ewdlop commited on
Commit
461349d
·
verified ·
1 Parent(s): c1efb49

Upload folder using huggingface_hub

Browse files
.gitignore ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+ *.so
6
+ .Python
7
+ build/
8
+ develop-eggs/
9
+ dist/
10
+ downloads/
11
+ eggs/
12
+ .eggs/
13
+ lib/
14
+ lib64/
15
+ parts/
16
+ sdist/
17
+ var/
18
+ wheels/
19
+ *.egg-info/
20
+ .installed.cfg
21
+ *.egg
22
+ MANIFEST
23
+
24
+ # PyInstaller
25
+ *.manifest
26
+ *.spec
27
+
28
+ # Installer logs
29
+ pip-log.txt
30
+ pip-delete-this-directory.txt
31
+
32
+ # Unit test / coverage reports
33
+ htmlcov/
34
+ .tox/
35
+ .coverage
36
+ .coverage.*
37
+ .cache
38
+ nosetests.xml
39
+ coverage.xml
40
+ *.cover
41
+ .hypothesis/
42
+ .pytest_cache/
43
+
44
+ # Jupyter Notebook
45
+ .ipynb_checkpoints
46
+
47
+ # pyenv
48
+ .python-version
49
+
50
+ # Environments
51
+ .env
52
+ .venv
53
+ env/
54
+ venv/
55
+ ENV/
56
+ env.bak/
57
+ venv.bak/
58
+
59
+ # IDE
60
+ .vscode/
61
+ .idea/
62
+ *.swp
63
+ *.swo
64
+ *~
65
+
66
+ # OS
67
+ .DS_Store
68
+ .DS_Store?
69
+ ._*
70
+ .Spotlight-V100
71
+ .Trashes
72
+ ehthumbs.db
73
+ Thumbs.db
74
+
75
+ # Temporary files
76
+ *.tmp
77
+ *.temp
78
+ /tmp/
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Not-trained-Neural-Networks-Notes
2
+
3
+ A comprehensive collection of notes, implementations, and examples of neural networks that don't rely on traditional gradient-based training methods.
4
+
5
+ ## Contents
6
+
7
+ - [Algebraic Neural Networks](#algebraic-neural-networks)
8
+ - [Uncomputable Neural Networks](#uncomputable-neural-networks)
9
+ - [Theory and Mathematical Foundations](#theory-and-mathematical-foundations)
10
+ - [Implementations](#implementations)
11
+ - [Examples and Use Cases](#examples-and-use-cases)
12
+
13
+ ## Algebraic Neural Networks
14
+
15
+ Algebraic Neural Networks (ANNs) represent a paradigm shift from traditional neural networks by utilizing algebraic structures and operations instead of gradient-based optimization. These networks leverage:
16
+
17
+ - **Algebraic Group Theory**: Using group operations for network transformations
18
+ - **Polynomial Algebras**: Networks based on polynomial computations
19
+ - **Geometric Algebra**: Incorporating geometric algebraic structures
20
+ - **Fixed Algebraic Transformations**: Pre-defined algebraic operations
21
+
22
+ ### Key Features
23
+
24
+ 1. **No Training Required**: Networks are constructed using algebraic principles
25
+ 2. **Deterministic Behavior**: Outputs are fully determined by algebraic rules
26
+ 3. **Mathematical Rigor**: Based on well-established algebraic foundations
27
+ 4. **Interpretability**: Clear mathematical interpretation of operations
28
+
29
+ ## Uncomputable Neural Networks
30
+
31
+ Uncomputable Neural Networks extend the paradigm of non-trained networks by incorporating theoretical concepts from computability theory. These networks explore computational boundaries by simulating uncomputable functions and operations:
32
+
33
+ - **Halting Oracle Layers**: Simulate access to halting oracles for program termination decisions
34
+ - **Kolmogorov Complexity Layers**: Approximate uncomputable complexity measures using compression heuristics
35
+ - **Busy Beaver Layers**: Utilize the uncomputable Busy Beaver function values and approximations
36
+ - **Non-Recursive Layers**: Operate on computably enumerable but non-computable sets
37
+
38
+ ### Key Features
39
+
40
+ 1. **Theoretical Foundations**: Based on computability theory and hypercomputation concepts
41
+ 2. **Bounded Approximations**: Practical implementations of theoretically uncomputable functions
42
+ 3. **Deterministic Simulation**: Consistent behavior through fixed-seed randomness and heuristics
43
+ 4. **Educational Value**: Demonstrates limits and possibilities of computation
44
+
45
+ ## Getting Started
46
+
47
+ ```bash
48
+ git clone https://github.com/ewdlop/Not-trained-Neural-Networks-Notes.git
49
+ cd Not-trained-Neural-Networks-Notes
50
+
51
+ # Install dependencies
52
+ pip install numpy matplotlib
53
+
54
+ # Quick demo
55
+ python demo.py
56
+
57
+ # Run main implementation
58
+ python algebraic_neural_network.py
59
+
60
+ # Run comprehensive tests
61
+ python test_comprehensive.py
62
+ ```
63
+
64
+ ### Quick Demo
65
+ ```bash
66
+ python demo.py
67
+ ```
68
+ This runs a simple demonstration showing how algebraic neural networks process data without any training.
69
+
70
+ ### