dikdimon commited on
Commit
d31be88
·
verified ·
1 Parent(s): 02f9345

Upload sampling.py using SD-Hub

Browse files
Files changed (1) hide show
  1. sampling.py +1599 -0
sampling.py ADDED
@@ -0,0 +1,1599 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ from scipy import integrate
4
+ import torch
5
+ from torch import nn
6
+ from torchdiffeq import odeint
7
+ import torchsde
8
+ from tqdm.auto import trange, tqdm
9
+
10
+ from . import utils
11
+
12
+
13
+ def append_zero(x):
14
+ return torch.cat([x, x.new_zeros([1])])
15
+
16
+
17
+ def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
18
+ """Constructs the noise schedule of Karras et al. (2022)."""
19
+ ramp = torch.linspace(0, 1, n)
20
+ min_inv_rho = sigma_min ** (1 / rho)
21
+ max_inv_rho = sigma_max ** (1 / rho)
22
+ sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
23
+ return append_zero(sigmas).to(device)
24
+
25
+
26
+ def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
27
+ """Constructs an exponential noise schedule."""
28
+ sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
29
+ return append_zero(sigmas)
30
+
31
+
32
+ def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
33
+ """Constructs an polynomial in log sigma noise schedule."""
34
+ ramp = torch.linspace(1, 0, n, device=device) ** rho
35
+ sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
36
+ return append_zero(sigmas)
37
+
38
+
39
+ def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
40
+ """Constructs a continuous VP noise schedule."""
41
+ t = torch.linspace(1, eps_s, n, device=device)
42
+ sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
43
+ return append_zero(sigmas)
44
+
45
+
46
+ def to_d(x, sigma, denoised):
47
+ """Converts a denoiser output to a Karras ODE derivative."""
48
+ return (x - denoised) / utils.append_dims(sigma, x.ndim)
49
+
50
+
51
+ def get_ancestral_step(sigma_from, sigma_to, eta=1.):
52
+ """Calculates the noise level (sigma_down) to step down to and the amount
53
+ of noise to add (sigma_up) when doing an ancestral sampling step."""
54
+ if not eta:
55
+ return sigma_to, 0.
56
+ sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
57
+ sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
58
+ return sigma_down, sigma_up
59
+
60
+
61
+ def default_noise_sampler(x):
62
+ return lambda sigma, sigma_next: torch.randn_like(x)
63
+
64
+
65
+ class BatchedBrownianTree:
66
+ """A wrapper around torchsde.BrownianTree that enables batches of entropy."""
67
+
68
+ def __init__(self, x, t0, t1, seed=None, **kwargs):
69
+ t0, t1, self.sign = self.sort(t0, t1)
70
+ w0 = kwargs.get('w0', torch.zeros_like(x))
71
+ if seed is None:
72
+ seed = torch.randint(0, 2 ** 63 - 1, []).item()
73
+ self.batched = True
74
+ try:
75
+ assert len(seed) == x.shape[0]
76
+ w0 = w0[0]
77
+ except TypeError:
78
+ seed = [seed]
79
+ self.batched = False
80
+ self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
81
+
82
+ @staticmethod
83
+ def sort(a, b):
84
+ return (a, b, 1) if a < b else (b, a, -1)
85
+
86
+ def __call__(self, t0, t1):
87
+ t0, t1, sign = self.sort(t0, t1)
88
+ w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
89
+ return w if self.batched else w[0]
90
+
91
+
92
+ class BrownianTreeNoiseSampler:
93
+ """A noise sampler backed by a torchsde.BrownianTree.
94
+
95
+ Args:
96
+ x (Tensor): The tensor whose shape, device and dtype to use to generate
97
+ random samples.
98
+ sigma_min (float): The low end of the valid interval.
99
+ sigma_max (float): The high end of the valid interval.
100
+ seed (int or List[int]): The random seed. If a list of seeds is
101
+ supplied instead of a single integer, then the noise sampler will
102
+ use one BrownianTree per batch item, each with its own seed.
103
+ transform (callable): A function that maps sigma to the sampler's
104
+ internal timestep.
105
+ """
106
+
107
+ def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
108
+ self.transform = transform
109
+ t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
110
+ self.tree = BatchedBrownianTree(x, t0, t1, seed)
111
+
112
+ def __call__(self, sigma, sigma_next):
113
+ t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
114
+ return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
115
+
116
+
117
+ @torch.no_grad()
118
+ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
119
+ """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
120
+ extra_args = {} if extra_args is None else extra_args
121
+ s_in = x.new_ones([x.shape[0]])
122
+ for i in trange(len(sigmas) - 1, disable=disable):
123
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
124
+ eps = torch.randn_like(x) * s_noise
125
+ sigma_hat = sigmas[i] * (gamma + 1)
126
+ if gamma > 0:
127
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
128
+ denoised = model(x, sigma_hat * s_in, **extra_args)
129
+ d = to_d(x, sigma_hat, denoised)
130
+ if callback is not None:
131
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
132
+ dt = sigmas[i + 1] - sigma_hat
133
+ # Euler method
134
+ x = x + d * dt
135
+ return x
136
+
137
+
138
+ @torch.no_grad()
139
+ def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
140
+ """Ancestral sampling with Euler method steps."""
141
+ extra_args = {} if extra_args is None else extra_args
142
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
143
+ s_in = x.new_ones([x.shape[0]])
144
+ for i in trange(len(sigmas) - 1, disable=disable):
145
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
146
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
147
+ if callback is not None:
148
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
149
+ d = to_d(x, sigmas[i], denoised)
150
+ # Euler method
151
+ dt = sigma_down - sigmas[i]
152
+ x = x + d * dt
153
+ if sigmas[i + 1] > 0:
154
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
155
+ return x
156
+
157
+
158
+ @torch.no_grad()
159
+ def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
160
+ """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
161
+ extra_args = {} if extra_args is None else extra_args
162
+ s_in = x.new_ones([x.shape[0]])
163
+ for i in trange(len(sigmas) - 1, disable=disable):
164
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
165
+ eps = torch.randn_like(x) * s_noise
166
+ sigma_hat = sigmas[i] * (gamma + 1)
167
+ if gamma > 0:
168
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
169
+ denoised = model(x, sigma_hat * s_in, **extra_args)
170
+ d = to_d(x, sigma_hat, denoised)
171
+ if callback is not None:
172
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
173
+ dt = sigmas[i + 1] - sigma_hat
174
+ if sigmas[i + 1] == 0:
175
+ # Euler method
176
+ x = x + d * dt
177
+ else:
178
+ # Heun's method
179
+ x_2 = x + d * dt
180
+ denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
181
+ d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
182
+ d_prime = (d + d_2) / 2
183
+ x = x + d_prime * dt
184
+ return x
185
+
186
+
187
+ @torch.no_grad()
188
+ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
189
+ """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
190
+ extra_args = {} if extra_args is None else extra_args
191
+ s_in = x.new_ones([x.shape[0]])
192
+ for i in trange(len(sigmas) - 1, disable=disable):
193
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
194
+ eps = torch.randn_like(x) * s_noise
195
+ sigma_hat = sigmas[i] * (gamma + 1)
196
+ if gamma > 0:
197
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
198
+ denoised = model(x, sigma_hat * s_in, **extra_args)
199
+ d = to_d(x, sigma_hat, denoised)
200
+ if callback is not None:
201
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
202
+ if sigmas[i + 1] == 0:
203
+ # Euler method
204
+ dt = sigmas[i + 1] - sigma_hat
205
+ x = x + d * dt
206
+ else:
207
+ # DPM-Solver-2
208
+ sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
209
+ dt_1 = sigma_mid - sigma_hat
210
+ dt_2 = sigmas[i + 1] - sigma_hat
211
+ x_2 = x + d * dt_1
212
+ denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
213
+ d_2 = to_d(x_2, sigma_mid, denoised_2)
214
+ x = x + d_2 * dt_2
215
+ return x
216
+
217
+
218
+ @torch.no_grad()
219
+ def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
220
+ """Ancestral sampling with DPM-Solver second-order steps."""
221
+ extra_args = {} if extra_args is None else extra_args
222
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
223
+ s_in = x.new_ones([x.shape[0]])
224
+ for i in trange(len(sigmas) - 1, disable=disable):
225
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
226
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
227
+ if callback is not None:
228
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
229
+ d = to_d(x, sigmas[i], denoised)
230
+ if sigma_down == 0:
231
+ # Euler method
232
+ dt = sigma_down - sigmas[i]
233
+ x = x + d * dt
234
+ else:
235
+ # DPM-Solver-2
236
+ sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
237
+ dt_1 = sigma_mid - sigmas[i]
238
+ dt_2 = sigma_down - sigmas[i]
239
+ x_2 = x + d * dt_1
240
+ denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
241
+ d_2 = to_d(x_2, sigma_mid, denoised_2)
242
+ x = x + d_2 * dt_2
243
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
244
+ return x
245
+
246
+
247
+ def linear_multistep_coeff(order, t, i, j):
248
+ if order - 1 > i:
249
+ raise ValueError(f'Order {order} too high for step {i}')
250
+ def fn(tau):
251
+ prod = 1.
252
+ for k in range(order):
253
+ if j == k:
254
+ continue
255
+ prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
256
+ return prod
257
+ return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
258
+
259
+
260
+ @torch.no_grad()
261
+ def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
262
+ extra_args = {} if extra_args is None else extra_args
263
+ s_in = x.new_ones([x.shape[0]])
264
+ sigmas_cpu = sigmas.detach().cpu().numpy()
265
+ ds = []
266
+ for i in trange(len(sigmas) - 1, disable=disable):
267
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
268
+ d = to_d(x, sigmas[i], denoised)
269
+ ds.append(d)
270
+ if len(ds) > order:
271
+ ds.pop(0)
272
+ if callback is not None:
273
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
274
+ cur_order = min(i + 1, order)
275
+ coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
276
+ x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
277
+ return x
278
+
279
+
280
+ @torch.no_grad()
281
+ def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4):
282
+ extra_args = {} if extra_args is None else extra_args
283
+ s_in = x.new_ones([x.shape[0]])
284
+ v = torch.randint_like(x, 2) * 2 - 1
285
+ fevals = 0
286
+ def ode_fn(sigma, x):
287
+ nonlocal fevals
288
+ with torch.enable_grad():
289
+ x = x[0].detach().requires_grad_()
290
+ denoised = model(x, sigma * s_in, **extra_args)
291
+ d = to_d(x, sigma, denoised)
292
+ fevals += 1
293
+ grad = torch.autograd.grad((d * v).sum(), x)[0]
294
+ d_ll = (v * grad).flatten(1).sum(1)
295
+ return d.detach(), d_ll
296
+ x_min = x, x.new_zeros([x.shape[0]])
297
+ t = x.new_tensor([sigma_min, sigma_max])
298
+ sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5')
299
+ latent, delta_ll = sol[0][-1], sol[1][-1]
300
+ ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1)
301
+ return ll_prior + delta_ll, {'fevals': fevals}
302
+
303
+
304
+ class PIDStepSizeController:
305
+ """A PID controller for ODE adaptive step size control."""
306
+ def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
307
+ self.h = h
308
+ self.b1 = (pcoeff + icoeff + dcoeff) / order
309
+ self.b2 = -(pcoeff + 2 * dcoeff) / order
310
+ self.b3 = dcoeff / order
311
+ self.accept_safety = accept_safety
312
+ self.eps = eps
313
+ self.errs = []
314
+
315
+ def limiter(self, x):
316
+ return 1 + math.atan(x - 1)
317
+
318
+ def propose_step(self, error):
319
+ inv_error = 1 / (float(error) + self.eps)
320
+ if not self.errs:
321
+ self.errs = [inv_error, inv_error, inv_error]
322
+ self.errs[0] = inv_error
323
+ factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
324
+ factor = self.limiter(factor)
325
+ accept = factor >= self.accept_safety
326
+ if accept:
327
+ self.errs[2] = self.errs[1]
328
+ self.errs[1] = self.errs[0]
329
+ self.h *= factor
330
+ return accept
331
+
332
+
333
+ class DPMSolver(nn.Module):
334
+ """DPM-Solver. See https://arxiv.org/abs/2206.00927."""
335
+
336
+ def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
337
+ super().__init__()
338
+ self.model = model
339
+ self.extra_args = {} if extra_args is None else extra_args
340
+ self.eps_callback = eps_callback
341
+ self.info_callback = info_callback
342
+
343
+ def t(self, sigma):
344
+ return -sigma.log()
345
+
346
+ def sigma(self, t):
347
+ return t.neg().exp()
348
+
349
+ def eps(self, eps_cache, key, x, t, *args, **kwargs):
350
+ if key in eps_cache:
351
+ return eps_cache[key], eps_cache
352
+ sigma = self.sigma(t) * x.new_ones([x.shape[0]])
353
+ eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
354
+ if self.eps_callback is not None:
355
+ self.eps_callback()
356
+ return eps, {key: eps, **eps_cache}
357
+
358
+ def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
359
+ eps_cache = {} if eps_cache is None else eps_cache
360
+ h = t_next - t
361
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
362
+ x_1 = x - self.sigma(t_next) * h.expm1() * eps
363
+ return x_1, eps_cache
364
+
365
+ def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
366
+ eps_cache = {} if eps_cache is None else eps_cache
367
+ h = t_next - t
368
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
369
+ s1 = t + r1 * h
370
+ u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
371
+ eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
372
+ x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
373
+ return x_2, eps_cache
374
+
375
+ def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
376
+ eps_cache = {} if eps_cache is None else eps_cache
377
+ h = t_next - t
378
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
379
+ s1 = t + r1 * h
380
+ s2 = t + r2 * h
381
+ u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
382
+ eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
383
+ u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
384
+ eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
385
+ x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
386
+ return x_3, eps_cache
387
+
388
+ def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
389
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
390
+ if not t_end > t_start and eta:
391
+ raise ValueError('eta must be 0 for reverse sampling')
392
+
393
+ m = math.floor(nfe / 3) + 1
394
+ ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
395
+
396
+ if nfe % 3 == 0:
397
+ orders = [3] * (m - 2) + [2, 1]
398
+ else:
399
+ orders = [3] * (m - 1) + [nfe % 3]
400
+
401
+ for i in range(len(orders)):
402
+ eps_cache = {}
403
+ t, t_next = ts[i], ts[i + 1]
404
+ if eta:
405
+ sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
406
+ t_next_ = torch.minimum(t_end, self.t(sd))
407
+ su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
408
+ else:
409
+ t_next_, su = t_next, 0.
410
+
411
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
412
+ denoised = x - self.sigma(t) * eps
413
+ if self.info_callback is not None:
414
+ self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
415
+
416
+ if orders[i] == 1:
417
+ x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
418
+ elif orders[i] == 2:
419
+ x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
420
+ else:
421
+ x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
422
+
423
+ x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
424
+
425
+ return x
426
+
427
+ def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
428
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
429
+ if order not in {2, 3}:
430
+ raise ValueError('order should be 2 or 3')
431
+ forward = t_end > t_start
432
+ if not forward and eta:
433
+ raise ValueError('eta must be 0 for reverse sampling')
434
+ h_init = abs(h_init) * (1 if forward else -1)
435
+ atol = torch.tensor(atol)
436
+ rtol = torch.tensor(rtol)
437
+ s = t_start
438
+ x_prev = x
439
+ accept = True
440
+ pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
441
+ info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
442
+
443
+ while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
444
+ eps_cache = {}
445
+ t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
446
+ if eta:
447
+ sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
448
+ t_ = torch.minimum(t_end, self.t(sd))
449
+ su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
450
+ else:
451
+ t_, su = t, 0.
452
+
453
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
454
+ denoised = x - self.sigma(s) * eps
455
+
456
+ if order == 2:
457
+ x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
458
+ x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
459
+ else:
460
+ x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
461
+ x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
462
+ delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
463
+ error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
464
+ accept = pid.propose_step(error)
465
+ if accept:
466
+ x_prev = x_low
467
+ x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
468
+ s = t
469
+ info['n_accept'] += 1
470
+ else:
471
+ info['n_reject'] += 1
472
+ info['nfe'] += order
473
+ info['steps'] += 1
474
+
475
+ if self.info_callback is not None:
476
+ self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
477
+
478
+ return x, info
479
+
480
+
481
+ @torch.no_grad()
482
+ def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
483
+ """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
484
+ if sigma_min <= 0 or sigma_max <= 0:
485
+ raise ValueError('sigma_min and sigma_max must not be 0')
486
+ with tqdm(total=n, disable=disable) as pbar:
487
+ dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
488
+ if callback is not None:
489
+ dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
490
+ return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
491
+
492
+
493
+ @torch.no_grad()
494
+ def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
495
+ """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
496
+ if sigma_min <= 0 or sigma_max <= 0:
497
+ raise ValueError('sigma_min and sigma_max must not be 0')
498
+ with tqdm(disable=disable) as pbar:
499
+ dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
500
+ if callback is not None:
501
+ dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
502
+ x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
503
+ if return_info:
504
+ return x, info
505
+ return x
506
+
507
+
508
+ @torch.no_grad()
509
+ def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
510
+ """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
511
+ extra_args = {} if extra_args is None else extra_args
512
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
513
+ s_in = x.new_ones([x.shape[0]])
514
+ sigma_fn = lambda t: t.neg().exp()
515
+ t_fn = lambda sigma: sigma.log().neg()
516
+
517
+ for i in trange(len(sigmas) - 1, disable=disable):
518
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
519
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
520
+ if callback is not None:
521
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
522
+ if sigma_down == 0:
523
+ # Euler method
524
+ d = to_d(x, sigmas[i], denoised)
525
+ dt = sigma_down - sigmas[i]
526
+ x = x + d * dt
527
+ else:
528
+ # DPM-Solver++(2S)
529
+ t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
530
+ r = 1 / 2
531
+ h = t_next - t
532
+ s = t + r * h
533
+ x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
534
+ denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
535
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
536
+ # Noise addition
537
+ if sigmas[i + 1] > 0:
538
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
539
+ return x
540
+
541
+
542
+ @torch.no_grad()
543
+ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
544
+ """DPM-Solver++ (stochastic)."""
545
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
546
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
547
+ extra_args = {} if extra_args is None else extra_args
548
+ s_in = x.new_ones([x.shape[0]])
549
+ sigma_fn = lambda t: t.neg().exp()
550
+ t_fn = lambda sigma: sigma.log().neg()
551
+
552
+ for i in trange(len(sigmas) - 1, disable=disable):
553
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
554
+ if callback is not None:
555
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
556
+ if sigmas[i + 1] == 0:
557
+ # Euler method
558
+ d = to_d(x, sigmas[i], denoised)
559
+ dt = sigmas[i + 1] - sigmas[i]
560
+ x = x + d * dt
561
+ else:
562
+ # DPM-Solver++
563
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
564
+ h = t_next - t
565
+ s = t + h * r
566
+ fac = 1 / (2 * r)
567
+
568
+ # Step 1
569
+ sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
570
+ s_ = t_fn(sd)
571
+ x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
572
+ x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
573
+ denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
574
+
575
+ # Step 2
576
+ sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
577
+ t_next_ = t_fn(sd)
578
+ denoised_d = (1 - fac) * denoised + fac * denoised_2
579
+ x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
580
+ x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
581
+ return x
582
+
583
+
584
+ @torch.no_grad()
585
+ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
586
+ """DPM-Solver++(2M)."""
587
+ extra_args = {} if extra_args is None else extra_args
588
+ s_in = x.new_ones([x.shape[0]])
589
+ sigma_fn = lambda t: t.neg().exp()
590
+ t_fn = lambda sigma: sigma.log().neg()
591
+ old_denoised = None
592
+
593
+ for i in trange(len(sigmas) - 1, disable=disable):
594
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
595
+ if callback is not None:
596
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
597
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
598
+ h = t_next - t
599
+ if old_denoised is None or sigmas[i + 1] == 0:
600
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
601
+ else:
602
+ h_last = t - t_fn(sigmas[i - 1])
603
+ r = h_last / h
604
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
605
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
606
+ old_denoised = denoised
607
+ return x
608
+
609
+
610
+ @torch.no_grad()
611
+ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
612
+ """DPM-Solver++(2M) SDE."""
