product**





Given we have seen how we can approximate the Inverse of a matrix without relying _O_ ( _d_ [3] ) operations,

through Neumann approximation, lets look what needs to be done for our updates. Recall that the

update , φ_ (8) and (15) were,









- __ 1

__ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )





_ϕ_



~~�~~ ~~�~~   - ~~�~~

**A**







( , φ_ ))



= _−_ _[∂J]_ [(] _[θ]_ [(] _[ϕ, φ]_ [))]

_ϕ_ _θ_ ( , φ_ )







_J_ ( _θ_ ( , φ_ ))







_θ_ ( , φ_ )



~~�~~ �� ~~�~~

_v_









__ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )





_θ_ ( , φ_ )



~~�~~ ~~�~~  - ~~�~~

**H**







and









- __ 1

__ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )





_φ_



   - ~~��~~ ~~�~~

**B**







__ - _J_ ( _θ_ ( , φ_ )) __ [1]









[1] 2 _[∥][γ][φ][∥]_ [2][�]







)) __ 2 _[∥][γ][φ][∥]_



= _−_ _[∂J]_ [(] _[θ]_ [(] _[ϕ, φ]_ [))]

_φ_ _θ_ ( , φ_ )







_θ_ ( , φ_ )



~~�~~ ~~��~~ ~~�~~

_v_









__ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )





_θ_ ( , φ_ )



~~�~~  - ~~�~~ ~~�~~

**H**









__ _[∂γ][φ]_



_φ_ _[.]_







Let us look closely at the update for _ϕ_ and we can generalize the updates easily for the case of _φ_ .





_J_ ( _θ_ ( , φ_ ))



= _−v_ **H** _[−]_ [1] **A**

_ϕ_





We first look at how we can approximate the value of _v_ **H** _[−]_ [1] efficiently, as we can always make use

of the Jacobian Vector product later to get ( _v_ **H** _[−]_ [1] ) **A**, as _v_ **H** _[−]_ [1] becomes a vector. Let us assume we

wish to run the Neumann approximation up to _n_ steps, i.e., we want to approximate **H** _[−]_ [1] up to _n_

order Neumann expansion,







_η_ ( _η_ **H** _[−]_ [1] ) __ _η_







_n_

�( _I_ _η_ **H** ) _[i]_ (12)





_i_ =0







Here we are assuming that the outer optimization for update (1) is for the function _J_ ( _θ_ ( , φ_ )) and

the inner optimization which is represented by the update (3) is _f_ ( _θ_ ( , φ_ ) _, ϕ, φ_ ), i.e.,







∆( , rp_ ) = _[∂J]_ [(] _[θ]_ [(] _[ϕ, φ]_ [))]









[(] _[ϕ, φ]_ [))]



_,_ ∆( , ϕ, φ_ ) = _[∂f]_ [(] _[θ]_ [(] _[ϕ, φ]_ [)] _[, ϕ, φ]_ [)]

_θ_ _θ_







_._

_θ_







The most common form in which _f_ (; _B_ ) is usually defined is the following:





















_._







1

_f_ ( , ϕ, φ_ ; _B_ ) :=

_|B|_













_τ_ _B_









- log( _πθ_ ( _St_ _[τ]_ _[, A]_ _t_ _[τ]_ [))]



_t_ =0







_T_










_T_











- _γφ_ _[j][−][t]_ _rϕ_ ( _Sj_ _[τ]_ _[, A]_ _j_ _[τ]_ [)]



_j_ = _t_







21





**Algorithm 2:** Vector Hessian Inverse Product for (8) i.e., _v_ **H** _[−]_ [1]



**1 Input:** , ϕ, φ, J, f, n, η, D_ off _, D_ on

**2** _v_ grad( _J_ ( _θ_ ; _D_ on) _, θ_ )



**3** _v_ _[′]_ __  ×_ grad( _f_ ( , ϕ, φ_ ; _D_ off) _, θ_ )



**4 Let:** _v_ 0 __ _v, p_ 0 __ _v_



**5 for** _i_ [0 _, n_ ) **do**



**6** _vi_ +1 __ _vi_ grad( _v_ _[′]_ _, θ,_ grad_outputs = _vi_ )



**7** _pi_ +1 __ _pi_ + _vi_ +1



**8 Return:** _ηpn_ ; // Approximation of _v_ **H** _[−]_ [1] as in (12)





Similarly this can be defined for _J_, except making use of _rp_ and problem defined _γ_ :





















_._







1

_J_ ( _θ_ ; _B_ ) :=

_|B|_













_τ_ _B_









- log( _πθ_ ( _St_ _[τ]_ _[, A]_ _t_ _[τ]_ [))]



_t_ =0







_T_










_T_











- _γ_ _[j][−][t]_ _rp_ ( _Sj_ _[τ]_ _[, A]_ _j_ _[τ]_ [)]



_j_ = _t_







Finally, once we have _v_ **H** _[−]_ [1], we can use the Vector Jacobian Product to calculate ( _v_ **H** _[−]_ [1] ) **A** as

described in Algorithm 3:





