seq,id,problem,answer 3,0e644e,"Let $ABC$ be an acute-angled triangle with integer side lengths and $AB8$ and \item There exists $\beta \in \mathcal{F}$ and integers $k \neq l$ such that for all $n \in \mathbb{Z}$ \begin{equation*} S_n(\alpha)\star\beta = \begin{cases} 1 & n \in \{k,l\} \\ 0 & n \not \in \{k,l\} \end{cases} \; . \end{equation*} \end{itemize} How many shifty functions are there in $\mathcal{F}$?",160