613
+
614
+ if solver_type not in {'heun', 'midpoint'}:
615
+ raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
616
+
617
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
618
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
619
+ extra_args = {} if extra_args is None else extra_args
620
+ s_in = x.new_ones([x.shape[0]])
621
+
622
+ old_denoised = None
623
+ h_last = None
624
+
625
+ for i in trange(len(sigmas) - 1, disable=disable):
626
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
627
+ if callback is not None:
628
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
629
+ if sigmas[i + 1] == 0:
630
+ # Denoising step
631
+ x = denoised
632
+ else:
633
+ # DPM-Solver++(2M) SDE
634
+ t, s = -sigmas[i].log(), -sigmas[i + 1].log()
635
+ h = s - t
636
+ eta_h = eta * h
637
+
638
+ x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
639
+
640
+ if old_denoised is not None:
641
+ r = h_last / h
642
+ if solver_type == 'heun':
643
+ x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
644
+ elif solver_type == 'midpoint':
645
+ x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
646
+
647
+ if eta:
648
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
649
+
650
+ old_denoised = denoised
651
+ h_last = h
652
+ return x
653
+
654
+
655
+ @torch.no_grad()
656
+ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
657
+ """DPM-Solver++(3M) SDE."""
658
+
659
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
660
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
661
+ extra_args = {} if extra_args is None else extra_args
662
+ s_in = x.new_ones([x.shape[0]])
663
+
664
+ denoised_1, denoised_2 = None, None
665
+ h_1, h_2 = None, None
666
+
667
+ for i in trange(len(sigmas) - 1, disable=disable):
668
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
669
+ if callback is not None:
670
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
671
+ if sigmas[i + 1] == 0:
672
+ # Denoising step
673
+ x = denoised
674
+ else:
675
+ t, s = -sigmas[i].log(), -sigmas[i + 1].log()
676
+ h = s - t
677
+ h_eta = h * (eta + 1)
678
+
679
+ x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
680
+
681
+ if h_2 is not None:
682
+ r0 = h_1 / h
683
+ r1 = h_2 / h
684
+ d1_0 = (denoised - denoised_1) / r0
685
+ d1_1 = (denoised_1 - denoised_2) / r1
686
+ d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
687
+ d2 = (d1_0 - d1_1) / (r0 + r1)
688
+ phi_2 = h_eta.neg().expm1() / h_eta + 1
689
+ phi_3 = phi_2 / h_eta - 0.5
690
+ x = x + phi_2 * d1 - phi_3 * d2
691
+ elif h_1 is not None:
692
+ r = h_1 / h
693
+ d = (denoised - denoised_1) / r
694
+ phi_2 = h_eta.neg().expm1() / h_eta + 1
695
+ x = x + phi_2 * d
696
+
697
+ if eta:
698
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
699
+
700
+ denoised_1, denoised_2 = denoised, denoised_1
701
+ h_1, h_2 = h, h_1
702
+ return x
703
+
704
+ @torch.no_grad()
705
+ def sample_dpmpp_2m_alt(model, x, sigmas, extra_args=None, callback=None, disable=None):
706
+ """DPM-Solver++(2M)."""
707
+ extra_args = {} if extra_args is None else extra_args
708
+ s_in = x.new_ones([x.shape[0]])
709
+ sigma_fn = lambda t: t.neg().exp()
710
+ t_fn = lambda sigma: sigma.log().neg()
711
+ old_denoised = None
712
+
713
+ for i in trange(len(sigmas) - 1, disable=disable):
714
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
715
+ if callback is not None:
716
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
717
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
718
+ h = t_next - t
719
+
720
+ t_min = min(sigma_fn(t_next), sigma_fn(t))
721
+ t_max = max(sigma_fn(t_next), sigma_fn(t))
722
+
723
+ if old_denoised is None or sigmas[i + 1] == 0:
724
+ x = (t_min / t_max) * x - (-h).expm1() * denoised
725
+ else:
726
+ h_last = t - t_fn(sigmas[i - 1])
727
+
728
+ h_min = min(h_last, h)
729
+ h_max = max(h_last, h)
730
+ r = h_max / h_min
731
+
732
+ h_d = (h_max + h_min) / 2
733
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
734
+ x = (t_min / t_max) * x - (-h_d).expm1() * denoised_d
735
+
736
+ old_denoised = denoised
737
+ return x
738
+
739
+ @torch.no_grad()
740
+ def sample_dpmpp_2m_v1(model, x, sigmas, extra_args=None, callback=None, disable=None):
741
+ """DPM-Solver++(2M)."""
742
+ extra_args = {} if extra_args is None else extra_args
743
+ s_in = x.new_ones([x.shape[0]])
744
+ sigma_fn = lambda t: t.neg().exp()
745
+ t_fn = lambda sigma: sigma.log().neg()
746
+ old_denoised = None
747
+
748
+ for i in trange(len(sigmas) - 1, disable=disable):
749
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
750
+ if callback is not None:
751
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
752
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
753
+ h = t_next - t
754
+ if old_denoised is None or sigmas[i + 1] == 0:
755
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
756
+ else:
757
+ h_last = t - t_fn(sigmas[i - 1])
758
+ r = h_last / h
759
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
760
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
761
+ sigma_progress = i / len(sigmas)
762
+ adjustment_factor = 1 + (0.15 * (sigma_progress * sigma_progress))
763
+ old_denoised = denoised * adjustment_factor
764
+ return x
765
+
766
+ @torch.no_grad()
767
+ def sample_dpmpp_2m_test(model, x, sigmas, extra_args=None, callback=None, disable=None):
768
+ """DPM-Solver++(2M)."""
769
+ extra_args = {} if extra_args is None else extra_args
770
+ s_in = x.new_ones([x.shape[0]])
771
+ sigma_fn = lambda t: t.neg().exp()
772
+ t_fn = lambda sigma: sigma.log().neg()
773
+ old_denoised = None
774
+
775
+ for i in trange(len(sigmas) - 1, disable=disable):
776
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
777
+ if callback is not None:
778
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
779
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
780
+ h = t_next - t
781
+
782
+ t_min = min(sigma_fn(t_next), sigma_fn(t))
783
+ t_max = max(sigma_fn(t_next), sigma_fn(t))
784
+
785
+ if old_denoised is None or sigmas[i + 1] == 0:
786
+ x = (t_min / t_max) * x - (-h).expm1() * denoised
787
+ else:
788
+ h_last = t - t_fn(sigmas[i - 1])
789
+
790
+ h_min = min(h_last, h)
791
+ h_max = max(h_last, h)
792
+ r = h_max / h_min
793
+
794
+ h_d = (h_max + h_min) / 2
795
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
796
+ x = (t_min / t_max) * x - (-h_d).expm1() * denoised_d
797
+
798
+ old_denoised = denoised
799
+ return x
800
+
801
+ import torch
802
+ from torch import nn
803
+ import torchsde
804
+ from tqdm import trange, tqdm
805
+ from scipy import integrate
806
+ import math
807
+ from modules import shared
808
+ import k_diffusion.sampling
809
+
810
+ #Citing from K-Diffusion
811
+ #===================================================================================
812
+ def append_zero(x):
813
+ return torch.cat([x, x.new_zeros([1])])
814
+
815
+ def append_dims(x, target_dims):
816
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
817
+ dims_to_append = target_dims - x.ndim
818
+ if dims_to_append < 0:
819
+ raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
820
+ return x[(...,) + (None,) * dims_to_append]
821
+
822
+ def to_d(x, sigma, denoised):
823
+ """Converts a denoiser output to a Karras ODE derivative."""
