File size: 41,142 Bytes
258fb37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 |
/* From https://github.com/jestan/easy-ecc */
#include "ecc.h"
#include <string.h>
#include "ogs-core.h"
#define NUM_ECC_DIGITS (ECC_BYTES/8)
#define MAX_TRIES 16
typedef unsigned int uint;
#if defined(__SIZEOF_INT128__) || ((__clang_major__ * 100 + __clang_minor__) >= 302)
#define SUPPORTS_INT128 1
#else
#define SUPPORTS_INT128 0
#endif
#if SUPPORTS_INT128
typedef unsigned __int128 uint128_t;
#else
typedef struct
{
uint64_t m_low;
uint64_t m_high;
} uint128_t;
#endif
typedef struct EccPoint
{
uint64_t x[NUM_ECC_DIGITS];
uint64_t y[NUM_ECC_DIGITS];
} EccPoint;
#define CONCAT1(a, b) a##b
#define CONCAT(a, b) CONCAT1(a, b)
#define Curve_P_16 {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFDFFFFFFFF}
#define Curve_P_24 {0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFEull, 0xFFFFFFFFFFFFFFFFull}
#define Curve_P_32 {0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, 0x0000000000000000ull, 0xFFFFFFFF00000001ull}
#define Curve_P_48 {0x00000000FFFFFFFF, 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF}
#define Curve_B_16 {0xD824993C2CEE5ED3, 0xE87579C11079F43D}
#define Curve_B_24 {0xFEB8DEECC146B9B1ull, 0x0FA7E9AB72243049ull, 0x64210519E59C80E7ull}
#define Curve_B_32 {0x3BCE3C3E27D2604Bull, 0x651D06B0CC53B0F6ull, 0xB3EBBD55769886BCull, 0x5AC635D8AA3A93E7ull}
#define Curve_B_48 {0x2A85C8EDD3EC2AEF, 0xC656398D8A2ED19D, 0x0314088F5013875A, 0x181D9C6EFE814112, 0x988E056BE3F82D19, 0xB3312FA7E23EE7E4}
#define Curve_G_16 { \
{0x0C28607CA52C5B86, 0x161FF7528B899B2D}, \
{0xC02DA292DDED7A83, 0xCF5AC8395BAFEB13}}
#define Curve_G_24 { \
{0xF4FF0AFD82FF1012ull, 0x7CBF20EB43A18800ull, 0x188DA80EB03090F6ull}, \
{0x73F977A11E794811ull, 0x631011ED6B24CDD5ull, 0x07192B95FFC8DA78ull}}
#define Curve_G_32 { \
{0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, 0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull}, \
{0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, 0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull}}
#define Curve_G_48 { \
{0x3A545E3872760AB7, 0x5502F25DBF55296C, 0x59F741E082542A38, 0x6E1D3B628BA79B98, 0x8EB1C71EF320AD74, 0xAA87CA22BE8B0537}, \
{0x7A431D7C90EA0E5F, 0x0A60B1CE1D7E819D, 0xE9DA3113B5F0B8C0, 0xF8F41DBD289A147C, 0x5D9E98BF9292DC29, 0x3617DE4A96262C6F}}
#define Curve_N_16 {0x75A30D1B9038A115, 0xFFFFFFFE00000000}
#define Curve_N_24 {0x146BC9B1B4D22831ull, 0xFFFFFFFF99DEF836ull, 0xFFFFFFFFFFFFFFFFull}
#define Curve_N_32 {0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull}
#define Curve_N_48 {0xECEC196ACCC52973, 0x581A0DB248B0A77A, 0xC7634D81F4372DDF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF}
static uint64_t curve_p[NUM_ECC_DIGITS] = CONCAT(Curve_P_, ECC_CURVE);
static uint64_t curve_b[NUM_ECC_DIGITS] = CONCAT(Curve_B_, ECC_CURVE);
static EccPoint curve_G = CONCAT(Curve_G_, ECC_CURVE);
static uint64_t curve_n[NUM_ECC_DIGITS] = CONCAT(Curve_N_, ECC_CURVE);
#if (defined(_WIN32) || defined(_WIN64))
/* Windows */
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <wincrypt.h>
static int getRandomNumber(uint64_t *p_vli)
{
HCRYPTPROV l_prov;
if(!CryptAcquireContext(&l_prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))
{
ogs_error("CryptAcquireContext() failed");
return 0;
}
CryptGenRandom(l_prov, ECC_BYTES, (BYTE *)p_vli);
CryptReleaseContext(l_prov, 0);
return 1;
}
#else /* _WIN32 */
/* Assume that we are using a POSIX-like system with /dev/urandom or /dev/random. */
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#ifndef O_CLOEXEC
#define O_CLOEXEC 0
#endif
static int getRandomNumber(uint64_t *p_vli)
{
int l_fd = open("/dev/urandom", O_RDONLY | O_CLOEXEC);
if(l_fd == -1)
{
ogs_error("open(/dev/urandom) failed");
l_fd = open("/dev/random", O_RDONLY | O_CLOEXEC);
if(l_fd == -1)
{
ogs_error("open(/dev/random) failed");
return 0;
}
}
char *l_ptr = (char *)p_vli;
size_t l_left = ECC_BYTES;
while(l_left > 0)
{
int l_read = read(l_fd, l_ptr, l_left);
if(l_read <= 0)
{ // read failed
close(l_fd);
ogs_error("read() failed");
return 0;
}
l_left -= l_read;
l_ptr += l_read;
}
close(l_fd);
return 1;
}
#endif /* _WIN32 */
static void vli_clear(uint64_t *p_vli)
{
uint i;
for(i=0; i<NUM_ECC_DIGITS; ++i)
{
p_vli[i] = 0;
}
}
/* Returns 1 if p_vli == 0, 0 otherwise. */
static int vli_isZero(uint64_t *p_vli)
{
uint i;
for(i = 0; i < NUM_ECC_DIGITS; ++i)
{
if(p_vli[i])
{
return 0;
}
}
return 1;
}
/* Returns nonzero if bit p_bit of p_vli is set. */
static uint64_t vli_testBit(uint64_t *p_vli, uint p_bit)
{
return (p_vli[p_bit/64] & ((uint64_t)1 << (p_bit % 64)));
}
/* Counts the number of 64-bit "digits" in p_vli. */
static uint vli_numDigits(uint64_t *p_vli)
{
int i;
/* Search from the end until we find a non-zero digit.