**Algorithm 3:** Update for _ϕ_, i.e. (8) i.e., _v_ **H** _[−]_ [1] **A**







**1 Input:** , ϕ, φ, J, f, n, η, D_ off _, D_ on

**2** _v_ Algorithm 2 ( , ϕ, φ, J, f, n, η, D_ off _, D_ on)







**3** _v_ _[′]_ __ grad( _f_ ( , ϕ, φ_ ; _D_ off) _, θ_ )







**4** ∆ _ grad( _v_ _[′]_ _, ϕ,_ grad_outputs = _v_ )







**5 Return** ∆ _ϕ_





We can similarly derive updates for _φ_ . Note we are not including the different forms of regularizers





**Algorithm 4:** Update for _ϕ_, i.e. (15) i.e., _v_ **H** _[−]_ [1] **B**







**1 Input:** , ϕ, φ, J, f, n, η, D_ off _, D_ on

**2** _v_ Algorithm 2 ( , ϕ, φ, J, f, n, η, D_ off _, D_ on)







**3** _v_ _[′]_ __ grad( _f_ ( , ϕ, φ_ ) _, D_ off) _, θ_ )







**4** ∆ _ grad( _v_ _[′]_ _, φ,_ grad_outputs = _v_ )







**5 Return** ∆ _φ_





over here to reduce clutter, but adding them is simple.





**C.4** **Pseudo Code (Algorithm 5)**





Lines 810 and 2123 of Algorithm 5 represent the inner optimization process, and the outer

optimization process if from lines 16-17. Lines 810 is the initial step of updates to converge to

the current values of , φ_, and from there onwards after each update of outer optimization, we

consequently update the policy in (2123). The flow of the algorithm is show in Figure 4.





As discussed in Section D, using regularizers in ∆( , ϕ, φ_ ) smoothens the objective _J_ ( _θ_ ( , φ_ )) with

respect to _ϕ_ and _φ_ . This is helpful as gradual changes in _rϕ_ an _γφ_ can result in gradually changes in

the fixed point for the inner optimization. Therefore, for computational efficiency, we initialize the

policy parameters from the fixed-point of the previous inner-optimization procedure such that the

inner-optimization process may start close to the new fixed-point.





In lines 810, the inner optimization for the policy parameters _θ_ are performed till (approximate)

convergence. Note that only trajectories from past interactions are used and no new-trajectories are

sampled for the inner optimization.





22





**Algorithm 5:** BARFI: Behavior Alignment Reward Functions Implicit optimization





**1 Input:** _J, f, αθ, αϕ, αφ, η, n, δ,_ optim _, E, Ni, N_ 0 _,_



**2 Initialize:** _πθ, , γφ_

**3 Initialize:** optim _ optim( _αθ_ ) _,_ optim _ optim( _αϕ_ ) _,_ optim _ optim( _αφ_ )



**4** _D_ off __ [ ]



# Collect a batch of data for warmup period



**5 for** _e_ [1 _, N_ 0) **do**



**6** Generate _τe_ using _πθ_

**7** Append _τe_ to _D_ off

# Initial training steps using warmup data



**8 for** _i_ [0 _, Ni_ + _N_ 0) **do**



**9** Sample a batch of trajectories _B_ from _D_ off

# Update policy



**10** _ _θ_ + optim _θ_ (grad( _f_ ( , ϕ, φ_ ; _B_ ) _, θ_ ))

# Start reward alignment



**11 for** _e_ [ _N_ 0 _, E_ ) **do**



# Collect a batch of on-policy data



**12** _D_ on __ [ ]



**13** **for** _j_ [0 _, δ_ ) **do**



**14** Generate trajectory _τe_ + _j_ using _πθ_ and append in _D_ on



**15** _e_ _e_ + _δ_

# Update _rϕ_ and _γφ_

**16** ∆ _ Algorithm 3( , ϕ, φ, J, f, n, η, D_ off _, D_ on)



**17** ∆ _ Algorithm 4( , ϕ, φ, J, f, n, η, D_ off _, D_ on)



**18** _ _ϕ_ + optim _ϕ_ (∆ _ϕ_ )



**19** _ _φ_ + optim _φ_ (∆ _φ_ )



**20** _D_ off _D_ off + _D_ on

# Learn policy for new reward function, initializing from the last



**21** **for** _i_ [0 _, Ni_ ) **do**



**22** Sample a batch of trajectories _B_ from _D_ off

# Update policy



**23** _ _θ_ + optim _θ_ (grad( _f_ ( , ϕ, φ_ ; _B_ ) _, θ_ ))















Figure 4: **Algorithm Flow:** The change in different parameters





In Lines 1314, a new batch _D_ on of data is sampled using the policy returned by the inner-optimization

process. This data is used to compute _J_ ( _θ_ ( , φ_ )) _/∂θ_ ( , φ_ ). Existing data _D_ off that was used in the

inner-optimization process is then used to compute _θ_ ( , φ_ ) _/∂ϕ_ and _θ_ ( , φ_ ) _/∂φ_ . Using these in

(8) and (15), the parameters for _rϕ_ and _γφ_ are updated in Lines 16 and 17, respectively.



Finally, the new data _D_ on is merged into the existing data _D_ off and the entire process continues.





**C.5** **Note on Approximation**





An important limitation of the methods discussed above is that _θ_ ( , φ_ ) is considered such that

∆( _θ_ ( , φ_ ) _, ϕ, φ_ ) = 0, i.e., the Alg is run to convergence. In practice, we only execute Alg for a

predetermined number of update steps that need not result in convergence to an optimum _exactly_ .