824
+ return (x - denoised) / append_dims(sigma, x.ndim)
825
+
826
+ def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
827
+ """Constructs the noise schedule of Karras et al. (2022)."""
828
+ ramp = torch.linspace(0, 1, n)
829
+ min_inv_rho = sigma_min ** (1 / rho)
830
+ max_inv_rho = sigma_max ** (1 / rho)
831
+ sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
832
+ return append_zero(sigmas).to(device)
833
+
834
+
835
+ def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
836
+ """Constructs an exponential noise schedule."""
837
+ sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
838
+ return append_zero(sigmas)
839
+
840
+
841
+ def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
842
+ """Constructs an polynomial in log sigma noise schedule."""
843
+ ramp = torch.linspace(1, 0, n, device=device) ** rho
844
+ sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
845
+ return append_zero(sigmas)
846
+
847
+
848
+ def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
849
+ """Constructs a continuous VP noise schedule."""
850
+ t = torch.linspace(1, eps_s, n, device=device)
851
+ sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
852
+ return append_zero(sigmas)
853
+
854
+ def get_ancestral_step(sigma_from, sigma_to, eta=1.):
855
+ """Calculates the noise level (sigma_down) to step down to and the amount
856
+ of noise to add (sigma_up) when doing an ancestral sampling step."""
857
+ if not eta:
858
+ return sigma_to, 0.
859
+ sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
860
+ sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
861
+ return sigma_down, sigma_up
862
+
863
+ def default_noise_sampler(x):
864
+ return lambda sigma, sigma_next: torch.randn_like(x)
865
+
866
+ def linear_multistep_coeff(order, t, i, j):
867
+ if order - 1 > i:
868
+ raise ValueError(f'Order {order} too high for step {i}')
869
+ def fn(tau):
870
+ prod = 1.
871
+ for k in range(order):
872
+ if j == k:
873
+ continue
874
+ prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
875
+ return prod
876
+ return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
877
+
878
+ class DPMSolver(nn.Module):
879
+ """DPM-Solver. See https://arxiv.org/abs/2206.00927."""
880
+
881
+ def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
882
+ super().__init__()
883
+ self.model = model
884
+ self.extra_args = {} if extra_args is None else extra_args
885
+ self.eps_callback = eps_callback
886
+ self.info_callback = info_callback
887
+
888
+ def t(self, sigma):
889
+ return -sigma.log()
890
+
891
+ def sigma(self, t):
892
+ return t.neg().exp()
893
+
894
+ def eps(self, eps_cache, key, x, t, *args, **kwargs):
895
+ if key in eps_cache:
896
+ return eps_cache[key], eps_cache
897
+ sigma = self.sigma(t) * x.new_ones([x.shape[0]])
898
+ eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
899
+ if self.eps_callback is not None:
900
+ self.eps_callback()
901
+ return eps, {key: eps, **eps_cache}
902
+
903
+ def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
904
+ eps_cache = {} if eps_cache is None else eps_cache
905
+ h = t_next - t
906
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
907
+ x_1 = x - self.sigma(t_next) * h.expm1() * eps
908
+ return x_1, eps_cache
909
+
910
+ def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
911
+ eps_cache = {} if eps_cache is None else eps_cache
912
+ h = t_next - t
913
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
914
+ s1 = t + r1 * h
915
+ u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
916
+ eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
917
+ x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
918
+ return x_2, eps_cache
919
+
920
+ def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
921
+ eps_cache = {} if eps_cache is None else eps_cache
922
+ h = t_next - t
923
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
924
+ s1 = t + r1 * h
925
+ s2 = t + r2 * h
926
+ u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
927
+ eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
928
+ u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
929
+ eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
930
+ x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
931
+ return x_3, eps_cache
932
+
933
+ def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
934
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
935
+ if not t_end > t_start and eta:
936
+ raise ValueError('eta must be 0 for reverse sampling')
937
+
938
+ m = math.floor(nfe / 3) + 1
939
+ ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
940
+
941
+ if nfe % 3 == 0:
942
+ orders = [3] * (m - 2) + [2, 1]
943
+ else:
944
+ orders = [3] * (m - 1) + [nfe % 3]
945
+
946
+ for i in range(len(orders)):
947
+ eps_cache = {}
948
+ t, t_next = ts[i], ts[i + 1]
949
+ if eta:
950
+ sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
951
+ t_next_ = torch.minimum(t_end, self.t(sd))
952
+ su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
953
+ else:
954
+ t_next_, su = t_next, 0.
955
+
956
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
957
+ denoised = x - self.sigma(t) * eps
958
+ if self.info_callback is not None:
959
+ self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
960
+
961
+ if orders[i] == 1:
962
+ x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
963
+ elif orders[i] == 2:
964
+ x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
965
+ else:
966
+ x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
967
+
968
+ x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
969
+
970
+ return x
971
+
972
+ def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1.,
973
+ dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
974
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
975
+ if order not in {2, 3}:
976
+ raise ValueError('order should be 2 or 3')
977
+ forward = t_end > t_start
978
+ if not forward and eta:
979
+ raise ValueError('eta must be 0 for reverse sampling')
980
+ h_init = abs(h_init) * (1 if forward else -1)
981
+ atol = torch.tensor(atol)
982
+ rtol = torch.tensor(rtol)
983
+ s = t_start
984
+ x_prev = x
985
+ accept = True
986
+ pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
987
+ info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
988
+
989
+ while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
990
+ eps_cache = {}
991
+ t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
992
+ if eta:
993
+ sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
994
+ t_ = torch.minimum(t_end, self.t(sd))
995
+ su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
996
+ else:
997
+ t_, su = t, 0.
998
+
999
+ eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
1000
+ denoised = x - self.sigma(s) * eps
1001
+
1002
+ if order == 2:
1003
+ x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
1004
+ x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
1005
+ else:
1006
+ x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
1007
+ x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
1008
+ delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
1009
+ error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
1010
+ accept = pid.propose_step(error)
1011
+ if accept:
1012
+ x_prev = x_low
1013
+ x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
1014
+ s = t
1015
+ info['n_accept'] += 1
1016
+ else:
1017
+ info['n_reject'] += 1
1018
+ info['nfe'] += order
1019
+ info['steps'] += 1
1020
+
1021
+ if self.info_callback is not None:
1022
+ self.info_callback(
1023
+ {'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error,
1024
+ 'h': pid.h, **info})
1025
+
1026
+ return x, info
1027
+
1028
+ class BatchedBrownianTree:
1029
+ """A wrapper around torchsde.BrownianTree that enables batches of entropy."""
