File size: 15,714 Bytes
fabd6c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import torch
from torch import no_grad, FloatTensor
from tqdm import tqdm
from itertools import pairwise
from typing import Protocol, Optional, Dict, Any, TypedDict, NamedTuple, Union, List
import math

from tqdm.auto import trange

#   copied from kdiffusion/sampling.py and utils.py
def default_noise_sampler(x):
    return lambda sigma, sigma_next: torch.randn_like(x)
def append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
    return x[(...,) + (None,) * dims_to_append]
def to_d(x, sigma, denoised):
    """Converts a denoiser output to a Karras ODE derivative."""
    return (x - denoised) / append_dims(sigma, x.ndim)


class DenoiserModel(Protocol):
  def __call__(self, x: FloatTensor, t: FloatTensor, *args, **kwargs) -> FloatTensor: ...

class RefinedExpCallbackPayload(TypedDict):
  x: FloatTensor
  i: int
  sigma: FloatTensor
  sigma_hat: FloatTensor

class RefinedExpCallback(Protocol):
  def __call__(self, payload: RefinedExpCallbackPayload) -> None: ...

class NoiseSampler(Protocol):
  def __call__(self, x: FloatTensor) -> FloatTensor: ...

class StepOutput(NamedTuple):
  x_next: FloatTensor
  denoised: FloatTensor
  denoised2: FloatTensor
  vel: FloatTensor
  vel_2: FloatTensor

def _gamma(

  n: int,

) -> int:
  """

  https://en.wikipedia.org/wiki/Gamma_function

  for every positive integer n,

  Γ(n) = (n-1)!

  """
  return math.factorial(n-1)

def _incomplete_gamma(

  s: int,

  x: float,

  gamma_s: Optional[int] = None

) -> float:
  """

  https://en.wikipedia.org/wiki/Incomplete_gamma_function#Special_values

  if s is a positive integer,

  Γ(s, x) = (s-1)!*∑{k=0..s-1}(x^k/k!)

  """
  if gamma_s is None:
    gamma_s = _gamma(s)

  sum_: float = 0
  # {k=0..s-1} inclusive
  for k in range(s):
    numerator: float = x**k
    denom: int = math.factorial(k)
    quotient: float = numerator/denom
    sum_ += quotient
  incomplete_gamma_: float = sum_ * math.exp(-x) * gamma_s
  return incomplete_gamma_

# by Katherine Crowson
def _phi_1(neg_h: FloatTensor):
  return torch.nan_to_num(torch.expm1(neg_h) / neg_h, nan=1.0)

# by Katherine Crowson
def _phi_2(neg_h: FloatTensor):
  return torch.nan_to_num((torch.expm1(neg_h) - neg_h) / neg_h**2, nan=0.5)

# by Katherine Crowson
def _phi_3(neg_h: FloatTensor):
  return torch.nan_to_num((torch.expm1(neg_h) - neg_h - neg_h**2 / 2) / neg_h**3, nan=1 / 6)

def _phi(

  neg_h: float,

  j: int,

):
  """

  For j={1,2,3}: you could alternatively use Kat's phi_1, phi_2, phi_3 which perform fewer steps



  Lemma 1

  https://arxiv.org/abs/2308.02157

  ϕj(-h) = 1/h^j*∫{0..h}(e^(τ-h)*(τ^(j-1))/((j-1)!)dτ)



  https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84

  = 1/h^j*[(e^(-h)*(-τ)^(-j)*τ(j))/((j-1)!)]{0..h}

  https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84+between+0+and+h

  = 1/h^j*((e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h)))/(j-1)!)

  = (e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h))/((j-1)!*h^j)

  = (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/(j-1)!

  = (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/Γ(j)

  = (e^(-h)*(-h)^(-j)*(1-Γ(j,-h)/Γ(j))



  requires j>0

  """
  assert j > 0
  gamma_: float = _gamma(j)
  incomp_gamma_: float = _incomplete_gamma(j, neg_h, gamma_s=gamma_)

  phi_: float = math.exp(neg_h) * neg_h**-j * (1-incomp_gamma_/gamma_)

  return phi_

class RESDECoeffsSecondOrder(NamedTuple):
  a2_1: float
  b1: float
  b2: float

def _de_second_order(

  h: float,

  c2: float,

  simple_phi_calc = False,

) -> RESDECoeffsSecondOrder:
  """