However, the impact of this approximation can be bounded by assuming convergence to an _ϵ_ neighborhood of the optima [49]. Furthermore, due to smoothness in the functional space, slight





23





changes to _ϕ_ and _φ_ should result in slight shifts in the optimum _θ_ ( , φ_ ). The continuity property

allows for improvements in the optimization process: it suffices to initialize the parameters of each

inner-loop optimization problem with the final parameters of the approximate fixed point solution,

( , φ_ ), identified in the previous iteration of the inner loop. The complete resulting algorithm is

presented in the appendix as Algorithm 5.





**C.6** **Path-wise Bi-level Optimization**





An alternative approach for computing the term **(b)** in (4) is possible. The formulation of BARFI

described above, based on implicit bi-level optimization, is agnostic to the optimization path taken

by Alg. For the sake of completeness, let us also consider a version of BARFI that does take into

account the path followed by the inner optimization loop. This is advantageous because it allows

us to eliminate the need for the convergence criteria (5). We call this variant BARFI unrolled.

The main difference, in this case, is that when computing the term **(b)** in (4), we now consider each

inner update step until the point _θ_ ( , φ_ ) is reachedwhere the sequence of steps depends on the

specific Alg used for the inner updates. Details are deferred to Appendix C. Notice that this approach

results in a path-wise optimization process that can be more demanding in terms of computation and

memory. We further discuss this issue, and demonstrate the efficacy of this alternative approach, in

the empirical analyses section (Section **??** ).





**D** **Smoothing the objective**





To understand why _J_ ( _θ_ ( , φ_ )) might be ill-conditioned is to note that, often a small perturbation in

the reward function doesnt necessarily lead to a change in the corresponding optimal policy. This

can lead lack of gradient directions in the neighborhood of , φ_ for gradient methods to be effective.

This issue can be addressed by employing common regularization techniques like L2 regularization

of the policy parameters or entropy regularization for the policy [6] . We discuss two ways to regularize

the objective in the upcoming sections.





**D.1** **L2 Regularization**





To understand how severely ill-conditioned _J_ ( _θ_ ( , φ_ )) can be, notice that a small perturbation in

the reward function often does not change the corresponding optimal policies or the outcome of a

policy optimization algorithm Alg. Therefore, if the parameters of the behavior alignment reward are

perturbed from _ϕ_ to _ϕ_ _[′]_, it may often be that _J_ ( _θ_ ( , φ_ )) = _J_ ( _θ_ ( _ϕ_ _[′]_ _, φ_ )) and this limits any gradient

based optimization for _ϕ_ as _J_ ( _θ_ ( , φ_ )) _/∂ϕ_ is 0. Similarly, minor perturbations in _φ_ may result in

no change in _J_ ( _θ_ ( , φ_ )) either.





Fortunately, there exists a remarkably simple solution: incorporate regularization for the _policy_

_parameters θ_ in objective for Alg in the inner-level optimization. For example, the optimal policy for

the following regularized objective E _πθ_ [ [�] _[T]_ _t_ =0 _[γ]_ _φ_ _[t]_ _[r][ϕ]_ [(] _[S][t][, A][t]_ [)]] _[ −]_ _[λ]_ 2 _[∥][θ][∥]_ [2][ varies smoothly to trade-off]



between the regularization value of _θ_ and the magnitude of the performance characterized by ( _rϕ, γφ_ ),

which changes with the values of _rϕ_ and _γφ_ . See Figure 5 for an example with L2 regularization.





**D.2** **Entropy Regularized**





In Section D.1, smoothing of _J_ ( _θ_ ( , φ_ )) was done by using L2 regularization on the policy parameters

_θ_ in the inner-optimization process. However, alternate regularization methods can also be used. For

example, in the following we present an alternate update rule for _θ_ based on entropy regularization,





















_._







∆( , ϕ, φ_ ) := E _D_







_T_










_ψθ_ ( _St, At_ )



_t_ =0







_T_











- _γφ_ _[j][−][t]_ ( _rϕ_ ( _Sj, Aj_ ) __ _λ_ ln _πθ_ ( _Sj, Aj_ ))





_j_ = _t_







6This regularization is performed so as to avoid a noninvertible Hessian as we had discussed in Section 5





24





Figure 5: **(Left)** A bandit problem, where the data is collected from a policy _β_ that samples action _A_

mostly. **(Middle)** Each point on the 3D surface corresponds to the performance of _θ_ ( ,_ 1) returned

by an Alg that uses the update ruleoff( , ϕ,_ 1) corresponding to the value of _rϕ_ for actions _A_ and

_C_ in the bottom axes; _rθ_ for action _B_ is set to 0 to avoid another variable in a 3D plot. Notice that

small perturbation in _rϕ_ may lead to no or sudden changes in _J_ ( _θ_ ( ,_ 1)). **(Right)** Performance of

_θ_ ( ,_ 1) returned by an Alg that uses the update ruleoff( , ϕ,_ 1) __ _θ_ that incorporates gradient of

the L2 regularizer. Vector fields in Figure 1 were also obtained from this setup.





Notice that new update rule for _ϕ_ and _φ_ can be obtained from steps (4) to (15) with the following **A**,

**B**, and **H** instead, where for shorthand _θ_ _[∗]_ = _θ_ ( , φ_ ),







_T_



- _ψθ_ _[∗]_ ( _St, At_ )





_t_ =0







_ϕ_









- _T_



 







- _γφ_ _[j][−][t]_ _rϕ_ ( _Sϕj, Aj_ )



_j_ = _t_









- __ []



_,_







**A** = E _D_





**B** = E _D_





**H** = E _D_





















- _T_



- _ψθ_ _[∗]_ ( _St, At_ )



_θ_ _[∗]_



_t_ =0







_T_









��



_γφ_ _[j][−][t]_ ( _rϕ_ ( _Sj, Aj_ ) __ _λ_ ln _πθ_ _[∗]_ ( _Sj, Aj_ ))

_φ_







��









- _T_



- _ψθ_ _[∗]_ ( _St, At_ )





_t_ =0









- _T_











- _T_



 



_j_ = _t_







_,_









__ _λψθ_ _[∗]_ ( _St, At_ )







_._









- _T_



 







- _γφ_ _[j][−][t]_ ( _rϕ_ ( _Sj, Aj_ ) __ _λ_ ln _πθ_ _[∗]_ ( _Sj, Aj_ ))





_j_ = _t_

















- _T_ ��



 - _γφ_ _[j][−][t]_ _ψθ_ _[∗]_ ( _Sj, Aj_ ) _[⊤]_





_j_ = _t_







**E** **Meta Learning via Implicit Gradient: Derivation**





The general technique of implicit gradients [14, 34, 19] has been used in a vast range of applications,

ranging from energy models [13, 36], differentiating through black-box solvers [61], few-shot learning



[38, 49], model-based RL [50], differentiable convex optimization neural-networks layers [4, 2], to

hyper-parameter optimization [37, 8, 12, 40]. In this work, we show how implicit gradients can also

be useful to efficiently leverage auxiliary rewards _ra_ and overcome various sub-optimalities.





Taking total derivative in (5) with respect to _ϕ_,







_d_ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )







) _, ϕ, φ_ )



= _[∂]_ [∆(] _[θ]_ [(] _[ϕ, φ]_ [)] _[, ϕ, φ]_ [)]

_dϕ_ _ϕ_









[)] _[, ϕ, φ]_ [)]



+ _[∂]_ [∆(] _[θ]_ [(] _[ϕ, φ]_ [)] _[, ϕ, φ]_ [)]

_ϕ_ _θ_ ( , φ_ )









_[θ]_ [(] _[ϕ, φ]_ [)] _[, ϕ, φ]_ [)] _θ_ ( , φ_ )



_θ_ ( , φ_ ) _ϕ_







= 0 _._ (13)

_ϕ_







Let us try to understand why the above is true, considering the finite difference approach for this

derivative,







) _, ϕ, φ_ ) ∆( _θ_ ( _ϕ_ + _dϕ, φ_ ) _, ϕ_ + _dϕ, φ_ ) __ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )



= lim

_dϕ_ _∥→_ 0 _dϕ_







_d_ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )







_dϕ_







= [0] _[ −]_ [0] = 0 _,_



_dϕ_







∆( _θ_ ( _ϕ_ + _dϕ, φ_ ) _, ϕ_ + _dϕ, φ_ ) = ∆( _θ_ ( , φ_ ) _, ϕ, φ_ ) = 0, as _θ_ ( _·, ·_ ) defines convergence to fixed point.





By re-arranging terms in (13) we obtain the term (b) in (4),







, φ_ ) - __ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )



= _−_

_ϕ_ _θ_ ( , φ_ )









- __ 1 __ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )



_._ (14)

_ϕ_







_θ_ ( , φ_ )







_θ_ ( , φ_ )







25





By combining (14) with (4) we obtain the desired gradient expression for _ϕ_,









- __ 1

__ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )



_,_



_ϕ_



   - ��   **A**







_J_ ( _θ_ ( , φ_ ))







( , φ_ ))



= _−_ _[∂J]_ [(] _[θ]_ [(] _[ϕ, φ]_ [))]

_ϕ_ _θ_ ( , φ_ )







_θ_ ( , φ_ )









__ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )



_θ_ ( , φ_ )



 - ~~��~~  **H**







and following similar steps, it can be observed that the gradient expression for _φ_,









- __ 1

__ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )



_φ_



   - ~~��~~   **B**









[1] 2 _[∥][γ][φ][∥]_ [2][�]







__ - _J_ ( _θ_ ( , φ_ )) __ [1]







)) __ 2 _[∥][γ][φ][∥]_



= _−_ _[∂J]_ [(] _[θ]_ [(] _[ϕ, φ]_ [))]

_φ_ _θ_ ( , φ_ )









__ ∆( _θ_ ( , φ_ ) _, ϕ, φ_ )



_θ_ ( , φ_ )



 - ~~�~~  -  **H**









__ _[∂γ][φ]_



_φ_ _[,]_







_θ_ ( , φ_ )







where using _θ_ _[∗]_ as a shorthand for _θ_ ( , φ_ ) the terms **A** _,_ **B** and **H** can be expressed as







_T_



- _ψθ_ _[∗]_ ( _St, At_ )





_t_ =0







_ϕ_









- _T_



- _ψθ_ _[∗]_ ( _St, At_ )





_t_ =0









- _T_



 



_j_ = _t_







��



_γφ_ _[j][−][t]_

_φ_ _[r][ϕ]_ [(] _[S][j][, A][j]_ [)]





(15)







_,_









- _T_



 