1030
+
1031
+ def __init__(self, x, t0, t1, seed=None, **kwargs):
1032
+ t0, t1, self.sign = self.sort(t0, t1)
1033
+ w0 = kwargs.get('w0', torch.zeros_like(x))
1034
+ if seed is None:
1035
+ seed = torch.randint(0, 2 ** 63 - 1, []).item()
1036
+ self.batched = True
1037
+ try:
1038
+ assert len(seed) == x.shape[0]
1039
+ w0 = w0[0]
1040
+ except TypeError:
1041
+ seed = [seed]
1042
+ self.batched = False
1043
+ self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
1044
+
1045
+ @staticmethod
1046
+ def sort(a, b):
1047
+ return (a, b, 1) if a < b else (b, a, -1)
1048
+
1049
+ def __call__(self, t0, t1):
1050
+ t0, t1, sign = self.sort(t0, t1)
1051
+ w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
1052
+ return w if self.batched else w[0]
1053
+
1054
+ class BrownianTreeNoiseSampler:
1055
+ """A noise sampler backed by a torchsde.BrownianTree.
1056
+
1057
+ Args:
1058
+ x (Tensor): The tensor whose shape, device and dtype to use to generate
1059
+ random samples.
1060
+ sigma_min (float): The low end of the valid interval.
1061
+ sigma_max (float): The high end of the valid interval.
1062
+ seed (int or List[int]): The random seed. If a list of seeds is
1063
+ supplied instead of a single integer, then the noise sampler will
1064
+ use one BrownianTree per batch item, each with its own seed.
1065
+ transform (callable): A function that maps sigma to the sampler's
1066
+ internal timestep.
1067
+ """
1068
+
1069
+ def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
1070
+ self.transform = transform
1071
+ t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
1072
+ self.tree = BatchedBrownianTree(x, t0, t1, seed)
1073
+
1074
+ def __call__(self, sigma, sigma_next):
1075
+ t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
1076
+ return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
1077
+
1078
+ #===================================================================================
1079
+
1080
+ @torch.no_grad()
1081
+ def sample_skip(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
1082
+ """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
1083
+ extra_args = {} if extra_args is None else extra_args
1084
+ return x
1085
+
1086
+ @torch.no_grad()
1087
+ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
1088
+ """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
1089
+ extra_args = {} if extra_args is None else extra_args
1090
+ s_in = x.new_ones([x.shape[0]])
1091
+ for i in trange(len(sigmas) - 1, disable=disable):
1092
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
1093
+ eps = torch.randn_like(x) * s_noise
1094
+ sigma_hat = sigmas[i] * (gamma + 1)
1095
+ if gamma > 0:
1096
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
1097
+ denoised = model(x, sigma_hat * s_in, **extra_args)
1098
+ d = to_d(x, sigma_hat, denoised)
1099
+ if callback is not None:
1100
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
1101
+ dt = sigmas[i + 1] - sigma_hat
1102
+ # Euler method
1103
+ x = x + d * dt
1104
+ return x
1105
+
1106
+ @torch.no_grad()
1107
+ def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
1108
+ """Ancestral sampling with Euler method steps."""
1109
+ extra_args = {} if extra_args is None else extra_args
1110
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
1111
+ s_in = x.new_ones([x.shape[0]])
1112
+ for i in trange(len(sigmas) - 1, disable=disable):
1113
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1114
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
1115
+ if callback is not None:
1116
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1117
+ d = to_d(x, sigmas[i], denoised)
1118
+ # Euler method
1119
+ dt = sigma_down - sigmas[i]
1120
+ x = x + d * dt
1121
+ if sigmas[i + 1] > 0:
1122
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
1123
+ return x
1124
+
1125
+ @torch.no_grad()
1126
+ def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
1127
+ """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
1128
+ extra_args = {} if extra_args is None else extra_args
1129
+ s_in = x.new_ones([x.shape[0]])
1130
+ s_end = sigmas[-1]
1131
+ for i in trange(len(sigmas) - 1, disable=disable):
1132
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
1133
+ eps = torch.randn_like(x) * s_noise
1134
+ sigma_hat = sigmas[i] * (gamma + 1)
1135
+ if gamma > 0:
1136
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
1137
+ denoised = model(x, sigma_hat * s_in, **extra_args)
1138
+ d = to_d(x, sigma_hat, denoised)
1139
+ if callback is not None:
1140
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
1141
+ dt = sigmas[i + 1] - sigma_hat
1142
+ if sigmas[i + 1] == s_end:
1143
+ # Euler method
1144
+ x = x + d * dt
1145
+ else:
1146
+ # Heun's method
1147
+ x_2 = x + d * dt
1148
+ denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
1149
+ d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
1150
+ d_prime = (d + d_2) / 2
1151
+ x = x + d_prime * dt
1152
+
1153
+ return x
1154
+
1155
+ @torch.no_grad()
1156
+ def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
1157
+ """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
1158
+ extra_args = {} if extra_args is None else extra_args
1159
+ s_in = x.new_ones([x.shape[0]])
1160
+ s_end = sigmas[-1]
1161
+ for i in trange(len(sigmas) - 1, disable=disable):
1162
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
1163
+ eps = torch.randn_like(x) * s_noise
1164
+ sigma_hat = sigmas[i] * (gamma + 1)
1165
+ if gamma > 0:
1166
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
1167
+ denoised = model(x, sigma_hat * s_in, **extra_args)
1168
+ d = to_d(x, sigma_hat, denoised)
1169
+ if callback is not None:
1170
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
1171
+ dt = sigmas[i + 1] - sigma_hat
1172
+ if sigmas[i + 1] == s_end:
1173
+ # Euler method
1174
+ x = x + d * dt
1175
+ elif sigmas[i + 2] == s_end:
1176
+
1177
+ # Heun's method
1178
+ x_2 = x + d * dt
1179
+ denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
1180
+ d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
1181
+
1182
+ w = 2 * sigmas[0]
1183
+ w2 = sigmas[i+1]/w
1184
+ w1 = 1 - w2
1185
+
1186
+ d_prime = d * w1 + d_2 * w2
1187
+
1188
+
1189
+ x = x + d_prime * dt
1190
+
1191
+ else:
1192
+ # Heun++
1193
+ x_2 = x + d * dt
1194
+ denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
1195
+ d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
1196
+ dt_2 = sigmas[i + 2] - sigmas[i + 1]
1197
+
1198
+ x_3 = x_2 + d_2 * dt_2
1199
+ denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
1200
+ d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
1201
+
1202
+ w = 3 * sigmas[0]
1203
+ w2 = sigmas[i + 1] / w
1204
+ w3 = sigmas[i + 2] / w
1205
+ w1 = 1 - w2 - w3
1206
+
1207
+ d_prime = w1 * d + w2 * d_2 + w3 * d_3
1208
+ x = x + d_prime * dt
1209
+ return x
1210
+
1211
+ @torch.no_grad()
1212
+ def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
1213
+ extra_args = {} if extra_args is None else extra_args
1214
+ s_in = x.new_ones([x.shape[0]])
1215
+ sigmas_cpu = sigmas.detach().cpu().numpy()
1216
+ ds = []
1217
+ for i in trange(len(sigmas) - 1, disable=disable):
1218
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1219
+ d = to_d(x, sigmas[i], denoised)
1220
+ ds.append(d)
1221
+ if len(ds) > order:
1222
+ ds.pop(0)
1223
+ if callback is not None:
1224
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1225
+ cur_order = min(i + 1, order)
1226
+ coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
1227
+ x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
1228
+
1229
+ return x
1230
+
1231
+ @torch.no_grad()
1232
+ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
1233
+ """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
1234
+ extra_args = {} if extra_args is None else extra_args
1235
+ s_in = x.new_ones([x.shape[0]])
1236
+ s_end = sigmas[-1]
1237
+ for i in trange(len(sigmas) - 1, disable=disable):
1238
+ gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
1239
+ eps = torch.randn_like(x) * s_noise
1240
+ sigma_hat = sigmas[i] * (gamma + 1)
1241
+ if gamma > 0:
1242
+ x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
1243
+ denoised = model(x, sigma_hat * s_in, **extra_args)
1244
+ d = to_d(x, sigma_hat, denoised)
1245
+ if callback is not None:
1246
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
1247
+ if sigmas[i + 1] == s_end:
1248
+ # Euler method
1249
+ dt = sigmas[i + 1] - sigma_hat
1250
+ x = x + d * dt
1251
+ else:
1252
+ # DPM-Solver-2
1253
+ sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
1254
+ dt_1 = sigma_mid - sigma_hat
1255
+ dt_2 = sigmas[i + 1] - sigma_hat
1256
+ x_2 = x + d * dt_1
1257
+ denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
1258
+ d_2 = to_d(x_2, sigma_mid, denoised_2)
1259
+ x = x + d_2 * dt_2
1260
+ return x
1261
+
1262
+ @torch.no_grad()
1263
+ def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
1264
+ """Ancestral sampling with DPM-Solver second-order steps."""
