import torch import math import k_diffusion.sampling from k_diffusion.sampling import to_d, BrownianTreeNoiseSampler from tqdm.auto import trange from modules import scripts from modules import sd_samplers_kdiffusion, sd_samplers_common, sd_samplers from modules.sd_samplers_kdiffusion import KDiffusionSampler class _Rescaler: def __init__(self, model, x, mode, **extra_args): self.model = model self.x = x self.mode = mode self.extra_args = extra_args self.init_latent, self.mask, self.nmask = model.init_latent, model.mask, model.nmask def __enter__(self): if self.init_latent is not None: self.model.init_latent = torch.nn.functional.interpolate(input=self.init_latent, size=self.x.shape[2:4], mode=self.mode) if self.mask is not None: self.model.mask = torch.nn.functional.interpolate(input=self.mask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0) if self.nmask is not None: self.model.nmask = torch.nn.functional.interpolate(input=self.nmask.unsqueeze(0), size=self.x.shape[2:4], mode=self.mode).squeeze(0) return self def __exit__(self, type, value, traceback): del self.model.init_latent, self.model.mask, self.model.nmask self.model.init_latent, self.model.mask, self.model.nmask = self.init_latent, self.mask, self.nmask class Smea(scripts.Script): def title(self): return "Euler Smea Dy sampler" def show(self, is_img2img): return scripts.AlwaysVisible def __init__(self): init() return def init(): for i in sd_samplers.all_samplers: if "Euler Max" in i.name: return samplers_smea = [ ('Euler Max', sample_euler_max, ['k_euler'], {}), ('Euler Max1b', sample_euler_max1b, ['k_euler'], {}), ('Euler Max1c', sample_euler_max1c, ['k_euler'], {}), ('Euler Max1d', sample_euler_max1d, ['k_euler'], {}), ('Euler Max2', sample_euler_max2, ['k_euler'], {}), ('Euler Max2b', sample_euler_max2b, ['k_euler'], {}), ('Euler Max2c', sample_euler_max2c, ['k_euler'], {}), ('Euler Max2d', sample_euler_max2d, ['k_euler'], {}), ('Euler Max3', sample_euler_max3, ['k_euler'], {}), ('Euler Max3b', sample_euler_max3b, ['k_euler'], {}), ('Euler Max3c', sample_euler_max3c, ['k_euler'], {}), ('Euler Max4', sample_euler_max4, ['k_euler'], {}), ('Euler Max4b', sample_euler_max4b, ['k_euler'], {}), ('Euler Max4c', sample_euler_max4c, ['k_euler'], {}), ('Euler Max4d', sample_euler_max4d, ['k_euler'], {}), ('Euler Max4e', sample_euler_max4e, ['k_euler'], {}), ('Euler Max4f', sample_euler_max4f, ['k_euler'], {}), ('Euler Dy', sample_euler_dy, ['k_euler'], {}), ('Euler Smea', sample_euler_smea, ['k_euler'], {}), ('Euler Smea Dy', sample_euler_smea_dy, ['k_euler'], {}), ('Euler Smea Max', sample_euler_smea_max, ['k_euler'], {}), ('Euler Smea Max s', sample_euler_smea_max_s, ['k_euler'], {}), ('Euler Smea dyn a', sample_euler_smea_dyn_a, ['k_euler'], {}), ('Euler Smea dyn b', sample_euler_smea_dyn_b, ['k_euler'], {}), ('Euler Smea dyn c', sample_euler_smea_dyn_c, ['k_euler'], {}), ('Euler Smea ma', sample_euler_smea_multi_a, ['k_euler'], {}), ('Euler Smea mb', sample_euler_smea_multi_b, ['k_euler'], {}), ('Euler Smea mc', sample_euler_smea_multi_c, ['k_euler'], {}), ('Euler Smea md', sample_euler_smea_multi_d, ['k_euler'], {}), ('Euler Smea mas', sample_euler_smea_multi_as, ['k_euler'], {}), ('Euler Smea mbs', sample_euler_smea_multi_bs, ['k_euler'], {}), ('Euler Smea mcs', sample_euler_smea_multi_cs, ['k_euler'], {}), ('Euler Smea mds', sample_euler_smea_multi_ds, ['k_euler'], {}), ('Euler Smea mbs2', sample_euler_smea_multi_bs2, ['k_euler'], {}), ('Euler Smea mds2', sample_euler_smea_multi_ds2, ['k_euler'], {}), ('Euler Smea mds2 max', sample_euler_smea_multi_ds2_m, ['k_euler'], {}), ('Euler Smea mds2 s max', sample_euler_smea_multi_ds2_s_m, ['k_euler'], {}), ('Euler Smea mbs2 s', sample_euler_smea_multi_bs2_s, ['k_euler'], {}), ('Euler Smea mds2 s', sample_euler_smea_multi_ds2_s, ['k_euler'], {}), ('Euler h max', sample_euler_h_m, ['k_euler'], {"brownian_noise": True}), ('Euler h max b', sample_euler_h_m_b, ['k_euler'], {"brownian_noise": True}), ('Euler h max c', sample_euler_h_m_c, ['k_euler'], {"brownian_noise": True}), ('Euler h max d', sample_euler_h_m_d, ['k_euler'], {"brownian_noise": True}), ('Euler h max e', sample_euler_h_m_e, ['k_euler'], {"brownian_noise": True}), ('Euler h max f', sample_euler_h_m_f, ['k_euler'], {"brownian_noise": True}), ('Euler