We do it in reverse because we expect that most digits will be nonzero. */
for(i = NUM_ECC_DIGITS - 1; i >= 0 && p_vli[i] == 0; --i)
{
}
return (i + 1);
}
/* Counts the number of bits required for p_vli. */
static uint vli_numBits(uint64_t *p_vli)
{
uint i;
uint64_t l_digit;
uint l_numDigits = vli_numDigits(p_vli);
if(l_numDigits == 0)
{
return 0;
}
l_digit = p_vli[l_numDigits - 1];
for(i=0; l_digit; ++i)
{
l_digit >>= 1;
}
return ((l_numDigits - 1) * 64 + i);
}
/* Sets p_dest = p_src. */
static void vli_set(uint64_t *p_dest, uint64_t *p_src)
{
uint i;
for(i=0; i<NUM_ECC_DIGITS; ++i)
{
p_dest[i] = p_src[i];
}
}
/* Returns sign of p_left - p_right. */
static int vli_cmp(uint64_t *p_left, uint64_t *p_right)
{
int i;
for(i = NUM_ECC_DIGITS-1; i >= 0; --i)
{
if(p_left[i] > p_right[i])
{
return 1;
}
else if(p_left[i] < p_right[i])
{
return -1;
}
}
return 0;
}
/* Computes p_result = p_in << c, returning carry. Can modify in place (if p_result == p_in). 0 < p_shift < 64. */
static uint64_t vli_lshift(uint64_t *p_result, uint64_t *p_in, uint p_shift)
{
uint64_t l_carry = 0;
uint i;
for(i = 0; i < NUM_ECC_DIGITS; ++i)
{
uint64_t l_temp = p_in[i];
p_result[i] = (l_temp << p_shift) | l_carry;
l_carry = l_temp >> (64 - p_shift);
}
return l_carry;
}
/* Computes p_vli = p_vli >> 1. */
static void vli_rshift1(uint64_t *p_vli)
{
uint64_t *l_end = p_vli;
uint64_t l_carry = 0;
p_vli += NUM_ECC_DIGITS;
while(p_vli-- > l_end)
{
uint64_t l_temp = *p_vli;
*p_vli = (l_temp >> 1) | l_carry;
l_carry = l_temp << 63;
}
}
/* Computes p_result = p_left + p_right, returning carry. Can modify in place. */
static uint64_t vli_add(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right)
{
uint64_t l_carry = 0;
uint i;
for(i=0; i<NUM_ECC_DIGITS; ++i)
{
uint64_t l_sum = p_left[i] + p_right[i] + l_carry;
if(l_sum != p_left[i])
{
l_carry = (l_sum < p_left[i]);
}
p_result[i] = l_sum;
}
return l_carry;
}
/* Computes p_result = p_left - p_right, returning borrow. Can modify in place. */
static uint64_t vli_sub(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right)
{
uint64_t l_borrow = 0;
uint i;
for(i=0; i<NUM_ECC_DIGITS; ++i)
{
uint64_t l_diff = p_left[i] - p_right[i] - l_borrow;
if(l_diff != p_left[i])
{
l_borrow = (l_diff > p_left[i]);
}
p_result[i] = l_diff;
}
return l_borrow;
}
#if SUPPORTS_INT128
/* Computes p_result = p_left * p_right. */
static void vli_mult(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right)
{
uint128_t r01 = 0;
uint64_t r2 = 0;
uint i, k;
/* Compute each digit of p_result in sequence, maintaining the carries. */
for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k)
{
uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
for(i=l_min; i<=k && i<NUM_ECC_DIGITS; ++i)
{
uint128_t l_product = (uint128_t)p_left[i] * p_right[k-i];
r01 += l_product;
r2 += (r01 < l_product);
}
p_result[k] = (uint64_t)r01;
r01 = (r01 >> 64) | (((uint128_t)r2) << 64);
r2 = 0;
}
p_result[NUM_ECC_DIGITS*2 - 1] = (uint64_t)r01;
}
/* Computes p_result = p_left^2. */
static void vli_square(uint64_t *p_result, uint64_t *p_left)
{
uint128_t r01 = 0;
uint64_t r2 = 0;
uint i, k;
for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k)
{
uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
for(i=l_min; i<=k && i<=k-i; ++i)
{
uint128_t l_product = (uint128_t)p_left[i] * p_left[k-i];
if(i < k-i)
{
r2 += l_product >> 127;
l_product *= 2;
}
r01 += l_product;
r2 += (r01 < l_product);
}
p_result[k] = (uint64_t)r01;
r01 = (r01 >> 64) | (((uint128_t)r2) << 64);
r2 = 0;
}
p_result[NUM_ECC_DIGITS*2 - 1] = (uint64_t)r01;
}
#else /* #if SUPPORTS_INT128 */
static uint128_t mul_64_64(uint64_t p_left, uint64_t p_right)
{
uint128_t l_result;
uint64_t a0 = p_left & 0xffffffffull;
uint64_t a1 = p_left >> 32;
uint64_t b0 = p_right & 0xffffffffull;
uint64_t b1 = p_right >> 32;
uint64_t m0 = a0 * b0;
uint64_t m1 = a0 * b1;
uint64_t m2 = a1 * b0;
uint64_t m3 = a1 * b1;
m2 += (m0 >> 32);
m2 += m1;
if(m2 < m1)
{ // overflow
m3 += 0x100000000ull;
}
l_result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
l_result.m_high = m3 + (m2 >> 32);
return l_result;
}
static uint128_t add_128_128(uint128_t a, uint128_t b)
{
uint128_t l_result;
l_result.m_low = a.m_low + b.m_low;
l_result.m_high = a.m_high + b.m_high + (l_result.m_low < a.m_low);
return l_result;
}
static void vli_mult(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right)
{
uint128_t r01 = {0, 0};
uint64_t r2 = 0;
uint i, k;
/* Compute each digit of p_result in sequence, maintaining the carries. */
for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k)
{
uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
for(i=l_min; i<=k && i<NUM_ECC_DIGITS; ++i)
{
uint128_t l_product = mul_64_64(p_left[i], p_right[k-i]);
r01 = add_128_128(r01, l_product);
r2 += (r01.m_high < l_product.m_high);
}
p_result[k] = r01.m_low;
r01.m_low = r01.m_high;
r01.m_high = r2;
r2 = 0;
}
p_result[NUM_ECC_DIGITS*2 - 1] = r01.m_low;
}
static void vli_square(uint64_t *p_result, uint64_t *p_left)
{
uint128_t r01 = {0, 0};
uint64_t r2 = 0;
uint i, k;
for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k)
{
uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
for(i=l_min; i<=k && i<=k-i; ++i)
{
uint128_t l_product = mul_64_64(p_left[i], p_left[k-i]);
if(i < k-i)
{
r2 += l_product.m_high >> 63;
l_product.m_high = (l_product.m_high << 1) | (l_product.m_low >> 63);
l_product.m_low <<= 1;
}
r01 = add_128_128(r01, l_product);
r2 += (r01.m_high < l_product.m_high);
}
p_result[k] = r01.m_low;
r01.m_low = r01.m_high;
r01.m_high = r2;
r2 = 0;
}
p_result[NUM_ECC_DIGITS*2 - 1] = r01.m_low;
}
#endif /* SUPPORTS_INT128 */
/* Computes p_result = (p_left + p_right) % p_mod.
Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */
static void vli_modAdd(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right, uint64_t *p_mod)
{
uint64_t l_carry = vli_add(p_result, p_left, p_right);
if(l_carry || vli_cmp(p_result, p_mod) >= 0)
{ /* p_result > p_mod (p_result = p_mod + remainder), so subtract p_mod to get remainder. */
vli_sub(p_result, p_result, p_mod);
}
}
/* Computes p_result = (p_left - p_right) % p_mod.
Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */
static void vli_modSub(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right, uint64_t *p_mod)
{
uint64_t l_borrow = vli_sub(p_result, p_left, p_right);
if(l_borrow)
{ /* In this case, p_result == -diff == (max int) - diff.
Since -x % d == d - x, we can get the correct result from p_result + p_mod (with overflow). */
vli_add(p_result, p_result, p_mod);
}
}
#if ECC_CURVE == secp128r1
/* Computes p_result = p_product % curve_p.
See algorithm 5 and 6 from http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf */
static void vli_mmod_fast(uint64_t *p_result, uint64_t *p_product)
{
uint64_t l_tmp[NUM_ECC_DIGITS];
int l_carry;
vli_set(p_result, p_product);
l_tmp[0] = p_product[2];
l_tmp[1] = (p_product[3] & 0x1FFFFFFFFull) | (p_product[2] << 33);
l_carry = vli_add(p_result, p_result, l_tmp);
l_tmp[0] = (p_product[2] >> 31) | (p_product[3] << 33);
l_tmp[1] = (p_product[3] >> 31) | ((p_product[2] & 0xFFFFFFFF80000000ull) << 2);
l_carry += vli_add(p_result, p_result, l_tmp);
l_tmp[0] = (p_product[2] >> 62) | (p_product[3] << 2);
l_tmp[1] = (p_product[3] >> 62) | ((p_product[2] & 0xC000000000000000ull) >> 29) | (p_product[3] << 35);
l_carry += vli_add(p_result, p_result, l_tmp);
l_tmp[0] = (p_product[3] >> 29);
l_tmp[1] = ((p_product[3] & 0xFFFFFFFFE0000000ull) << 4);
l_carry += vli_add(p_result, p_result, l_tmp);
l_tmp[0] = (p_product[3] >> 60);
l_tmp[1] = (p_product[3] & 0xFFFFFFFE00000000ull);
l_carry += vli_add(p_result, p_result, l_tmp);
l_tmp[0] = 0;
l_tmp[1] = ((p_product[3] & 0xF000000000000000ull) >> 27);
l_carry += vli_add(p_result, p_result, l_tmp);
while(l_carry || vli_cmp(curve_p, p_result) != 1)
{
l_carry -= vli_sub(p_result, p_result, curve_p);
}
}
#elif ECC_CURVE == secp192r1
/* Computes p_result = p_product % curve_p.
