File size: 9,647 Bytes
3dcfb26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch import optim
from torch.optim import Optimizer
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def xyxy2xywh(x): # Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h]
y = torch.zeros(x.shape) if x.dtype is torch.float32 else np.zeros(x.shape)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2
y[:, 1] = (x[:, 1] + x[:, 3]) / 2
y[:, 2] = x[:, 2] - x[:, 0]
y[:, 3] = x[:, 3] - x[:, 1]
return y
def xywh2xyxy(x): # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
y = torch.zeros(x.shape) if x.dtype is torch.float32 else np.zeros(x.shape)
y[:, 0] = (x[:, 0] - x[:, 2] / 2)
y[:, 1] = (x[:, 1] - x[:, 3] / 2)
y[:, 2] = (x[:, 0] + x[:, 2] / 2)
y[:, 3] = (x[:, 1] + x[:, 3] / 2)
return y
def bbox_iou_numpy(box1, box2):
"""Computes IoU between bounding boxes.
Parameters
----------
box1 : ndarray
(N, 4) shaped array with bboxes
box2 : ndarray
(M, 4) shaped array with bboxes
Returns
-------
: ndarray
(N, M) shaped array with IoUs
"""
area = (box2[:, 2] - box2[:, 0]) * (box2[:, 3] - box2[:, 1])
iw = np.minimum(np.expand_dims(box1[:, 2], axis=1), box2[:, 2]) - np.maximum(
np.expand_dims(box1[:, 0], 1), box2[:, 0]
)
ih = np.minimum(np.expand_dims(box1[:, 3], axis=1), box2[:, 3]) - np.maximum(
np.expand_dims(box1[:, 1], 1), box2[:, 1]
)
iw = np.maximum(iw, 0)
ih = np.maximum(ih, 0)
ua = np.expand_dims((box1[:, 2] - box1[:, 0]) * (box1[:, 3] - box1[:, 1]), axis=1) + area - iw * ih
ua = np.maximum(ua, np.finfo(float).eps)
intersection = iw * ih
return intersection / ua
def bbox_iou(box1, box2, x1y1x2y2=True):
"""
Returns the IoU of two bounding boxes
"""
if x1y1x2y2:
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
else:
# Transform from center and width to exact coordinates
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
# get the coordinates of the intersection rectangle
inter_rect_x1 = torch.max(b1_x1, b2_x1)
inter_rect_y1 = torch.max(b1_y1, b2_y1)
inter_rect_x2 = torch.min(b1_x2, b2_x2)
inter_rect_y2 = torch.min(b1_y2, b2_y2)
# Intersection area
inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1, 0) * torch.clamp(inter_rect_y2 - inter_rect_y1, 0)
# Union Area
b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
# print(box1, box1.shape)
# print(box2, box2.shape)
return inter_area / (b1_area + b2_area - inter_area + 1e-16)
def multiclass_metrics(pred, gt):
"""
check precision and recall for predictions.
Output: overall = {precision, recall, f1}
"""
eps=1e-6
overall = {'precision': -1, 'recall': -1, 'f1': -1}
NP, NR, NC = 0, 0, 0 # num of pred, num of recall, num of correct
for ii in range(pred.shape[0]):
pred_ind = np.array(pred[ii]>0.5, dtype=int)
gt_ind = np.array(gt[ii]>0.5, dtype=int)
inter = pred_ind * gt_ind
# add to overall
NC += np.sum(inter)
NP += np.sum(pred_ind)
NR += np.sum(gt_ind)
if NP > 0:
overall['precision'] = float(NC)/NP
if NR > 0:
overall['recall'] = float(NC)/NR
if NP > 0 and NR > 0:
overall['f1'] = 2*overall['precision']*overall['recall']/(overall['precision']+overall['recall']+eps)
return overall
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([0.0], precision, [0.0]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def concat_coord(x):
ins_feat = x # [bt, c, h, w] [512, 26, 26]
batch_size, c, h, w = x.size()
float_h = float(h)
float_w = float(w)
y_range = torch.arange(0., float_h, dtype=torch.float32) # [h, ]
y_range = 2.0 * y_range / (float_h - 1.0) - 1.0
x_range = torch.arange(0., float_w, dtype=torch.float32) # [w, ]
x_range = 2.0 * x_range / (float_w - 1.0) - 1.0
x_range = x_range[None, :] # [1, w]
y_range = y_range[:, None] # [h, 1]
x = x_range.repeat(h, 1) # [h, w]
y = y_range.repeat(1, w) # [h, w]
x = x[None, None, :, :] # [1, 1, h, w]
y = y[None, None, :, :] # [1, 1, h, w]
x = x.repeat(batch_size, 1, 1, 1) # [N, 1, h, w]
y = y.repeat(batch_size, 1, 1, 1) # [N, 1, h, w]
x = x.cuda()
y = y.cuda()
ins_feat_out = torch.cat((ins_feat, x, x, x, y, y, y), 1) # [N, c+6, h, w]
return ins_feat_out
def get_cosine_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int,
num_cycles: float = 0.5, last_epoch: int = -1):
"""
Implementation by Huggingface:
https://github.com/huggingface/transformers/blob/v4.16.2/src/transformers/optimization.py
Create a schedule with a learning rate that decreases following the values
of the cosine function between the initial lr set in the optimizer to 0,
after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just
decrease from the max value to 0 following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return max(1e-6, float(current_step) / float(max(1, num_warmup_steps)))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
return optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch)
def dice_loss(inputs, targets):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
targets = targets.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.mean()
def sigmoid_focal_loss(inputs, targets, alpha: float = -1, gamma: float = 0):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean() |