|
|
import dataclasses |
|
|
import torch |
|
|
import k_diffusion |
|
|
import numpy as np |
|
|
from scipy import stats |
|
|
import modules.simple_karras_exponential_scheduler as simple_kes |
|
|
from modules import shared |
|
|
|
|
|
|
|
|
def to_d(x, sigma, denoised): |
|
|
"""Converts a denoiser output to a Karras ODE derivative.""" |
|
|
return (x - denoised) / sigma |
|
|
|
|
|
|
|
|
k_diffusion.sampling.to_d = to_d |
|
|
|
|
|
|
|
|
@dataclasses.dataclass |
|
|
class Scheduler: |
|
|
name: str |
|
|
label: str |
|
|
function: any |
|
|
|
|
|
default_rho: float = -1 |
|
|
need_inner_model: bool = False |
|
|
aliases: list = None |
|
|
|
|
|
|
|
|
def uniform(n, sigma_min, sigma_max, inner_model, device): |
|
|
return inner_model.get_sigmas(n).to(device) |
|
|
|
|
|
|
|
|
def sgm_uniform(n, sigma_min, sigma_max, inner_model, device): |
|
|
start = inner_model.sigma_to_t(torch.tensor(sigma_max)) |
|
|
end = inner_model.sigma_to_t(torch.tensor(sigma_min)) |
|
|
sigs = [ |
|
|
inner_model.t_to_sigma(ts) |
|
|
for ts in torch.linspace(start, end, n + 1)[:-1] |
|
|
] |
|
|
sigs += [0.0] |
|
|
return torch.FloatTensor(sigs).to(device) |
|
|
|
|
|
|
|
|
def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device): |
|
|
|
|
|
def loglinear_interp(t_steps, num_steps): |
|
|
""" |
|
|
Performs log-linear interpolation of a given array of decreasing numbers. |
|
|
""" |
|
|
xs = np.linspace(0, 1, len(t_steps)) |
|
|
ys = np.log(t_steps[::-1]) |
|
|
|
|
|
new_xs = np.linspace(0, 1, num_steps) |
|
|
new_ys = np.interp(new_xs, xs, ys) |
|
|
|
|
|
interped_ys = np.exp(new_ys)[::-1].copy() |
|
|
return interped_ys |
|
|
|
|
|
if shared.sd_model.is_sdxl: |
|
|
sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029] |
|
|
else: |
|
|
|
|
|
sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029] |
|
|
|
|
|
if n != len(sigmas): |
|
|
sigmas = np.append(loglinear_interp(sigmas, n), [0.0]) |
|
|
else: |
|
|
sigmas.append(0.0) |
|
|
|
|
|
return torch.FloatTensor(sigmas).to(device) |
|
|
|
|
|
|
|
|
def kl_optimal(n, sigma_min, sigma_max, device): |
|
|
alpha_min = torch.arctan(torch.tensor(sigma_min, device=device)) |
|
|
alpha_max = torch.arctan(torch.tensor(sigma_max, device=device)) |
|
|
step_indices = torch.arange(n + 1, device=device) |
|
|
sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max) |
|
|
return sigmas |
|
|
|
|
|
|
|
|
def simple_scheduler(n, sigma_min, sigma_max, inner_model, device): |
|
|
sigs = [] |
|
|
ss = len(inner_model.sigmas) / n |
|
|
for x in range(n): |
|
|
sigs += [float(inner_model.sigmas[-(1 + int(x * ss))])] |
|
|
sigs += [0.0] |
|
|
return torch.FloatTensor(sigs).to(device) |
|
|
|
|
|
|
|
|
def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, floor=False): |
|
|
start = inner_model.sigma_to_t(torch.tensor(sigma_max)) |
|
|
end = inner_model.sigma_to_t(torch.tensor(sigma_min)) |
|
|
|
|
|
if sgm: |
|
|
timesteps = torch.linspace(start, end, n + 1)[:-1] |
|
|
else: |
|
|
timesteps = torch.linspace(start, end, n) |
|
|
|
|
|
sigs = [] |
|
|
for x in range(len(timesteps)): |
|
|
ts = timesteps[x] |
|
|
sigs.append(inner_model.t_to_sigma(ts)) |
|
|
sigs += [0.0] |
|
|
return torch.FloatTensor(sigs).to(device) |
|
|
|
|
|
|
|
|
def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device): |
|
|
sigs = [] |
|
|
ss = max(len(inner_model.sigmas) // n, 1) |
|
|
x = 1 |
|
|
while x < len(inner_model.sigmas): |
|
|
sigs += [float(inner_model.sigmas[x])] |
|
|
x += ss |
|
|
sigs = sigs[::-1] |
|
|
sigs += [0.0] |
|
|
return torch.FloatTensor(sigs).to(device) |
|
|
|
|
|
|
|
|
def beta_scheduler(n, sigma_min, sigma_max, inner_model, device): |
|
|
|
|
|
alpha = shared.opts.beta_dist_alpha |
|
|
beta = shared.opts.beta_dist_beta |
|
|
timesteps = 1 - np.linspace(0, 1, n) |
|
|
timesteps = [stats.beta.ppf(x, alpha, beta) for x in timesteps] |
|
|
sigmas = [sigma_min + (x * (sigma_max-sigma_min)) for x in timesteps] |
|
|
sigmas += [0.0] |
|
|
return torch.FloatTensor(sigmas).to(device) |
|
|
|
|
|
|
|
|
schedulers = [ |
|
|
Scheduler('automatic', 'Automatic', None), |
|
|
Scheduler('uniform', 'Uniform', uniform, need_inner_model=True), |
|
|
Scheduler('karras', 'Karras', k_diffusion.sampling.get_sigmas_karras, default_rho=7.0), |
|
|
Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential), |
|
|
Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0), |
|
|
Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]), |
|
|
Scheduler('kl_optimal', 'KL Optimal', kl_optimal), |
|
|
Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas), |
|
|
Scheduler('simple', 'Simple', simple_scheduler, need_inner_model=True), |
|
|
Scheduler('normal', 'Normal', normal_scheduler, need_inner_model=True), |
|
|
Scheduler('ddim', 'DDIM', ddim_scheduler, need_inner_model=True), |
|
|
Scheduler('beta', 'Beta', beta_scheduler, need_inner_model=True), |
|
|
Scheduler('karras_exponential', 'Karras Exponential', simple_kes.simple_karras_exponential_scheduler), |
|
|
] |
|
|
|
|
|
schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}} |
|
|
|