1265
+ extra_args = {} if extra_args is None else extra_args
1266
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
1267
+ s_in = x.new_ones([x.shape[0]])
1268
+ s_end = sigmas[-1]
1269
+ for i in trange(len(sigmas) - 1, disable=disable):
1270
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1271
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
1272
+ if callback is not None:
1273
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1274
+ d = to_d(x, sigmas[i], denoised)
1275
+ if sigma_down == s_end:
1276
+ # Euler method
1277
+ dt = sigma_down - sigmas[i]
1278
+ x = x + d * dt
1279
+ else:
1280
+ # DPM-Solver-2
1281
+ sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
1282
+ dt_1 = sigma_mid - sigmas[i]
1283
+ dt_2 = sigma_down - sigmas[i]
1284
+ x_2 = x + d * dt_1
1285
+ denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
1286
+ d_2 = to_d(x_2, sigma_mid, denoised_2)
1287
+ x = x + d_2 * dt_2
1288
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
1289
+ return x
1290
+
1291
+ @torch.no_grad()
1292
+ def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
1293
+ """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
1294
+ extra_args = {} if extra_args is None else extra_args
1295
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
1296
+ s_in = x.new_ones([x.shape[0]])
1297
+ sigma_fn = lambda t: t.neg().exp()
1298
+ t_fn = lambda sigma: sigma.log().neg()
1299
+ s_end = sigmas[-1]
1300
+
1301
+ for i in trange(len(sigmas) - 1, disable=disable):
1302
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1303
+ sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
1304
+ if callback is not None:
1305
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1306
+ if sigma_down == s_end:
1307
+ # Euler method
1308
+ d = to_d(x, sigmas[i], denoised)
1309
+ dt = sigma_down - sigmas[i]
1310
+ x = x + d * dt
1311
+ else:
1312
+ # DPM-Solver++(2S)
1313
+ t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
1314
+ r = 1 / 2
1315
+ h = t_next - t
1316
+ s = t + r * h
1317
+ x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
1318
+ denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
1319
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
1320
+ # Noise addition
1321
+ if sigmas[i + 1] > 0:
1322
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
1323
+ return x
1324
+
1325
+ @torch.no_grad()
1326
+ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
1327
+ """DPM-Solver++ (stochastic)."""
1328
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
1329
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
1330
+ extra_args = {} if extra_args is None else extra_args
1331
+ s_in = x.new_ones([x.shape[0]])
1332
+ sigma_fn = lambda t: t.neg().exp()
1333
+ t_fn = lambda sigma: sigma.log().neg()
1334
+ s_end = sigmas[-1]
1335
+
1336
+ for i in trange(len(sigmas) - 1, disable=disable):
1337
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1338
+ if callback is not None:
1339
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1340
+ if sigmas[i + 1] == s_end:
1341
+ # Euler method
1342
+ d = to_d(x, sigmas[i], denoised)
1343
+ dt = sigmas[i + 1] - sigmas[i]
1344
+ x = x + d * dt
1345
+ else:
1346
+ # DPM-Solver++
1347
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
1348
+ h = t_next - t
1349
+ s = t + h * r
1350
+ fac = 1 / (2 * r)
1351
+
1352
+ # Step 1
1353
+ sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
1354
+ s_ = t_fn(sd)
1355
+ x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
1356
+ x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
1357
+ denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
1358
+
1359
+ # Step 2
1360
+ sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
1361
+ t_next_ = t_fn(sd)
1362
+ denoised_d = (1 - fac) * denoised + fac * denoised_2
1363
+ x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
1364
+ x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
1365
+ return x
1366
+
1367
+ @torch.no_grad()
1368
+ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
1369
+ """DPM-Solver++(2M)."""
1370
+ extra_args = {} if extra_args is None else extra_args
1371
+ s_in = x.new_ones([x.shape[0]])
1372
+ sigma_fn = lambda t: t.neg().exp()
1373
+ t_fn = lambda sigma: sigma.log().neg()
1374
+ old_denoised = None
1375
+ s_end = sigmas[-1]
1376
+
1377
+ for i in trange(len(sigmas) - 1, disable=disable):
1378
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1379
+ if callback is not None:
1380
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1381
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
1382
+ h = t_next - t
1383
+ if old_denoised is None or sigmas[i + 1] == s_end:
1384
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
1385
+ else:
1386
+ h_last = t - t_fn(sigmas[i - 1])
1387
+ r = h_last / h
1388
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
1389
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
1390
+ old_denoised = denoised
1391
+ return x
1392
+
1393
+ @torch.no_grad()
1394
+ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
1395
+ """DPM-Solver++(2M) SDE."""