See algorithm 5 and 6 from http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf */
static void vli_mmod_fast(uint64_t *p_result, uint64_t *p_product)
{
uint64_t l_tmp[NUM_ECC_DIGITS];
int l_carry;
vli_set(p_result, p_product);
vli_set(l_tmp, &p_product[3]);
l_carry = vli_add(p_result, p_result, l_tmp);
l_tmp[0] = 0;
l_tmp[1] = p_product[3];
l_tmp[2] = p_product[4];
l_carry += vli_add(p_result, p_result, l_tmp);
l_tmp[0] = l_tmp[1] = p_product[5];
l_tmp[2] = 0;
l_carry += vli_add(p_result, p_result, l_tmp);
while(l_carry || vli_cmp(curve_p, p_result) != 1)
{
l_carry -= vli_sub(p_result, p_result, curve_p);
}
}
#elif ECC_CURVE == secp256r1
/* Computes p_result = p_product % curve_p
from http://www.nsa.gov/ia/_files/nist-routines.pdf */
static void vli_mmod_fast(uint64_t *p_result, uint64_t *p_product)
{
uint64_t l_tmp[NUM_ECC_DIGITS];
int l_carry;
/* t */
vli_set(p_result, p_product);
/* s1 */
l_tmp[0] = 0;
l_tmp[1] = p_product[5] & 0xffffffff00000000ull;
l_tmp[2] = p_product[6];
l_tmp[3] = p_product[7];
l_carry = vli_lshift(l_tmp, l_tmp, 1);
l_carry += vli_add(p_result, p_result, l_tmp);
/* s2 */
l_tmp[1] = p_product[6] << 32;
l_tmp[2] = (p_product[6] >> 32) | (p_product[7] << 32);
l_tmp[3] = p_product[7] >> 32;
l_carry += vli_lshift(l_tmp, l_tmp, 1);
l_carry += vli_add(p_result, p_result, l_tmp);
/* s3 */
l_tmp[0] = p_product[4];
l_tmp[1] = p_product[5] & 0xffffffff;
l_tmp[2] = 0;
l_tmp[3] = p_product[7];
l_carry += vli_add(p_result, p_result, l_tmp);
/* s4 */
l_tmp[0] = (p_product[4] >> 32) | (p_product[5] << 32);
l_tmp[1] = (p_product[5] >> 32) | (p_product[6] & 0xffffffff00000000ull);
l_tmp[2] = p_product[7];
l_tmp[3] = (p_product[6] >> 32) | (p_product[4] << 32);
l_carry += vli_add(p_result, p_result, l_tmp);
/* d1 */
l_tmp[0] = (p_product[5] >> 32) | (p_product[6] << 32);
l_tmp[1] = (p_product[6] >> 32);
l_tmp[2] = 0;
l_tmp[3] = (p_product[4] & 0xffffffff) | (p_product[5] << 32);
l_carry -= vli_sub(p_result, p_result, l_tmp);
/* d2 */
l_tmp[0] = p_product[6];
l_tmp[1] = p_product[7];
l_tmp[2] = 0;
l_tmp[3] = (p_product[4] >> 32) | (p_product[5] & 0xffffffff00000000ull);
l_carry -= vli_sub(p_result, p_result, l_tmp);
/* d3 */
l_tmp[0] = (p_product[6] >> 32) | (p_product[7] << 32);
l_tmp[1] = (p_product[7] >> 32) | (p_product[4] << 32);
l_tmp[2] = (p_product[4] >> 32) | (p_product[5] << 32);
l_tmp[3] = (p_product[6] << 32);
l_carry -= vli_sub(p_result, p_result, l_tmp);
/* d4 */
l_tmp[0] = p_product[7];
l_tmp[1] = p_product[4] & 0xffffffff00000000ull;
l_tmp[2] = p_product[5];
l_tmp[3] = p_product[6] & 0xffffffff00000000ull;
l_carry -= vli_sub(p_result, p_result, l_tmp);
if(l_carry < 0)
{
do
{
l_carry += vli_add(p_result, p_result, curve_p);
} while(l_carry < 0);
}
else
{
while(l_carry || vli_cmp(curve_p, p_result) != 1)
{
l_carry -= vli_sub(p_result, p_result, curve_p);
}
}
}
#elif ECC_CURVE == secp384r1
static void omega_mult(uint64_t *p_result, uint64_t *p_right)
{
uint64_t l_tmp[NUM_ECC_DIGITS];
uint64_t l_carry, l_diff;
/* Multiply by (2^128 + 2^96 - 2^32 + 1). */
vli_set(p_result, p_right); /* 1 */
l_carry = vli_lshift(l_tmp, p_right, 32);
p_result[1 + NUM_ECC_DIGITS] = l_carry + vli_add(p_result + 1, p_result + 1, l_tmp); /* 2^96 + 1 */
p_result[2 + NUM_ECC_DIGITS] = vli_add(p_result + 2, p_result + 2, p_right); /* 2^128 + 2^96 + 1 */
l_carry += vli_sub(p_result, p_result, l_tmp); /* 2^128 + 2^96 - 2^32 + 1 */
l_diff = p_result[NUM_ECC_DIGITS] - l_carry;
if(l_diff > p_result[NUM_ECC_DIGITS])
{ /* Propagate borrow if necessary. */
uint i;
for(i = 1 + NUM_ECC_DIGITS; ; ++i)
{
--p_result[i];
if(p_result[i] != (uint64_t)-1)
{
break;
}
}
}
p_result[NUM_ECC_DIGITS] = l_diff;
}
/* Computes p_result = p_product % curve_p
see PDF "Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs"
section "Curve-Specific Optimizations" */
static void vli_mmod_fast(uint64_t *p_result, uint64_t *p_product)
{
uint64_t l_tmp[2*NUM_ECC_DIGITS];
while(!vli_isZero(p_product + NUM_ECC_DIGITS)) /* While c1 != 0 */
{
uint64_t l_carry = 0;
uint i;
vli_clear(l_tmp);
vli_clear(l_tmp + NUM_ECC_DIGITS);
omega_mult(l_tmp, p_product + NUM_ECC_DIGITS); /* tmp = w * c1 */
vli_clear(p_product + NUM_ECC_DIGITS); /* p = c0 */
/* (c1, c0) = c0 + w * c1 */
for(i=0; i<NUM_ECC_DIGITS+3; ++i)
{
uint64_t l_sum = p_product[i] + l_tmp[i] + l_carry;
if(l_sum != p_product[i])
{
l_carry = (l_sum < p_product[i]);
}
p_product[i] = l_sum;
}
}
while(vli_cmp(p_product, curve_p) > 0)
{
vli_sub(p_product, p_product, curve_p);
}
vli_set(p_result, p_product);
}
#endif
/* Computes p_result = (p_left * p_right) % curve_p. */
static void vli_modMult_fast(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right)
{
uint64_t l_product[2 * NUM_ECC_DIGITS];
vli_mult(l_product, p_left, p_right);
vli_mmod_fast(p_result, l_product);
}
/* Computes p_result = p_left^2 % curve_p. */
static void vli_modSquare_fast(uint64_t *p_result, uint64_t *p_left)
{
uint64_t l_product[2 * NUM_ECC_DIGITS];
vli_square(l_product, p_left);
vli_mmod_fast(p_result, l_product);
}
#define EVEN(vli) (!(vli[0] & 1))
/* Computes p_result = (1 / p_input) % p_mod. All VLIs are the same size.