Dy koishi-star', sample_euler_dy_og, ['k_euler'], {}), ('Euler Smea Dy koishi-star', sample_euler_smea_dy_og, ['k_euler'], {}), ('TCD Euler a', sample_tcd_euler_a, ['tcd_euler_a'], {}), ('TCD', sample_tcd, ['tcd'], {}), ] samplers_data_smea = [ sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) for label, funcname, aliases, options in samplers_smea if callable(funcname) ] sampler_exparams_smea = { sample_euler_max: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max1b: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max1c: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max1d: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max2: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max2b: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max2c: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max2d: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max3: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max3b: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max3c: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max4: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max4b: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max4c: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max4d: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max4e: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_max4f: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_dy: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_dy: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_max: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_max_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_dyn_a: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_dyn_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_dyn_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_a: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_d: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_as: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_bs: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_cs: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_ds: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_bs2: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_ds2: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_ds2_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_ds2_s_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_bs2_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_multi_ds2_s: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_h_m: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_h_m_b: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_h_m_c: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_h_m_d: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_h_m_e: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_h_m_f: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_dy_og: ['s_churn', 's_tmin', 's_tmax', 's_noise'], sample_euler_smea_dy_og: ['s_churn', 's_tmin', 's_tmax', 's_noise'], } sd_samplers_kdiffusion.sampler_extra_params = {**sd_samplers_kdiffusion.sampler_extra_params, **sampler_exparams_smea} samplers_map_smea = {x.name: x for x in samplers_data_smea} sd_samplers_kdiffusion.k_diffusion_samplers_map = {**sd_samplers_kdiffusion.k_diffusion_samplers_map, **samplers_map_smea} for i, item in enumerate(sd_samplers.all_samplers): if "Euler" in item.name: sd_samplers.all_samplers = sd_samplers.all_samplers[:i + 1] + [*samplers_data_smea] + sd_samplers.all_samplers[i + 1:] break sd_samplers.all_samplers_map = {x.name: x for x in sd_samplers.all_samplers} sd_samplers.set_samplers() return def default_noise_sampler(x): return lambda sigma, sigma_next: k_diffusion.sampling.torch.randn_like(x) @torch.no_grad() def dy_sampling_step(x, model, dt, sigma_hat, **extra_args): original_shape = x.shape batch_size, channels, m, n = original_shape[0], original_shape[1], original_shape[2] // 2, original_shape[3] // 2 extra_row = x.shape[2] % 2 == 1 extra_col = x.shape[3] % 2 == 1 if extra_row: extra_row_content = x[:, :, -1:, :] x = x[:, :, :-1, :] if extra_col: extra_col_content = x[:, :, :, -1:] x = x[:, :, :, :-1] a_list = x.unfold(2, 2, 2).unfold(3, 2, 2).contiguous().view(batch_size, channels, m * n, 2, 