  Table 3

  https://arxiv.org/abs/2308.02157

  ϕi,j := ϕi,j(-h) = ϕi(-cj*h)

  a2_1 = c2ϕ1,2

       = c2ϕ1(-c2*h)

  b1 = ϕ1 - ϕ2/c2

  """
  if simple_phi_calc:
    # Kat computed simpler expressions for phi for cases j={1,2,3}
    a2_1: float = c2 * _phi_1(-c2*h)
    phi1: float = _phi_1(-h)
    phi2: float = _phi_2(-h)
  else:
    # I computed general solution instead.
    # they're close, but there are slight differences. not sure which would be more prone to numerical error.
    a2_1: float = c2 * _phi(j=1, neg_h=-c2*h)
    phi1: float = _phi(j=1, neg_h=-h)
    phi2: float = _phi(j=2, neg_h=-h)
  phi2_c2: float = phi2/c2
  b1: float = phi1 - phi2_c2
  b2: float = phi2_c2
  return RESDECoeffsSecondOrder(
    a2_1=a2_1,
    b1=b1,
    b2=b2,
  )  

def _refined_exp_sosu_step(

  model: DenoiserModel,

  x: FloatTensor,

  sigma: FloatTensor,

  sigma_next: FloatTensor,

  c2 = 0.5,

  extra_args: Dict[str, Any] = {},

  pbar: Optional[tqdm] = None,

  simple_phi_calc = False,

  momentum = 0.0,

  vel = None,

  vel_2 = None,

  time = None

) -> StepOutput:
  """

  Algorithm 1 "RES Second order Single Update Step with c2"

  https://arxiv.org/abs/2308.02157



  Parameters:

    model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser)

    x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0]

    sigma (`FloatTensor`): timestep to denoise

    sigma_next (`FloatTensor`): timestep+1 to denoise

    c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method

    extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()`

    pbar (`tqdm`, *optional*, defaults to `None`): progress bar to update after each model call

    simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences.

  """

  def momentum_func(diff, velocity, timescale=1.0, offset=-momentum / 2.0): # Diff is current diff, vel is previous diff
    if velocity is None:
        momentum_vel = diff
    else:
        momentum_vel = momentum * (timescale + offset) * velocity + (1 - momentum * (timescale + offset)) * diff
    return momentum_vel

  lam_next, lam = (s.log().neg() for s in (sigma_next, sigma))

  # type hints aren't strictly true regarding float vs FloatTensor.
  # everything gets promoted to `FloatTensor` after interacting with `sigma: FloatTensor`.
  # I will use float to indicate any variables which are scalars.
  h: float = lam_next - lam
  a2_1, b1, b2 = _de_second_order(h=h, c2=c2, simple_phi_calc=simple_phi_calc)
  
  denoised: FloatTensor = model(x, sigma.repeat(x.size(0)), **extra_args)
  # if pbar is not None:
    # pbar.update(0.5)

  c2_h: float = c2*h

  diff_2 = momentum_func(a2_1*h*denoised, vel_2, time)
  vel_2 = diff_2
  x_2: FloatTensor = math.exp(-c2_h)*x + diff_2
  lam_2: float = lam + c2_h
  sigma_2: float = lam_2.neg().exp()

  denoised2: FloatTensor = model(x_2, sigma_2.repeat(x_2.size(0)), **extra_args)
  if pbar is not None:
    pbar.update()

  diff = momentum_func(h*(b1*denoised + b2*denoised2), vel, time)
  vel = diff

  x_next: FloatTensor = math.exp(-h)*x + diff
  
  return StepOutput(
    x_next=x_next,
    denoised=denoised,
    denoised2=denoised2,
    vel=vel,
    vel_2=vel_2,
  )
  

@no_grad()
def sample_refined_exp_s(

  model: FloatTensor,

  x: FloatTensor,

  sigmas: FloatTensor,

  denoise_to_zero: bool = True,

  extra_args: Dict[str, Any] = {},

  callback: Optional[RefinedExpCallback] = None,

  disable: Optional[bool] = None,

  ita: FloatTensor = torch.zeros((1,)),

  c2 = .5,

  noise_sampler: NoiseSampler = torch.randn_like,

  simple_phi_calc = False,

  momentum = 0.0,

):
  """

  Refined Exponential Solver (S).

  Algorithm 2 "RES Single-Step Sampler" with Algorithm 1 second-order step

  https://arxiv.org/abs/2308.02157



  Parameters:

    model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser)

    x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0]

    sigmas (`FloatTensor`): sigmas (ideally an exponential schedule!) e.g. get_sigmas_exponential(n=25, sigma_min=model.sigma_min, sigma_max=model.sigma_max)

    denoise_to_zero (`bool`, *optional*, defaults to `True`): whether to finish with a first-order step down to 0 (rather than stopping at sigma_min). True = fully denoise image. False = match Algorithm 2 in paper

    extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()`

    callback (`RefinedExpCallback`, *optional*, defaults to `None`): you can supply this callback to see the intermediate denoising results, e.g. to preview each step of the denoising process

    disable (`bool`, *optional*, defaults to `False`): whether to hide `tqdm`'s progress bar animation from being printed

    ita (`FloatTensor`, *optional*, defaults to 0.): degree of stochasticity, η, for each timestep. tensor shape must be broadcastable to 1-dimensional tensor with length `len(sigmas) if denoise_to_zero else len(sigmas)-1`. each element should be from 0 to 1.

         - if used: batch noise doesn't match non-batch

    c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method

    noise_sampler (`NoiseSampler`, *optional*, defaults to `torch.randn_like`): method used for adding noise

    simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences.