See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf */
static void vli_modInv(uint64_t *p_result, uint64_t *p_input, uint64_t *p_mod)
{
uint64_t a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS], u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS];
uint64_t l_carry;
int l_cmpResult;
if(vli_isZero(p_input))
{
vli_clear(p_result);
return;
}
vli_set(a, p_input);
vli_set(b, p_mod);
vli_clear(u);
u[0] = 1;
vli_clear(v);
while((l_cmpResult = vli_cmp(a, b)) != 0)
{
l_carry = 0;
if(EVEN(a))
{
vli_rshift1(a);
if(!EVEN(u))
{
l_carry = vli_add(u, u, p_mod);
}
vli_rshift1(u);
if(l_carry)
{
u[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
}
}
else if(EVEN(b))
{
vli_rshift1(b);
if(!EVEN(v))
{
l_carry = vli_add(v, v, p_mod);
}
vli_rshift1(v);
if(l_carry)
{
v[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
}
}
else if(l_cmpResult > 0)
{
vli_sub(a, a, b);
vli_rshift1(a);
if(vli_cmp(u, v) < 0)
{
vli_add(u, u, p_mod);
}
vli_sub(u, u, v);
if(!EVEN(u))
{
l_carry = vli_add(u, u, p_mod);
}
vli_rshift1(u);
if(l_carry)
{
u[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
}
}
else
{
vli_sub(b, b, a);
vli_rshift1(b);
if(vli_cmp(v, u) < 0)
{
vli_add(v, v, p_mod);
}
vli_sub(v, v, u);
if(!EVEN(v))
{
l_carry = vli_add(v, v, p_mod);
}
vli_rshift1(v);
if(l_carry)
{
v[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
}
}
}
vli_set(p_result, u);
}
/* ------ Point operations ------ */
/* Returns 1 if p_point is the point at infinity, 0 otherwise. */
static int EccPoint_isZero(EccPoint *p_point)
{
return (vli_isZero(p_point->x) && vli_isZero(p_point->y));
}
/* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates.
From http://eprint.iacr.org/2011/338.pdf
*/
/* Double in place */
static void EccPoint_double_jacobian(uint64_t *X1, uint64_t *Y1, uint64_t *Z1)
{
/* t1 = X, t2 = Y, t3 = Z */
uint64_t t4[NUM_ECC_DIGITS];
uint64_t t5[NUM_ECC_DIGITS];
if(vli_isZero(Z1))
{
return;
}
vli_modSquare_fast(t4, Y1); /* t4 = y1^2 */
vli_modMult_fast(t5, X1, t4); /* t5 = x1*y1^2 = A */
vli_modSquare_fast(t4, t4); /* t4 = y1^4 */
vli_modMult_fast(Y1, Y1, Z1); /* t2 = y1*z1 = z3 */
vli_modSquare_fast(Z1, Z1); /* t3 = z1^2 */
vli_modAdd(X1, X1, Z1, curve_p); /* t1 = x1 + z1^2 */
vli_modAdd(Z1, Z1, Z1, curve_p); /* t3 = 2*z1^2 */
vli_modSub(Z1, X1, Z1, curve_p); /* t3 = x1 - z1^2 */
vli_modMult_fast(X1, X1, Z1); /* t1 = x1^2 - z1^4 */
vli_modAdd(Z1, X1, X1, curve_p); /* t3 = 2*(x1^2 - z1^4) */
vli_modAdd(X1, X1, Z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */
if(vli_testBit(X1, 0))
{
uint64_t l_carry = vli_add(X1, X1, curve_p);
vli_rshift1(X1);
X1[NUM_ECC_DIGITS-1] |= l_carry << 63;
}
else
{
vli_rshift1(X1);
}
/* t1 = 3/2*(x1^2 - z1^4) = B */
vli_modSquare_fast(Z1, X1); /* t3 = B^2 */
vli_modSub(Z1, Z1, t5, curve_p); /* t3 = B^2 - A */
vli_modSub(Z1, Z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */
vli_modSub(t5, t5, Z1, curve_p); /* t5 = A - x3 */
vli_modMult_fast(X1, X1, t5); /* t1 = B * (A - x3) */
vli_modSub(t4, X1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */
vli_set(X1, Z1);
vli_set(Z1, Y1);
vli_set(Y1, t4);
}
/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
static void apply_z(uint64_t *X1, uint64_t *Y1, uint64_t *Z)
{
uint64_t t1[NUM_ECC_DIGITS];
vli_modSquare_fast(t1, Z); /* z^2 */
vli_modMult_fast(X1, X1, t1); /* x1 * z^2 */
vli_modMult_fast(t1, t1, Z); /* z^3 */
vli_modMult_fast(Y1, Y1, t1); /* y1 * z^3 */
}
/* P = (x1, y1) => 2P, (x2, y2) => P' */
static void XYcZ_initial_double(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2, uint64_t *p_initialZ)
{
uint64_t z[NUM_ECC_DIGITS];
vli_set(X2, X1);
vli_set(Y2, Y1);
vli_clear(z);
z[0] = 1;
if(p_initialZ)
{
vli_set(z, p_initialZ);
}
apply_z(X1, Y1, z);
EccPoint_double_jacobian(X1, Y1, z);
apply_z(X2, Y2, z);
}
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
or P => P', Q => P + Q
*/
static void XYcZ_add(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2)
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
uint64_t t5[NUM_ECC_DIGITS];
vli_modSub(t5, X2, X1, curve_p); /* t5 = x2 - x1 */
vli_modSquare_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */
vli_modMult_fast(X1, X1, t5); /* t1 = x1*A = B */
vli_modMult_fast(X2, X2, t5); /* t3 = x2*A = C */
vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y2 - y1 */
vli_modSquare_fast(t5, Y2); /* t5 = (y2 - y1)^2 = D */
vli_modSub(t5, t5, X1, curve_p); /* t5 = D - B */
vli_modSub(t5, t5, X2, curve_p); /* t5 = D - B - C = x3 */
vli_modSub(X2, X2, X1, curve_p); /* t3 = C - B */
vli_modMult_fast(Y1, Y1, X2); /* t2 = y1*(C - B) */
vli_modSub(X2, X1, t5, curve_p); /* t3 = B - x3 */
vli_modMult_fast(Y2, Y2, X2); /* t4 = (y2 - y1)*(B - x3) */
vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y3 */
vli_set(X2, t5);
}
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
or P => P - Q, Q => P + Q
*/
static void XYcZ_addC(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2)