2) c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n) with _Rescaler(model, c, 'nearest-exact', **extra_args) as rescaler: denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **rescaler.extra_args) d = to_d(c, sigma_hat, denoised) c = c + d * dt d_list = c.view(batch_size, channels, m * n, 1, 1) a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0] x = a_list.view(batch_size, channels, m, n, 2, 2).permute(0, 1, 2, 4, 3, 5).reshape(batch_size, channels, 2 * m, 2 * n) if extra_row or extra_col: x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device) x_expanded[:, :, :2 * m, :2 * n] = x if extra_row: x_expanded[:, :, -1:, :2 * n + 1] = extra_row_content if extra_col: x_expanded[:, :, :2 * m, -1:] = extra_col_content if extra_row and extra_col: x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :] x = x_expanded return x @torch.no_grad() def smea_sampling_step(x, model, dt, sigma_hat, **extra_args): m, n = x.shape[2], x.shape[3] x = torch.nn.functional.interpolate(input=x, size=None, scale_factor=(1.25, 1.25), mode='nearest-exact', align_corners=None, recompute_scale_factor=None) with _Rescaler(model, x, 'nearest-exact', **extra_args) as rescaler: denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args) d = to_d(x, sigma_hat, denoised) x = x + d * dt x = torch.nn.functional.interpolate(input=x, size=(m,n), scale_factor=None, mode='nearest-exact', align_corners=None, recompute_scale_factor=None) return x @torch.no_grad() def smea_sampling_step_denoised(x, model, sigma_hat, scale=1.25, smooth=False, **extra_args): m, n = x.shape[2], x.shape[3] filter = 'nearest-exact' if not smooth else 'bilinear' x = torch.nn.functional.interpolate(input=x, scale_factor=(scale, scale), mode=filter) with _Rescaler(model, x, filter, **extra_args) as rescaler: denoised = model(x, sigma_hat * x.new_ones([x.shape[0]]), **rescaler.extra_args) x = denoised x = torch.nn.functional.interpolate(input=x, size=(m,n), mode='nearest-exact') return x @torch.no_grad() def sample_euler_max(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(i + 1)/(i + 1) + 1) * d * dt return x @torch.no_grad() def sample_euler_max1b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(1.05 * i + 1)/(1.1 * i + 1.5) + 1) * d * dt return x @torch.no_grad() def sample_euler_max1c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d * dt return x @torch.no_grad() def sample_euler_max1d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(math.pi * 0.333 * i + 0.9)/(0.5 * i + 1.5) + 1) * d * dt return x @torch.no_grad() def sample_euler_max2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(math.pi * 0.333 * i - 0.1)/(0.5 * i + 1.5) + 1) * d * dt return x @torch.no_grad() def sample_euler_max2b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(math.pi * 0.5 * i - 0.0)/(0.5 * i + 1.5) + 1) * d * dt return x @torch.no_grad() def sample_euler_max2c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(math.pi * 0.5 * i)/(i + 2) + 1) * d * dt return x @torch.no_grad() def sample_euler_max2d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(math.pi * 0.5 * i)/(0.75 * i + 1.75) + 1) * d * dt return x @torch.no_grad() def sample_euler_max3b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(2 * i + 0.5)/(2 * i + 1.5) + 1) * d * dt return x @torch.no_grad() def sample_euler_max3c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(2 * i + 0.5)/(1.5 * i + 2.7) + 1) * d * dt return x @torch.no_grad() def sample_euler_max3(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(2 * i + 1)/(2 * i + 1) + 1) * d * dt return x @torch.no_grad() def sample_euler_max4b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(math.pi * i - 0.1)/(2 * i + 2) + 1) * d * dt return x @torch.no_grad() def sample_euler_max4c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(math.pi * i - 0.1)/(2 * i + 1.5) + 1) * d * dt return x @torch.no_grad() def sample_euler_max4d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(math.pi * i - 0.1)/(i + 1.5) + 1) * d * dt return x @torch.no_grad() def sample_euler_max4e(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(math.pi * i - 0.1)/(i + 1) + 1) * d * dt return x @torch.no_grad() def sample_euler_max4f(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(math.pi * i - 0.1)/(i + 2) + 1) * d * dt return x @torch.no_grad() def sample_euler_max4(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): # Добавьте здесь тело функции или хотя бы pass, чтобы избежать IndentationError pass @torch.no_grad() def sample_euler_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): # print(i) # i第一步为0 gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) # print(sigma_hat) dt = sigmas[i + 1] - sigma_hat if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 and i % 2 == 0: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigmas[i] dt_2 = sigmas[i + 1] - sigmas[i] x_2 = x + d * dt_1 x_temp = dy_sampling_step(x_2, model, dt_2, sigma_mid, **extra_args) x = x_temp - d * dt_1 # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_dyn_a(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 #scale = (sigma_mid / sigmas[0]) * 0.25 scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.15 #scale = scale.item() if i % 2 == 0: denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale, **extra_args) #denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args) else: denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) d_2 = to_d(x_2, sigma_mid, denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_dyn_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and (i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 3 or i < 3): sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 #scale = (sigma_mid / sigmas[0]) * 0.25 scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.2 #scale = scale.item() if i % 4 == 0: denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale, **extra_args) #denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - sigma_mid.item() * 0.01, **extra_args) elif i % 4 == 2: denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale, **extra_args) #denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args) else: denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) d_2 = to_d(x_2, sigma_mid, denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_dyn_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 #scale = (sigma_mid / sigmas[0]) * 0.25 scale = ((len(sigmas) - i) / len(sigmas)) ** 2 * 0.25 #scale = scale.item() if i % 2 == 0: denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale, **extra_args) #denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + sigma_mid.item() * 0.01, **extra_args) else: denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) d_2 = to_d(x_2, sigma_mid, denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 and i % 2 == 0: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigmas[i] dt_2 = sigmas[i + 1] - sigmas[i] #print(dt_1, "#", dt_2, "#", dt_3, "#", dt_4) x_2 = x + d * dt_1 x_temp = smea_sampling_step(x, model, dt_2, sigma_mid, **extra_args) x = x_temp - d * dt_1 return x @torch.no_grad() def sample_euler_smea_dy(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt if sigmas[i + 1] > 0 and (i < len(sigmas) * 0.334 - len(sigmas) * 0.334 % 2 or i < 3) and i % 3 != 2: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigmas[i] dt_2 = sigmas[i + 1] - sigmas[i] #print(dt_1, "#", dt_2, "#", dt_3, "#", dt_4) x_2 = x + d * dt_1 if i % 3 == 1: x_temp = dy_sampling_step(x, model, dt_2, sigma_mid, **extra_args) elif i % 3 == 0: x_temp = smea_sampling_step(x, model, dt_2, sigma_mid, **extra_args) x = x_temp - d * dt_1 return x @torch.no_grad() def sample_euler_smea_multi_d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.334 + 2 and i % 2 == 0: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 scale = ((len(sigmas) - i) / len(sigmas)) ** 2 if i == 0: denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.15, **extra_args) denoised_2c = model(x_2, sigma_mid * s_in, **extra_args) denoised_2 = (denoised_2a + denoised_2c) / 2 elif i < len(sigmas) * 0.334: denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args) denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args) denoised_2c = model(x_2, sigma_mid * s_in, **extra_args) denoised_2 = (denoised_2a + denoised_2b + denoised_2c) / 3 else: denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.03, True, **extra_args) denoised_2c = model(x_2, sigma_mid * s_in, **extra_args) denoised_2 = (denoised_2b + denoised_2c) / 2 d_2 = to_d(x_2, sigma_mid, denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_multi_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 scale = ((len(sigmas) - i) / len(sigmas)) ** 2 denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args) denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args) denoised_2c = model(x_2, sigma_mid * s_in, **extra_args) denoised_2 = (denoised_2a + denoised_2b + denoised_2c) / 3 d_2 = to_d(x_2, sigma_mid, denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_multi_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 scale = ((len(sigmas) - i) / len(sigmas)) ** 2 denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 - scale * 0.25, **extra_args) denoised_2c = model(x_2, sigma_mid * s_in, **extra_args) denoised_2 = (denoised_2a + denoised_2c) / 2 d_2 = to_d(x_2, sigma_mid, denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_multi_a(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 scale = ((len(sigmas) - i) / len(sigmas)) ** 2 denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, 1 + scale * 0.15, **extra_args) denoised_2c = model(x_2, sigma_mid * s_in, **extra_args) denoised_2 = (denoised_2b + denoised_2c) / 2 d_2 = to_d(x_2, sigma_mid, denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_multi_ds(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 scale = ((len(sigmas) - i) / len(sigmas)) ** 2 if i == 0: sa = 1 - scale * 0.15 sb = 1 + scale * 0.09 denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args) denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, **extra_args) denoised_2 = (denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375) / (0.97**2) elif i < len(sigmas) * 0.167: sa = 1 - scale * 0.25 sb = 1 + scale * 0.15 denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args) denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb , **extra_args) denoised_2 = (denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375) / (0.95**2) else: sb = 1 + scale * 0.06 sc = 1 - scale * 0.1 denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, True, **extra_args) denoised_2c = smea_sampling_step_denoised(x_2, model, sigma_mid, sc, **extra_args) denoised_2 = (denoised_2b * (sb ** 2) * 0.375 + denoised_2c * (sc ** 2) * 0.625) / (0.98**2) d_2 = to_d(x_2, sigma_mid, denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_multi_ds2_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): sample = sample_euler_smea_multi_ds2(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True) return sample @torch.no_grad() def sample_euler_smea_multi_ds2_s_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): sample = sample_euler_smea_multi_ds2_m(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True) return sample @torch.no_grad() def sample_euler_smea_multi_ds2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 scale = (sigmas[i] / sigmas[0]) ** 2 scale = scale.item() if i == 0: sa = 1 - scale * 0.15 sb = 1 + scale * 0.09 sigA = sigma_mid / (sa ** 2) sigB = sigma_mid / (sb ** 2) denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args) denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args) denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.97**2) # 1 - (sa * sb ) / 2 + 1 d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2) elif i < len(sigmas) * 0.167: sa = 1 - scale * 0.25 sb = 1 + scale * 0.15 sigA = sigma_mid / (sa ** 2) sigB = sigma_mid / (sb ** 2) denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args) denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args) denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.95**2) d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2) else: sb = 1 + scale * 0.06 sc = 1 - scale * 0.1 sigB = sigma_mid / (sb ** 2) sigC = sigma_mid / (sc ** 2) denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args) denoised_2c = smea_sampling_step_denoised(x_2, model, sigC, sc, smooth, **extra_args) denoised_2 = (denoised_2b * (sb ** 2) * 0.5 * sc ** 2 + denoised_2c * (sc ** 2) * 0.5 * sb ** 2) #/ (0.98**2) d_2 = to_d(x_2, sigB * 0.5 * sc ** 2 + sigC * 0.5 * sb ** 2, denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_multi_ds2_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 scale = (sigmas[i] / sigmas[0]) ** 2 #scale = dt_1 ** 2 * 0.01 scale = scale.item() if i == 0: sa = 1 - scale * 0.15 #15 sb = 1 + scale * 0.09 #09 sigA = sigma_mid / (sa ** 2) sigB = sigma_mid / (sb ** 2) #delta = sa * sb denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args) denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args) denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.97**2) # 1 - (sa * sb ) / 2 + 1 d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2) elif i < len(sigmas) * 0.167: sa = 1 - scale * 0.25 #25 sb = 1 + scale * 0.15 #15 sigA = sigma_mid / (sa ** 2) sigB = sigma_mid / (sb ** 2) #delta = sa * sb denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args) denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args) denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) #/ (0.95**2) d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2) else: sb = 1 + scale * 0.06 sc = 1 - scale * 0.1 sigB = sigma_mid / (sb ** 2) sigC = sigma_mid / (sc ** 2) #delta = sb * sc denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args) denoised_2c = smea_sampling_step_denoised(x_2, model, sigC, sc, smooth, **extra_args) denoised_2 = (denoised_2b * (sb ** 2) * 0.5 * sc ** 2+ denoised_2c * (sc ** 2) * 0.5 * sb ** 2) #/ (0.98**2) d_2 = to_d(x_2, sigB * 0.5 * sc ** 2 + sigC * 0.5 * sb ** 2, denoised_2) x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + (math.cos(1.05 * i + 1.1)/(1.25 * i + 1.5) + 1) * d * dt return x @torch.no_grad() def sample_euler_h_m(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1 sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax gamma = min((2 ** 0.5 - 1) - wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler == None else noise_sampler sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) dt = sigmas[i + 1] - sigma_hat if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0: x_2 = x + wave * d * dt d_2 = to_d(x_2, sigmas[i + 1], denoised) d_prime = d * (2 - wave) * 0.5 + d_2 * wave * 0.5 x = x + d_prime * dt else: # Euler method x = x + wave * d * dt return x @torch.no_grad() def sample_euler_h_m_b(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1 sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax gamma = min(wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) dt = sigmas[i + 1] - sigma_hat if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0: x_2 = x + wave * d * dt d_2 = to_d(x_2, sigmas[i + 1], denoised * (gamma + 1)) d_prime = d * (2 - wave) * 0.5 + d_2 * wave * 0.5 x = x + d_prime * dt else: # Euler method x = x + wave * d * dt return x @torch.no_grad() def sample_euler_h_m_c(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1 sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax gamma = max((2 ** 0.5 - 1) + wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) dt = sigmas[i + 1] - sigma_hat if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0: x_2 = x + wave * d * dt d_2 = to_d(x_2, sigmas[i + 1], denoised) d_prime = d * (2 - wave) * 0.5 + d_2 * wave * 0.5 x = x + d_prime * dt else: # Euler method x = x + wave * d * dt return x @torch.no_grad() def sample_euler_h_m_d(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1 sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax gamma = min((2 ** 0.5 - 1) - wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) dt = sigmas[i + 1] - sigma_hat if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0: x_2 = x + wave * d * dt d_2 = to_d(x_2, sigmas[i + 1], denoised) d_prime = d * (2 - wave) * 0.5 + d_2 * wave * 0.5 x = x + d_prime * dt else: # Euler method x = x + wave * d * dt return x @torch.no_grad() def sample_euler_h_m_e(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1 sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax gamma = max((2 ** 0.5 - 1) + wave * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) dt = sigmas[i + 1] - sigma_hat if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0: x_2 = x + wave * d * dt d_2 = to_d(x_2, sigmas[i + 1], denoised) d_prime = d * (2 - wave) * 0.5 + d_2 * wave * 0.5 x = x + d_prime * dt else: # Euler method x = x + wave * d * dt return x @torch.no_grad() def sample_euler_h_m_f(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): wave = math.cos(math.pi * 0.5 * i)/(0.5 * i + 1.5) + 1 wave_max = math.cos(0)/1.5 + 1 sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() s_tmin, s_tmax = sigma_min if s_tmin == 0. else s_tmin, sigma_max if s_tmax == float('inf') else s_tmax gamma = min((wave_max - wave) * ((2 ** 0.5 - 1) + s_churn) / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.BrownianTreeNoiseSampler(x, s_tmin, s_tmax, 0) if noise_sampler is None else noise_sampler sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x - eps(sigmas[i], sigmas[i + 1]) * s_noise * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) dt = sigmas[i + 1] - sigma_hat if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0: x_2 = x + wave * d * dt d_2 = to_d(x_2, sigmas[i + 1], denoised * (gamma + 1)) d_prime = d * (2 - wave) * 0.5 + d_2 * wave * 0.5 x = x + d_prime * dt else: # Euler method x = x + wave * d * dt return x @torch.no_grad() def sample_euler_smea_max(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) sa = math.cos(i + 1)/(1.5 * i + 1.75) + 1 if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167 + 1: # and i % 2 == 0: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 sigA = sigma_mid / (sa ** 2) sigB = sigma_mid denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args) denoised_2b = model(x_2, sigma_mid * s_in, **extra_args) denoised_2 = (denoised_2a * 0.5 * (sa ** 2) + denoised_2b * 0.5 / (sa ** 2)) d_2 = to_d(x_2, sigA * 0.5 * (sa ** 2) + sigB * 0.5 / (sa ** 2), denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + sa * d * dt return x @torch.no_grad() def sample_euler_smea_max_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): sample = sample_euler_smea_max(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True) return sample @torch.no_grad() def sample_euler_smea_multi_bs(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 scale = ((len(sigmas) - i) / len(sigmas)) ** 2 sa = 1 - scale * 0.25 sb = 1 + scale * 0.15 denoised_2a = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args) denoised_2b = smea_sampling_step_denoised(x_2, model, sigma_mid, sb, **extra_args) denoised_2 = denoised_2a * (sa ** 2) * 0.625 + denoised_2b * (sb ** 2) * 0.375 / (0.95**2) d_2 = to_d(x_2, sigma_mid, denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_multi_bs2_s(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): sample = sample_euler_smea_multi_bs2(model, x, sigmas, extra_args, callback, disable, s_churn, s_tmin, s_tmax, s_noise, smooth=True) return sample @torch.no_grad() def sample_euler_smea_multi_bs2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., smooth=False): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 scale = (sigmas[i] / sigmas[0]) ** 2 scale = scale.item() sa = 1 - scale * 0.25 sb = 1 + scale * 0.15 sigA = sigma_mid / (sa ** 2) sigB = sigma_mid / (sb ** 2) denoised_2a = smea_sampling_step_denoised(x_2, model, sigA, sa, smooth, **extra_args) denoised_2b = smea_sampling_step_denoised(x_2, model, sigB, sb, smooth, **extra_args) denoised_2 = (denoised_2a * (sa ** 2) * 0.5 * sb ** 2 + denoised_2b * (sb ** 2) * 0.5 * sa ** 2) d_2 = to_d(x_2, sigA * 0.5 * sb ** 2 + sigB * 0.5 * sa ** 2, denoised_2) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_multi_cs(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 scale = ((len(sigmas) - i) / len(sigmas)) ** 2 sa = 1 - scale * 0.25 denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args) d_2 = to_d(x_2, sigma_mid, denoised_2 * (sa ** 2) * 1.25) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_multi_as(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = k_diffusion.sampling.torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) if gamma > 0: x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) if sigmas[i + 1] > 0 and i < len(sigmas) * 0.167: sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() dt_1 = sigma_mid - sigma_hat dt_2 = sigmas[i + 1] - sigma_hat x_2 = x + d * dt_1 scale = ((len(sigmas) - i) / len(sigmas)) ** 2 sa = 1 + scale * 0.15 denoised_2 = smea_sampling_step_denoised(x_2, model, sigma_mid, sa, **extra_args) d_2 = to_d(x_2, sigma_mid, denoised_2 * (sa ** 2) * 0.75) x = x + d_2 * dt_2 else: dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt return x ## og sampler @torch.no_grad() def sample_euler_dy_og(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): # print(i) # i第一步为0 gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) # print(sigma_hat) dt = sigmas[i + 1] - sigma_hat if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = sampling.to_d(x, sigma_hat, denoised) if sigmas[i + 1] > 0: if i // 2 == 1: x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) # Euler method x = x + d * dt return x @torch.no_grad() def sample_euler_smea_dy_og(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) dt = sigmas[i + 1] - sigma_hat if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = sampling.to_d(x, sigma_hat, denoised) # Euler method x = x + d * dt if sigmas[i + 1] > 0: if i + 1 // 2 == 1: x = dy_sampling_step(x, model, dt, sigma_hat, **extra_args) if i + 1 // 2 == 0: x = smea_sampling_step(x, model, dt, sigma_hat, **extra_args) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) return x ## TCD def sample_tcd_euler_a(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, gamma=0.3): # TCD sampling using modified Euler Ancestral sampler. by @laksjdjf extra_args = {} if extra_args is None else extra_args noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): denoised = model(x, sigmas[i] * s_in, **extra_args) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) #d = to_d(x, sigmas[i], denoised) sigma_from = sigmas[i] sigma_to = sigmas[i + 1] t = model.inner_model.sigma_to_t(sigma_from) down_t = (1 - gamma) * t sigma_down = model.inner_model.t_to_sigma(down_t) if sigma_down > sigma_to: sigma_down = sigma_to sigma_up = (sigma_to ** 2 - sigma_down ** 2) ** 0.5 # same as euler ancestral d = to_d(x, sigma_from, denoised) dt = sigma_down - sigma_from x += d * dt if sigma_to > 0 and gamma > 0: x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigma_up return x @torch.no_grad() def sample_tcd(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, gamma=0.3): # TCD sampling using modified DDPM. extra_args = {} if extra_args is None else extra_args noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): denoised = model(x, sigmas[i] * s_in, **extra_args) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) sigma_from, sigma_to = sigmas[i], sigmas[i+1] # TCD offset, based on gamma, and conversion between sigma and timestep t = model.inner_model.sigma_to_t(sigma_from) t_s = (1 - gamma) * t sigma_to_s = model.inner_model.t_to_sigma(t_s) # if sigma_to_s > sigma_to: # sigma_to_s = sigma_to # if sigma_to_s < 0: # sigma_to_s = torch.tensor(1.0) #print(f"sigma_from: {sigma_from}, sigma_to: {sigma_to}, sigma_to_s: {sigma_to_s}") # The following is equivalent to the comfy DDPM implementation # x = DDPMSampler_step(x / torch.sqrt(1.0 + sigma_from ** 2.0), sigma_from, sigma_to, (x - denoised) / sigma_from, noise_sampler) noise_est = (x - denoised) / sigma_from x /= torch.sqrt(1.0 + sigma_from ** 2.0) alpha_cumprod = 1 / ((sigma_from * sigma_from) + 1) # _t alpha_cumprod_prev = 1 / ((sigma_to * sigma_to) + 1) # _t_prev alpha = (alpha_cumprod / alpha_cumprod_prev) ## These values should approach 1.0? # print(f"alpha_cumprod: {alpha_cumprod}") # print(f"alpha_cumprod_prev: {alpha_cumprod_prev}") # print(f"alpha: {alpha}") # alpha_cumprod_down = 1 / ((sigma_to_s * sigma_to_s) + 1) # _s # alpha_d = (alpha_cumprod_prev / alpha_cumprod_down) # alpha2 = (alpha_cumprod / alpha_cumprod_down) # print(f"** alpha_cumprod_down: {alpha_cumprod_down}") # print(f"** alpha_d: {alpha_d}, alpha2: #{alpha2}") # epsilon noise prediction from comfy DDPM implementation x = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise_est / (1 - alpha_cumprod).sqrt()) # x = (1.0 / alpha_d).sqrt() * (x - (1 - alpha) * noise_est / (1 - alpha_cumprod).sqrt()) first_step = sigma_to == 0 last_step = i == len(sigmas) - 2 if not first_step: if gamma > 0 and not last_step: noise = noise_sampler(sigma_from, sigma_to) # x += ((1 - alpha_d) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise variance = ((1 - alpha_cumprod_prev) / (1 - alpha_cumprod)) * (1 - alpha_cumprod / alpha_cumprod_prev) x += variance.sqrt() * noise # scale noise by std deviation # relevant diffusers code from scheduling_tcd.py # prev_sample = (alpha_prod_t_prev / alpha_prod_s).sqrt() * pred_noised_sample + ( # 1 - alpha_prod_t_prev / alpha_prod_s # ).sqrt() * noise x *= torch.sqrt(1.0 + sigma_to ** 2.0) # beta_cumprod_t = 1 - alpha_cumprod # beta_cumprod_s = 1 - alpha_cumprod_down return x