1396
+
1397
+ if solver_type not in {'heun', 'midpoint'}:
1398
+ raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
1399
+
1400
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
1401
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
1402
+ extra_args = {} if extra_args is None else extra_args
1403
+ s_in = x.new_ones([x.shape[0]])
1404
+ s_end = sigmas[-1]
1405
+
1406
+ old_denoised = None
1407
+ h_last = None
1408
+
1409
+ for i in trange(len(sigmas) - 1, disable=disable):
1410
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1411
+ if callback is not None:
1412
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1413
+ if sigmas[i + 1] == s_end:
1414
+ # Denoising step
1415
+ x = denoised
1416
+ else:
1417
+ # DPM-Solver++(2M) SDE
1418
+ t, s = -sigmas[i].log(), -sigmas[i + 1].log()
1419
+ h = s - t
1420
+ eta_h = eta * h
1421
+
1422
+ x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
1423
+
1424
+ if old_denoised is not None:
1425
+ r = h_last / h
1426
+ if solver_type == 'heun':
1427
+ x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
1428
+ elif solver_type == 'midpoint':
1429
+ x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
1430
+
1431
+ if eta:
1432
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
1433
+
1434
+ old_denoised = denoised
1435
+ h_last = h
1436
+ return x
1437
+
1438
+ @torch.no_grad()
1439
+ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
1440
+ """DPM-Solver++(3M) SDE."""
1441
+
1442
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
1443
+ noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
1444
+ extra_args = {} if extra_args is None else extra_args
1445
+ s_in = x.new_ones([x.shape[0]])
1446
+ s_end = sigmas[-1]
1447
+
1448
+ denoised_1, denoised_2 = None, None
1449
+ h_1, h_2 = None, None
1450
+
1451
+ for i in trange(len(sigmas) - 1, disable=disable):
1452
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1453
+ if callback is not None:
1454
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1455
+ if sigmas[i + 1] == s_end:
1456
+ # Denoising step
1457
+ x = denoised
1458
+ else:
1459
+ t, s = -sigmas[i].log(), -sigmas[i + 1].log()
1460
+ h = s - t
1461
+ h_eta = h * (eta + 1)
1462
+
1463
+ x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
1464
+
1465
+ if h_2 is not None:
1466
+ r0 = h_1 / h
1467
+ r1 = h_2 / h
1468
+ d1_0 = (denoised - denoised_1) / r0
1469
+ d1_1 = (denoised_1 - denoised_2) / r1
1470
+ d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
1471
+ d2 = (d1_0 - d1_1) / (r0 + r1)
1472
+ phi_2 = h_eta.neg().expm1() / h_eta + 1
1473
+ phi_3 = phi_2 / h_eta - 0.5
1474
+ x = x + phi_2 * d1 - phi_3 * d2
1475
+ elif h_1 is not None:
1476
+ r = h_1 / h
1477
+ d = (denoised - denoised_1) / r
1478
+ phi_2 = h_eta.neg().expm1() / h_eta + 1
1479
+ x = x + phi_2 * d
1480
+
1481
+ if eta:
1482
+ x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
1483
+
1484
+ denoised_1, denoised_2 = denoised, denoised_1
1485
+ h_1, h_2 = h, h_1
1486
+ return x
1487
+
1488
+ @torch.no_grad()
1489
+ def lcm_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
1490
+ extra_args = {} if extra_args is None else extra_args
1491
+ noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
1492
+ s_end = sigmas[-1]
1493
+ s_in = x.new_ones([x.shape[0]])
1494
+ for i in trange(len(sigmas) - 1, disable=disable):
1495
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1496
+ if callback is not None:
1497
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1498
+
1499
+ x = denoised
1500
+ if sigmas[i + 1] > s_end:
1501
+ x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
1502
+ return x
1503
+
1504
+ @torch.no_grad()
1505
+ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None):
1506
+ """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
1507
+ Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}
1508
+ If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list
1509
+ """
1510
+ extra_args = {} if extra_args is None else extra_args
1511
+ s_in = x.new_ones([x.shape[0]])
1512
+ step_id = 0
1513
+ s_end = sigmas[-1]
1514
+
1515
+ def heun_step(x, old_sigma, new_sigma, second_order=True):
1516
+ nonlocal step_id, s_end
1517
+ denoised = model(x, old_sigma * s_in, **extra_args)
1518
+ d = to_d(x, old_sigma, denoised)
1519
+ if callback is not None:
1520
+ callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
1521
+ dt = new_sigma - old_sigma
1522
+ if new_sigma == s_end or not second_order:
1523
+ # Euler method
1524
+ x = x + d * dt
1525
+ else:
1526
+ # Heun's method
1527
+ x_2 = x + d * dt
1528
+ denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
1529
+ d_2 = to_d(x_2, new_sigma, denoised_2)
1530
+ d_prime = (d + d_2) / 2
1531
+ x = x + d_prime * dt
1532
+ step_id += 1
1533
+ return x
1534
+
1535
+ steps = sigmas.shape[0] - 1
1536
+ if restart_list is None:
1537
+ if steps >= 20:
1538
+ restart_steps = 9
1539
+ restart_times = 1
1540
+ if steps >= 36:
1541
+ restart_steps = steps // 4
1542
+ restart_times = 2
1543
+ sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
1544
+ restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
1545
+ else:
1546
+ restart_list = {}
1547
+
1548
+ restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()}
1549
+
1550
+ step_list = []
1551
+ for i in range(len(sigmas) - 1):
1552
+ step_list.append((sigmas[i], sigmas[i + 1]))
1553
+ if i + 1 in restart_list:
1554
+ restart_steps, restart_times, restart_max = restart_list[i + 1]
1555
+ min_idx = i + 1
1556
+ max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
1557
+ if max_idx < min_idx:
1558
+ sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
1559
+ while restart_times > 0:
1560
+ restart_times -= 1
1561
+ step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])])
1562
+
1563
+ last_sigma = None
1564
+ for old_sigma, new_sigma in tqdm(step_list, disable=disable):
1565
+ if last_sigma is None:
1566
+ last_sigma = old_sigma
1567
+ elif last_sigma < old_sigma:
1568
+ x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5
1569
+ x = heun_step(x, old_sigma, new_sigma)
1570
+ last_sigma = new_sigma
1571
+
1572
+ return x
1573
+
1574
+ @torch.no_grad()
1575
+ def sample_dpmpp_2m_tm(model, x, sigmas, extra_args=None, callback=None, disable=None):
1576
+ """DPM-Solver++(2M)."""
1577
+ extra_args = {} if extra_args is None else extra_args
1578
+ s_in = x.new_ones([x.shape[0]])
1579
+ sigma_fn = lambda t: t.neg().exp()
1580
+ t_fn = lambda sigma: sigma.log().neg()
1581
+ old_denoised = None
1582
+
1583
+ for i in tqdm.tqdm(self.steps, disable=disable):
1584
+ i -= 1
1585
+
1586
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
1587
+ if callback is not None:
1588
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
1589
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
1590
+ h = t_next - t
1591
+ if old_denoised is None or sigmas[i + 1] == 0:
1592
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
1593
+ else:
1594
+ h_last = t - t_fn(sigmas[i - 1])
1595
+ r = h_last / h
1596
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
1597
+ x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
1598
+ old_denoised = denoised
1599
+ return x