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
uint64_t t5[NUM_ECC_DIGITS];
uint64_t t6[NUM_ECC_DIGITS];
uint64_t t7[NUM_ECC_DIGITS];
vli_modSub(t5, X2, X1, curve_p); /* t5 = x2 - x1 */
vli_modSquare_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */
vli_modMult_fast(X1, X1, t5); /* t1 = x1*A = B */
vli_modMult_fast(X2, X2, t5); /* t3 = x2*A = C */
vli_modAdd(t5, Y2, Y1, curve_p); /* t4 = y2 + y1 */
vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y2 - y1 */
vli_modSub(t6, X2, X1, curve_p); /* t6 = C - B */
vli_modMult_fast(Y1, Y1, t6); /* t2 = y1 * (C - B) */
vli_modAdd(t6, X1, X2, curve_p); /* t6 = B + C */
vli_modSquare_fast(X2, Y2); /* t3 = (y2 - y1)^2 */
vli_modSub(X2, X2, t6, curve_p); /* t3 = x3 */
vli_modSub(t7, X1, X2, curve_p); /* t7 = B - x3 */
vli_modMult_fast(Y2, Y2, t7); /* t4 = (y2 - y1)*(B - x3) */
vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y3 */
vli_modSquare_fast(t7, t5); /* t7 = (y2 + y1)^2 = F */
vli_modSub(t7, t7, t6, curve_p); /* t7 = x3' */
vli_modSub(t6, t7, X1, curve_p); /* t6 = x3' - B */
vli_modMult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */
vli_modSub(Y1, t6, Y1, curve_p); /* t2 = y3' */
vli_set(X1, t7);
}
static void EccPoint_mult(EccPoint *p_result, EccPoint *p_point, uint64_t *p_scalar, uint64_t *p_initialZ)
{
/* R0 and R1 */
uint64_t Rx[2][NUM_ECC_DIGITS];
uint64_t Ry[2][NUM_ECC_DIGITS];
uint64_t z[NUM_ECC_DIGITS];
int i, nb;
vli_set(Rx[1], p_point->x);
vli_set(Ry[1], p_point->y);
XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], p_initialZ);
for(i = vli_numBits(p_scalar) - 2; i > 0; --i)
{
nb = !vli_testBit(p_scalar, i);
XYcZ_addC(Rx[1-nb], Ry[1-nb], Rx[nb], Ry[nb]);
XYcZ_add(Rx[nb], Ry[nb], Rx[1-nb], Ry[1-nb]);
}
nb = !vli_testBit(p_scalar, 0);
XYcZ_addC(Rx[1-nb], Ry[1-nb], Rx[nb], Ry[nb]);
/* Find final 1/Z value. */
vli_modSub(z, Rx[1], Rx[0], curve_p); /* X1 - X0 */
vli_modMult_fast(z, z, Ry[1-nb]); /* Yb * (X1 - X0) */
vli_modMult_fast(z, z, p_point->x); /* xP * Yb * (X1 - X0) */
vli_modInv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */
vli_modMult_fast(z, z, p_point->y); /* yP / (xP * Yb * (X1 - X0)) */
vli_modMult_fast(z, z, Rx[1-nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */
/* End 1/Z calculation */
XYcZ_add(Rx[nb], Ry[nb], Rx[1-nb], Ry[1-nb]);
apply_z(Rx[0], Ry[0], z);
vli_set(p_result->x, Rx[0]);
vli_set(p_result->y, Ry[0]);
}
static void ecc_bytes2native(uint64_t p_native[NUM_ECC_DIGITS], const uint8_t p_bytes[ECC_BYTES])
{
unsigned i;
for(i=0; i<NUM_ECC_DIGITS; ++i)
{
const uint8_t *p_digit = p_bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
p_native[i] = ((uint64_t)p_digit[0] << 56) | ((uint64_t)p_digit[1] << 48) | ((uint64_t)p_digit[2] << 40) | ((uint64_t)p_digit[3] << 32) |
((uint64_t)p_digit[4] << 24) | ((uint64_t)p_digit[5] << 16) | ((uint64_t)p_digit[6] << 8) | (uint64_t)p_digit[7];
}
}
static void ecc_native2bytes(uint8_t p_bytes[ECC_BYTES], const uint64_t p_native[NUM_ECC_DIGITS])
{
unsigned i;
for(i=0; i<NUM_ECC_DIGITS; ++i)
{
uint8_t *p_digit = p_bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
p_digit[0] = p_native[i] >> 56;
p_digit[1] = p_native[i] >> 48;
p_digit[2] = p_native[i] >> 40;
p_digit[3] = p_native[i] >> 32;
p_digit[4] = p_native[i] >> 24;
p_digit[5] = p_native[i] >> 16;
p_digit[6] = p_native[i] >> 8;
p_digit[7] = p_native[i];
}
}
/* Compute a = sqrt(a) (mod curve_p). */
static void mod_sqrt(uint64_t a[NUM_ECC_DIGITS])
{
unsigned i;
uint64_t p1[NUM_ECC_DIGITS] = {1};
uint64_t l_result[NUM_ECC_DIGITS] = {1};
/* Since curve_p == 3 (mod 4) for all supported curves, we can
compute sqrt(a) = a^((curve_p + 1) / 4) (mod curve_p). */
vli_add(p1, curve_p, p1); /* p1 = curve_p + 1 */
for(i = vli_numBits(p1) - 1; i > 1; --i)
{
vli_modSquare_fast(l_result, l_result);
if(vli_testBit(p1, i))
{
vli_modMult_fast(l_result, l_result, a);
}
}
vli_set(a, l_result);
}
static void ecc_point_decompress(EccPoint *p_point, const uint8_t p_compressed[ECC_BYTES+1])
{
uint64_t _3[NUM_ECC_DIGITS] = {3}; /* -a = 3 */
ecc_bytes2native(p_point->x, p_compressed+1);
vli_modSquare_fast(p_point->y, p_point->x); /* y = x^2 */
vli_modSub(p_point->y, p_point->y, _3, curve_p); /* y = x^2 - 3 */
vli_modMult_fast(p_point->y, p_point->y, p_point->x); /* y = x^3 - 3x */
vli_modAdd(p_point->y, p_point->y, curve_b, curve_p); /* y = x^3 - 3x + b */
mod_sqrt(p_point->y);
if((p_point->y[0] & 0x01) != (p_compressed[0] & 0x01))
{
vli_sub(p_point->y, curve_p, p_point->y);
}
}
int ecc_make_key(uint8_t p_publicKey[ECC_BYTES+1], uint8_t p_privateKey[ECC_BYTES])
{
uint64_t l_private[NUM_ECC_DIGITS];
EccPoint l_public;
unsigned l_tries = 0;
do
{
if(!getRandomNumber(l_private) || (l_tries++ >= MAX_TRIES))
{
ogs_error("getRandomNumber() failed [%d]", l_tries);
return 0;
}
if(vli_isZero(l_private))
{
continue;
}
/* Make sure the private key is in the range [1, n-1].