- _γφ_ _[j][−][t]_ _rϕ_ ( _ϕSj, Aj_ )



_j_ = _t_









- __ []



_,_ **B** = E _D_









- _T_









**A** = E _D_



















��









__ _λ._









- _T_



 







- _γφ_ _[j][−][t]_ _rϕ_ ( _Sj, Aj_ )





_j_ = _t_







**H** = E _D_









- _T_



 



_t_ =0







_ψθ_ _[∗]_ ( _St, At_ )



_θ_ _[∗]_







These provide the necessary expressions for updating _ϕ_ and _φ_ in the outer loop. As **A** involves an

outer product and **H** involves second derivatives, computing them _exactly_ might not be practical

when dealing with high-dimensions. Standard approximation techniques like conjugate-gradients or

Neumann series can thus be used to make it more tractable [40]. In our experiments, we made use of

the Neumann approximation to the Hessian Inverse vector product ( **AH** _[−]_ [1] ), which requires the same

magnitude of resources as the baseline policy gradient methods that we build on top off.





**Algorithm:** Being based on implicit gradients, we call our method BARFI, shorthand for _behavior_

_alignment reward functions implicit_ optimization. Overall, BARFI iteratively solves the bi-level

optimization specified in (2) by alternating between using (3) till approximate converge of Alg

to _θ_ ( , φ_ ) and then updating _rϕ_ and _γφ_ . Importantly, being based on (3) for sample efficiency,

Alg leverages only the past samples and does _not_ sample any new trajectories for the inner level

optimization. Further, due to policy regularization which smoothens the objective as discussed in

D, updates in _rϕ_ and _γφ_ changes the policy resulting from Alg gradually. Therefore, for compute

efficiency, we start Alg from the policy obtained from the previous inner optimization, such that it

is in proximity of the new fixed point. This allows BARFI to be both sample and compute efficient

while solving the bi-level optimization iteratively online. Pseudo-code for BARFI and more details

on the approximation techniques can be found in Appendix C.





**F** **Environment & Reward Details**





The first environment is a **GridWorld** (GW), where the start state is in the bottom left corner and a

goal state is in the top right corner. The agent receives an _rp_ of +100 on reaching the goal followed

by termination of the episode. The second environment is **MountainCar** (MC) [58], wherein we

make use of the sparse reward variant, wherein the agent receives a +1 reward on reaching on top

of the hill and 0 otherwise. The third environment is **CartPole** (CP) [16]. Finally, to assess the

scalability we pick HalfCheetah-v4 from **Mujoco** (MJ) suite of OpenAI Gym [9].





For each environment, we define two auxiliarly reward functions. For GridWorld, we define the

functions: _r_ aux [1] _,_ GW [:=] _[ −]_ [(] _[s][ −]_ _[s]_ [goal][)][2][, which provides the negative L2 squared distance from the goal]

position, and _r_ aux [1] _,_ GW [:= 50] _[×]_ **[1]** _[s][∈S]_ Center [, which provides an additional bonus of][ +50][ to the agent along]

the desired path to the goal state (i.e. the center states). In MountainCar the state is composed of two

components: the position _x_, and velocity v. The first auxiliary reward function, _r_ aux [1] _,_ MC [(] _[s, a]_ [) :=] _[ |]_ [v] _[|]_ [,]

encourages a higher absolute velocity of the car, and the second, _r_ aux [1] _,_ MC [(] _[s, a]_ [) :=] **[ 1]** [sign(v)][=] _[a]_ [,]

encourages the direction of motion to increase the magnitude of the velocity (also knows as the

_energy pumping policy_ [18]). For CartPole, we consider a way to reuse knowledge from a hand crafted

policy. CartPole can be solved using a Proportional Derivate (PD) controller [6], hence we tune a

PD controller, PD _[∗]_ : _SA_, to solve CartPole for the max possible return. We design two auxiliary





26





reward functions which make use of this PD controller. The first, _r_ aux [1] _,_ CP [(] _[s, a]_ [) := 5] _[ ×]_ **[ 1]** PD _[∗]_ ( _s_ )= _a_ _[−]_

(1 __ 1PD __ ( _s_ )= _a_ ), encourages the agent to match the action of the optimal PD controller, and penalizes it

for not matching. The second auxiliary reward function, _r_ aux [1] _,_ GW [(] _[s, a]_ [) :=] _[ −][r]_ aux [1] _,_ CP [(] _[s, a]_ [)][, encourages]

the agent to do the opposite. In the case of Mujoco, the reward function provided by the environment

is itself composed of multiple different functions. We explain the same and the respective auxiliary

functions for this case later.





We have considered several forms of information encoded as auxiliary rewards for these experiments. We have heuristic-based reward functions (i.e., _r_ aux [1] _,_ GW _[, r]_ aux [1] _,_ GW _[, r]_ aux [1] _,_ MC [). Reward func-]

tions that encode a guess of an optimal policy (i.e., _r_ aux [1] _,_ MC _[, r]_ aux [1] _,_ CP [) and reward functions that]

change the optimal policy (i.e., _r_ aux [1] _,_ GW _[, r]_ aux [1] _,_ CP [).] We also have rewards that only depend on

states (i.e., _r_ aux [1] _,_ GW _[, r]_ aux [1] _,_ GW _[, r]_ aux [1] _,_ MC [) as well as ones that depend on both state and actions (i.e.,]

_r_ aux [1] _,_ MC _[, r]_ aux [1] _,_ CP _[, r]_ aux [1] _,_ CP [). Therefore, we can test if][ BARFI][ can overcome misspecified auxiliary]

reward functions and does not hurt performance when well-specified.