  """
  #assert sigmas[-1] == 0
  device = x.device
  ita = ita.to(device)
  sigmas = sigmas.to(device)

  sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()

  vel, vel_2 = None, None
  with tqdm(disable=disable, total=len(sigmas)-(1 if denoise_to_zero else 2)) as pbar:
    for i, (sigma, sigma_next) in enumerate(pairwise(sigmas[:-1].split(1))):
      time = sigmas[i] / sigma_max
      if 'sigma' not in locals():
        sigma = sigmas[i]
      eps = torch.randn_like(x).float()
      sigma_hat = sigma * (1 + ita)
      x_hat = x + (sigma_hat ** 2 - sigma ** 2).sqrt() * eps
      x_next, denoised, denoised2, vel, vel_2 = _refined_exp_sosu_step(
        model,
        x_hat,
        sigma_hat,
        sigma_next,
        c2=c2,
        extra_args=extra_args,
        pbar=pbar,
        simple_phi_calc=simple_phi_calc,
        momentum = momentum,
        vel = vel,
        vel_2 = vel_2,
        time = time
      )
      if callback is not None:
        payload = RefinedExpCallbackPayload(
          x=x,
          i=i,
          sigma=sigma,
          sigma_hat=sigma_hat,
          denoised=denoised,
          denoised2=denoised2,
        )
        callback(payload)
      x = x_next
    if denoise_to_zero:
      eps = torch.randn_like(x).float()
      sigma_hat = sigma * (1 + ita)
      x_hat = x + (sigma_hat ** 2 - sigma ** 2).sqrt() * eps
      x_next: FloatTensor = model(x_hat, sigma.to(x_hat.device).repeat(x_hat.size(0)), **extra_args)
      pbar.update()

      if callback is not None:
        payload = RefinedExpCallbackPayload(
          x=x,
          i=i,
          sigma=sigma,
          sigma_hat=sigma_hat,
          denoised=denoised,
          denoised2=denoised2,
        )
        callback(payload)


      x = x_next
  return x

# Many thanks to Kat + Birch-San for this wonderful sampler implementation! https://github.com/Birch-san/sdxl-play/commits/res/
def sample_res_solver(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler_type="gaussian", noise_sampler=None, denoise_to_zero=True, simple_phi_calc=False, c2=0.5, ita=torch.Tensor((0.0,)), momentum=0.0):
    return sample_refined_exp_s(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, noise_sampler=noise_sampler, denoise_to_zero=denoise_to_zero, simple_phi_calc=simple_phi_calc, c2=c2, ita=ita, momentum=momentum)


##  modified from ReForge, original implementation ComfyUI
@torch.no_grad()
def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None, cfgpp=False):
    extra_args = {} if extra_args is None else extra_args
    seed = extra_args.get("seed", None)
    noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
    s_in = x.new_ones([x.shape[0]])
    sigma_fn = lambda t: t.neg().exp()
    t_fn = lambda sigma: sigma.log().neg()
    phi1_fn = lambda t: torch.expm1(t) / t
    phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t
    old_denoised = None

    sigmas = sigmas.to(x.device)

    if cfgpp:
        model.need_last_noise_uncond = True
        model.inner_model.inner_model.forge_objects.unet.model_options["disable_cfg1_optimization"] = True

    for i in trange(len(sigmas) - 1, disable=disable):
        if s_churn > 0:
            gamma = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.0
            sigma_hat = sigmas[i] * (gamma + 1)
        else:
            gamma = 0
            sigma_hat = sigmas[i]
        if gamma > 0:
            eps = torch.randn_like(x) * s_noise
            x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
        denoised = model(x, sigma_hat * s_in, **extra_args)

        if callback is not None:
            callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigma_hat, "denoised": denoised})
        if sigmas[i + 1] == 0 or old_denoised is None:
            # Euler method
            if cfgpp:
                d = model.last_noise_uncond
                x = denoised + d * sigmas[i + 1]
            else:
                d = to_d(x, sigma_hat, denoised)
                dt = sigmas[i + 1] - sigma_hat
                x = x + d * dt
        else:
            # Second order multistep method in https://arxiv.org/pdf/2308.02157
            t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigmas[i + 1]), t_fn(sigmas[i - 1])
            h = t_next - t
            c2 = (t_prev - t) / h
            phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
            b1 = torch.nan_to_num(phi1_val - 1.0 / c2 * phi2_val, nan=0.0)
            b2 = torch.nan_to_num(1.0 / c2 * phi2_val, nan=0.0)
            if cfgpp:
                d = model.last_noise_uncond
                x = denoised + d * sigma_hat

            x = (sigma_fn(t_next) / sigma_fn(t)) * x + h * (b1 * denoised + b2 * old_denoised)
        old_denoised = denoised
    return x
@torch.no_grad()
def sample_res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
    return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfgpp=False)
@torch.no_grad()
def sample_res_multistep_cfgpp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
    return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfgpp=True)