For the supported curves, n is always large enough that we only need to subtract once at most. */
if(vli_cmp(curve_n, l_private) != 1)
{
vli_sub(l_private, l_private, curve_n);
}
EccPoint_mult(&l_public, &curve_G, l_private, NULL);
} while(EccPoint_isZero(&l_public));
ecc_native2bytes(p_privateKey, l_private);
ecc_native2bytes(p_publicKey + 1, l_public.x);
p_publicKey[0] = 2 + (l_public.y[0] & 0x01);
return 1;
}
#define CURVE_A_32 {0xFFFFFFFFFFFFFFFCull, 0x00000000FFFFFFFFull, 0x0000000000000000ull, 0xFFFFFFFF00000001ull}
static int ecdh_validate_pubkey(EccPoint l_public, uint64_t l_private[NUM_ECC_DIGITS]) {
uint64_t left[NUM_ECC_DIGITS];
uint64_t right[NUM_ECC_DIGITS];
uint64_t curve_a[NUM_ECC_DIGITS] = CURVE_A_32;
/*
* To ensure l_public is a valid point on the curve, we need to check:
* y^2 % p == (x^3 + a * x + b) % p)
*/
/* Compute y^2 % p and store in `left` */
vli_modSquare_fast(left, l_public.y);
/* Compute x^3 and store in `right` */
vli_modSquare_fast(right, l_public.x);
vli_modMult_fast(right, right, l_public.x);
/* Compute a * x and store in `curve_a` */
vli_modMult_fast(curve_a, curve_a, l_public.x);
/* Store ((a * x) + b) % p in `curve_a */
vli_modAdd(curve_a, curve_a, curve_b, curve_p);
/*
* Combine x^3 and ((a * x) + b) to make (x^3 + a * x + b) % p);
* store in `right`
*/
vli_modAdd(right, right, curve_a, curve_p);
int i;
for (i = 0; i < NUM_ECC_DIGITS; i++) {
if (left[i] != right[i]) {
return 0; // y^2 % p != (x^3 + a * x + b) % p)
}
}
return 1;
}
int ecdh_shared_secret(const uint8_t p_publicKey[ECC_BYTES+1], const uint8_t p_privateKey[ECC_BYTES], uint8_t p_secret[ECC_BYTES])
{
EccPoint l_public;
uint64_t l_private[NUM_ECC_DIGITS];
uint64_t l_random[NUM_ECC_DIGITS];
if(!getRandomNumber(l_random))
{
ogs_error("getRandomNumber() failed");
return 0;
}
ecc_point_decompress(&l_public, p_publicKey);
ecc_bytes2native(l_private, p_privateKey);
/*
* Validate received public key `p_publicKey` is a valid point
* on curve P-256
*/
if (!ecdh_validate_pubkey(l_public, l_private))
{
ogs_error("ecdh_validate_pubkey() failed");
return 0;
}
EccPoint l_product;
EccPoint_mult(&l_product, &l_public, l_private, l_random);
ecc_native2bytes(p_secret, l_product.x);
return !EccPoint_isZero(&l_product);
}
/* -------- ECDSA code -------- */
/* Computes p_result = (p_left * p_right) % p_mod. */
static void vli_modMult(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right, uint64_t *p_mod)
{
uint64_t l_product[2 * NUM_ECC_DIGITS];
uint64_t l_modMultiple[2 * NUM_ECC_DIGITS];
uint l_digitShift, l_bitShift;
uint l_productBits;
uint l_modBits = vli_numBits(p_mod);
vli_mult(l_product, p_left, p_right);
l_productBits = vli_numBits(l_product + NUM_ECC_DIGITS);
if(l_productBits)
{
l_productBits += NUM_ECC_DIGITS * 64;
}
else
{
l_productBits = vli_numBits(l_product);
}
if(l_productBits < l_modBits)
{ /* l_product < p_mod. */
vli_set(p_result, l_product);
return;
}
/* Shift p_mod by (l_leftBits - l_modBits). This multiplies p_mod by the largest
power of two possible while still resulting in a number less than p_left. */
vli_clear(l_modMultiple);
vli_clear(l_modMultiple + NUM_ECC_DIGITS);
l_digitShift = (l_productBits - l_modBits) / 64;
l_bitShift = (l_productBits - l_modBits) % 64;
if(l_bitShift)
{
l_modMultiple[l_digitShift + NUM_ECC_DIGITS] = vli_lshift(l_modMultiple + l_digitShift, p_mod, l_bitShift);
}
else
{
vli_set(l_modMultiple + l_digitShift, p_mod);
}
/* Subtract all multiples of p_mod to get the remainder. */
vli_clear(p_result);
p_result[0] = 1; /* Use p_result as a temp var to store 1 (for subtraction) */
while(l_productBits > NUM_ECC_DIGITS * 64 || vli_cmp(l_modMultiple, p_mod) >= 0)
{
int l_cmp = vli_cmp(l_modMultiple + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS);
if(l_cmp < 0 || (l_cmp == 0 && vli_cmp(l_modMultiple, l_product) <= 0))