**Mujoco Environment** In this experiment, we investigate the scalability of BARFI in learning control

policies for high-dimensional state spaces with continuous action spaces. In HalfCheetah-v4 the

agents task is to move forward, and it receives a reward based on its forward movement (denoted

as _rp_ ). Additionally, there is a small cost associated with the magnitude of torque required for

action execution (denoted as _r_ aux( _s, a_ ) := _c|a|_ [2] 2 [). The weighting between the main reward and]

the control cost is pre-defined as _c_ for this environment, and we form the reward as ˜ _r_ ( _s, a_ ) =

_rp_ ( _s, a_ ) + _r_ aux( _s, a_ ). We explore how an arbitrary weighting choice can cause the agent to fail in

learning, while BARFI is still able to adapt and learn the appropriate weighting, remaining robust

to possible misspecification. We consider two different weightings for the control cost: the first

weighting, denoted as _r_ aux [1] _,_ MJ [(] _[s, a]_ [) :=] _[ −][c][|][a][|]_ [2][2][, uses the default setting, while the second weighting,]

denoted as _r_ aux [1] _,_ MJ [(] _[s, a]_ [) :=] _[ −]_ [4] _[c][|][a][|]_ [2] 2 [, employs a scaled variant of the first weighting. Additionally, we]

implement the path-wise bi-level optimization variant i.e., BARFI Unrolled. In these experiments,

we keep the value of _γ_ fixed to isolate the agents capability to adapt and recover from an arbitrary

reward weighting. We will also measure what computational and performance tradeoffs we might

have to make between using the implicit version i.e., BARFI against, the path-wise version i.e.,

BARFI Unrolled.





**G** **Details for the Empirical Results**





**G.1** **Implementation Details**





In this section we will briefly describe the implementation details around the different environments

that were used.





**GridWorld (GW):** In the case of GridWorld we made use of the Fourier basis (of Order = 3) over

the raw coordinates of agent position in the GridWorld. Details about this could be found in the

src/utils/Basis.py file.





**MountainCar (MC):** For this environment, to reduce the limitation because of the function approximator we used TileCoding [58], which offers a suitable representation for the MountainCar problem.

We used 4 Tiles and Tilings of 5.





**CartPole (CP):** For CartPole also make use of Fourier Basis of (Order = 3), with linear function

approximator on top of that.





**MuJoco (MJ):** For this we made use of a neural network with 1 hidden layer of 32 nodes and

ReLU activation as the function approximator over the raw observations. The output of the policy is

continuous actions, hence we used a Gaussian representation, where the policy outputs the mean of

the multivariate Gaussian and we used a fixed diagonal standard deviation, fixed to _σ_ = 0 _._ 1.





**General Details:** All the outer returns are evaluated without any discounting, whereas all the inner

optimizations were initialized with _γφ_ = 0 _._ 99. Hence to do this we made _φ_ a single bias unit,

initialized to 4 _._ 6, and passed through a sigmoid (i.e., _σ_ (4 _._ 6) = 0 _._ 99).





For GW, CP and MC _rϕ_ is defined as below



_rϕ_ ( _s, a_ ) = _ϕ_ 1( _s_ ) + _ϕ_ 2( _s_ ) _rp_ + _ϕ_ 3( _s_ ) _ra_





27





Wherein _ϕ_ 1 _, ϕ_ 2 _, ϕ_ 3 are scalar outputs of a 3-headed function, in this case simply a linear layer over

the states inputs.





Whereas in the case of MJ, we have





_rϕ_ ( _s, a_ ) = _ϕ_ 1 + _rp_ + _ϕ_ 3 _ra_





Wherein _ϕ_ 1 is initialized to zero and _ϕ_ 3 is 1 _._ 0 act like bias units.





Gradient normalization was used for all the cases where neural nets were involved (i.e., MJ), and

also for MJ we modified the Baseline (REINFORCE) update to subtract the running average of the

performance as a baseline to get acceptable performance for the baseline method.





**G.2** **Hyper-parameter Selection**





As different make use of different function approximators the range of hyper-params can vary we talk

about all the above over here.





Best-performing Parameters for different methods and environments are listed where





Table 3: Hyper-parameters for GridWorld



**Hyper Parameter** **BARFI Value** **REINFORCE Value** **Actor-Critic Value**



_αθ_ 1 _×_ 10 _[−]_ [3] 1 _×_ 10 _[−]_ [3] 1 _×_ 10 _[−]_ [3]