{
if(vli_sub(l_product, l_product, l_modMultiple))
{ /* borrow */
vli_sub(l_product + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS, p_result);
}
vli_sub(l_product + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS, l_modMultiple + NUM_ECC_DIGITS);
}
uint64_t l_carry = (l_modMultiple[NUM_ECC_DIGITS] & 0x01) << 63;
vli_rshift1(l_modMultiple + NUM_ECC_DIGITS);
vli_rshift1(l_modMultiple);
l_modMultiple[NUM_ECC_DIGITS-1] |= l_carry;
--l_productBits;
}
vli_set(p_result, l_product);
}
static uint umax(uint a, uint b)
{
return (a > b ? a : b);
}
int ecdsa_sign(const uint8_t p_privateKey[ECC_BYTES], const uint8_t p_hash[ECC_BYTES], uint8_t p_signature[ECC_BYTES*2])
{
uint64_t k[NUM_ECC_DIGITS];
uint64_t l_tmp[NUM_ECC_DIGITS];
uint64_t l_s[NUM_ECC_DIGITS];
EccPoint p;
unsigned l_tries = 0;
do
{
if(!getRandomNumber(k) || (l_tries++ >= MAX_TRIES))
{
ogs_error("getRandomNumber() failed [%d]", l_tries);
return 0;
}
if(vli_isZero(k))
{
continue;
}
if(vli_cmp(curve_n, k) != 1)
{
vli_sub(k, k, curve_n);
}
/* tmp = k * G */
EccPoint_mult(&p, &curve_G, k, NULL);
/* r = x1 (mod n) */
if(vli_cmp(curve_n, p.x) != 1)
{
vli_sub(p.x, p.x, curve_n);
}
} while(vli_isZero(p.x));
ecc_native2bytes(p_signature, p.x);
ecc_bytes2native(l_tmp, p_privateKey);
vli_modMult(l_s, p.x, l_tmp, curve_n); /* s = r*d */
ecc_bytes2native(l_tmp, p_hash);
vli_modAdd(l_s, l_tmp, l_s, curve_n); /* s = e + r*d */
vli_modInv(k, k, curve_n); /* k = 1 / k */
vli_modMult(l_s, l_s, k, curve_n); /* s = (e + r*d) / k */
ecc_native2bytes(p_signature + ECC_BYTES, l_s);
return 1;
}
int ecdsa_verify(const uint8_t p_publicKey[ECC_BYTES+1], const uint8_t p_hash[ECC_BYTES], const uint8_t p_signature[ECC_BYTES*2])
{
uint64_t u1[NUM_ECC_DIGITS], u2[NUM_ECC_DIGITS];
uint64_t z[NUM_ECC_DIGITS];
EccPoint l_public, l_sum;
uint64_t rx[NUM_ECC_DIGITS];
uint64_t ry[NUM_ECC_DIGITS];
uint64_t tx[NUM_ECC_DIGITS];
uint64_t ty[NUM_ECC_DIGITS];
uint64_t tz[NUM_ECC_DIGITS];
uint64_t l_r[NUM_ECC_DIGITS], l_s[NUM_ECC_DIGITS];
ecc_point_decompress(&l_public, p_publicKey);
ecc_bytes2native(l_r, p_signature);
ecc_bytes2native(l_s, p_signature + ECC_BYTES);
if(vli_isZero(l_r) || vli_isZero(l_s))
{ /* r, s must not be 0. */
ogs_error("r, s must not be 0");
return 0;
}
if(vli_cmp(curve_n, l_r) != 1 || vli_cmp(curve_n, l_s) != 1)
{ /* r, s must be < n. */
ogs_error("r, s must be < n");
return 0;
}
/* Calculate u1 and u2. */
vli_modInv(z, l_s, curve_n); /* Z = s^-1 */
ecc_bytes2native(u1, p_hash);
vli_modMult(u1, u1, z, curve_n); /* u1 = e/s */
vli_modMult(u2, l_r, z, curve_n); /* u2 = r/s */
/* Calculate l_sum = G + Q. */
vli_set(l_sum.x, l_public.x);
vli_set(l_sum.y, l_public.y);
vli_set(tx, curve_G.x);
vli_set(ty, curve_G.y);
vli_modSub(z, l_sum.x, tx, curve_p); /* Z = x2 - x1 */
XYcZ_add(tx, ty, l_sum.x, l_sum.y);
vli_modInv(z, z, curve_p); /* Z = 1/Z */
apply_z(l_sum.x, l_sum.y, z);
/* Use Shamir's trick to calculate u1*G + u2*Q */
EccPoint *l_points[4] = {NULL, &curve_G, &l_public, &l_sum};
uint l_numBits = umax(vli_numBits(u1), vli_numBits(u2));
EccPoint *l_point = l_points[(!!vli_testBit(u1, l_numBits-1)) | ((!!vli_testBit(u2, l_numBits-1)) << 1)];
vli_set(rx, l_point->x);
vli_set(ry, l_point->y);
vli_clear(z);
z[0] = 1;
int i;
for(i = l_numBits - 2; i >= 0; --i)
{
EccPoint_double_jacobian(rx, ry, z);
int l_index = (!!vli_testBit(u1, i)) | ((!!vli_testBit(u2, i)) << 1);
EccPoint *l_point = l_points[l_index];
if(l_point)
{
vli_set(tx, l_point->x);
vli_set(ty, l_point->y);
apply_z(tx, ty, z);
vli_modSub(tz, rx, tx, curve_p); /* Z = x2 - x1 */
XYcZ_add(tx, ty, rx, ry);
vli_modMult_fast(z, z, tz);
}
}
vli_modInv(z, z, curve_p); /* Z = 1/Z */
apply_z(rx, ry, z);
/* v = x1 (mod n) */
if(vli_cmp(curve_n, rx) != 1)
{
vli_sub(rx, rx, curve_n);
}
/* Accept only if v == r. */
return (vli_cmp(rx, l_r) == 0);
}
|