_αϕ_ 5 _×_ 10 _[−]_ [3] __ __

_αφ_ 5 _×_ 10 _[−]_ [3] __ __

optim RMSprop RMSprop RMSprop

_λθ_ 0 _._ 25 0 _._ 25 0 _._ 25

_λϕ_ 0 _._ 0625 __ __

_λφ_ 4 _._ 0 __ __

Buffer 1000 __ __

Batch Size 1 1 1

_η_ 0 _._ 0005 __ __

_δ_ 3 __ __

_n_ 5 __ __

_N_ 0 150 __ __

_Ni_ 15 __ __





Table 4: Hyper-parameters for MountainCar



**Hyper Parameter** **BARFI Value** **REINFORCE Value** **Actor-Critic Value**





_αθ_ 0 _._ 015625 0 _._ 125 0 _._ 03125

_αϕ_ 0 _._ 0625 __ __

_αφ_ 0 _._ 0625 __ __

optim RMSprop RMSprop RMSprop

_λθ_ 0 _._ 0 0 _._ 0 0 _._ 25

_λϕ_ 0 _._ 0 __ __

_λφ_ 0 _._ 25 __ __

Buffer 50 __ __

Batch Size 1 1 1

_η_ 0 _._ 001 __ __

_δ_ 3 __ __

_n_ 5 __ __

_N_ 0 50 __ __

_Ni_ 15 __ __





**Hyperparameter Sweep** : Here we list the details about how we swept the values for different

hyper-params. We used PyTorch [46] for all our implementations. We usually used an optimizer

between RMSProp or Adam with default parameters as provided in Pytorch. For _αθ ∈{_ 5 _×_





28





Table 5: Hyper-parameters for CartPole



**Hyper Parameter** **BARFI Value** **REINFORCE Value** **Actor-Critic Value**



_αθ_ 1 _×_ 10 _[−]_ [3] 1 _×_ 10 _[−]_ [3] 5 _×_ 10 _[−]_ [4]



_αϕ_ 1 _×_ 10 _[−]_ [3] __ __

_αφ_ 5 _×_ 10 _[−]_ [3] __ __

optim RMSprop RMSprop RMSprop

_λθ_ 1 _._ 0 1 _._ 0 0 _._ 0

_λϕ_ 0 _._ 0 __ __

_λφ_ 4 _._ 0 __ __

Buffer 10000 __ __

Batch Size 1 1 1

_η_ 0 _._ 0005 __ __

_δ_ 3 __ __

_n_ 5 __ __

_N_ 0 150 __ __

_Ni_ 15 __ __





Table 6: Hyper-parameters for MuJoco



**Hyper Parameter** **BARFI Value** **REINFORCE Value** **Actor-Critic Value**



_αθ_ 7 _._ 5 _×_ 10 _[−]_ [5] 5 _×_ 10 _[−]_ [4] 2 _._ 5 _×_ 10 _[−]_ [4]



_αϕ_ 2 _._ 5 _×_ 10 _[−]_ [3] __ __

_αφ_ 0 _._ 0 __ __

optim Adam Adam Adam

_λϕ_ 0 _._ 0625 __ __

_λφ_ 0 _._ 0 __ __

Buffer 50 __ __

Batch Size 1 1 1

_η_ 0 _._ 0005 __ __

_δ_ 3 __ __

_n_ 5 __ __

_N_ 0 30 __ __

_Ni_ 15 __ __





10 _[−]_ [3] _,_ 2 _._ 5 _×_ 10 _[−]_ [3] _,_ 1 _×_ 10 _[−]_ [3] _,_ 5 _×_ 10 _[−]_ [4] _,_ 2 _._ 5 _×_ 10 _[−]_ [4] _,_ 1 _×_ 10 _[−]_ [4] _,_ 7 _._ 5 _×_ 10 _[−]_ [5] _}_, we use similar ranges

for _αϕ, αφ_ (which tend to be larger). For _λθ_ and _λϕ_, we sweeped from [0 _,_ 0 _._ 25 _,_ 0 _._ 5 _,_ 1 _._ 0] and for _λγ_

we sweeped from [0 _,_ 0 _._ 25 _,_ 1 _._ 0 _,_ 4 _._ 0 _,_ 16 _._ 0]. We simply list ranges for different values and later we

present sensitivity curves showing that these values are usually robust for BARFI across different

methods as we can see from the tables above. _ [1 _,_ 3 _,_ 5], _n_ [1 _,_ 3 _,_ 5], _Ni_ [1 _,_ 3 _,_ 6 _,_ 9 _,_ 12 _,_ 15],

_ [1 _×_ 10 _[−]_ [3] _,_ 5 _×_ 10 _[−]_ [4] _,_ 1 _×_ 10 _[−]_ [4] ], _N_ 0 __ [30 _,_ 50 _,_ 100 _,_ 150], buffer __ [25 _,_ 50 _,_ 100 _,_ 1000]. _α_ for

Tilecoding was adopted from [58] and hence similar ranges were sweeped in that case. Most sweeps

were done with around 10 seeds, and later the parameter ranges were reduced and performed with

more seeds.





**G.3** **Compute**





The computer is used for a cluster where the CPU class is Intel Xeon Gold 6240 CPU @2 _._ 60GHz.

The total compute required for GW was around 3 CPU years [7], CP also required around 3 CPU years,

and MC required around 4 CPU years. For MJ we needed around 5-6 CPU years. In total we utilized

around 15-16 CPU years, where we needed around 1 GB of memory per thread.





71 CPU year := Compute equal to running a CPU thread for a year.





29





**H** **Extra Results & Ablations**





**H.1** **Experiment on partially misspecified** _r_ **aux**





In these set of experiments, we consider the case where auxiliary reward signals could be helpful

only in a fewpossibly arbitrarystate-action pairs. In general, we anticipate that solutions in this

scenario would be such that assigns weightings, allowing the agent to avoid regions where might be

misspecified. Meanwhile, the agent would still make use of the places where is well specified and

useful.





We consider another _r_ aux in the GridWorld domain in which the auxiliary reward is misspecified for

a subset of states near the starting position. Meanwhile, it is still well-specified for states near the

goal (Figure 6 (a)). Figures 6 (b) and (c) illustrate the learned and the weighting on, showcasing the

agents ability to depict the expected behavior described above.







(a) _r_ aux( _s_ )

















|Col1|70<br>60<br>50<br>40<br>30<br>20|

|---|---|

||10<br>|

||0<br>|







|Col1|101<br>100<br>0<br>10|

|---|---|

||1<br>|

|||





(c) The net reward induced i.e., _rp_ ( _s_ ) +
_ϕ_ 3( _s_ ) _r_ aux( _s_ )



(b) Learned _ϕ_ 3( _s_ ), the weighting on _r_ aux( _s_ )


(d) Learning performance



Figure 6: 40 random seeds were used to generate the plots. The starting state is at the bottom left and
the goal state is at the top right corner. The primary reward _rp_ is +100 when the agent reaches the
goal and 0 otherwise. **(a)** A state-dependent _r_ aux function that is partially misspecified (in the blue
region _r_ aux provides a value equal to the **Manhattan distance**, thereby incentivizing the agent to stay
near the start), and partially well specified (in the red region, it is the **negative Manhattan distance**
and encourages movement towards the goal). **(b)** The state-dependent weighting _ϕ_ 3( _s_ ) learned by
BARFI negates the positive value from _r_ aux near the start state. **(c)** The effective reward function
_rp_ ( _s_ ) + _ϕ_ 3( _s_ ) _r_ aux( _s_ ) learned by BARFI. **(d)** Learning curves for BARFI, and the baseline that uses
a naive addition ( _rp_ ( _s_ ) + _r_ aux( _s_ )) of the above auxiliary reward.


30


**H.2** **Return based on learned** _rϕ_ **and** _γφ_


Figure 7 and Figure 8 summarize the achievable return based on _rϕ_ and the _γ_ learned by the agent
across different domains and reward specification. We observe that REINFORCE often optimizes
the naive combination of reward for sure, but that doesn’t really lead to a good performance on _rp_,
whereas BARFI does achieve an appropriate return on _rϕ_, but is also able to successively decay _γ_
as the learning progress across different domains. Particularly notice Figure 7 (a) Bottom, where
REINFORCE does optimize aux return a lot, but actually fails to solve the problem, as it simply
learns to loop around the center state.


**H.3** **Ablations**


Figure 9 represents the ablation of BARFI on GridWorld with the misspecified reward for its different
params. We can see that usually having _η_ = 0 _._ 001 _,_ 0 _._ 0005, _n_ = 5 works for the approximation.


31


**MountainCar**



**GridWorld**



**CartPole**







**(a)** **(b)** **(c)**


Figure 8: **Learned discounting** _γφ_ **:** This figure illustrates the learned _γφ_ for BARFI and normal
_γ_ for other methods, the curves are chosen based on best-performing curves on _rp_, and averaged
over 20 runs (except 40 for GW). **(a) Top** - _r_ aux [1] _,_ GW [,] **[ Bottom]** [ –] _[ r]_ aux [2] _,_ GW [,] **[ (b) Top]** [ –] _[ r]_ aux [1] _,_ CP [,] **[ Bottom]**

- _r_ aux [2] _,_ CP [,] **[ (c) Top]** [ –] _[ r]_ aux [2] _,_ MC [,] **[ Bottom]** [ –] _[ r]_ aux [1] _,_ MC [. Mujoco is not included as the] _[ γ]_ [ was not learned in]
that case. We can observe that the agents start to learn to decay _γ_ at the appropriate pace. Note that
the curves for methods other than BARFI and BARFI Unrolled are overlapping as the baselines
don’t change the value of _γ_ .


32


98


97


96


95


94


100


80


60


40


20


98.0


97.5


97.0


96.5


96.0


95.5



2 12 2 10 2 8 2 6 2 4



95


90


85


80



75
2 12 2 10 2 8 2 6 2 4


98


97


96


95


94


93


2 [0] 2 [1] 2 [2] 2 [3]





99


98


97


96


95


94


93


92


2 12 2 10 2 8 2 6 2 4


98


96


94


92


90


88


86


2 17 2 15 2 13 2 11 2 9 2 7



95.0


94.5


94.0
2 [0] 2 [1] 2 [2]



Figure 9: **Sensitivity Curves:** The set of graphs representing the sensitivity of different hyperparams keeping all the other params fixed. The sensitivity is for BARFI in GW with _r_ aux,GW [2] [, i.e.,]
the misspecified reward. We choose the best-performing parameters and vary each parameter to see
its influence. The curves are obtained for 50 runs (seeds) in each case, and error bars are standard
errors. We can notice that _αθ_ and _αϕ_ can have a large influence, and tend to stay around similar
values. _λθ,ϕ,φ_ tends to help but doesn’t really influence a lot in terms of its magnitude, except larger
values of _λφ_ seem to do better. Smaller values of _η_ seems to work fine, hence something around
5 _×_ 10 _[−]_ [4] _,_ 1 _×_ 10 _[−]_ [3] usually should suffice. _n, δ_ can be chosen to around 5 and 3, and usually workout
fine. We also defined _Ni_ = 5 _× δ_ in this case.


33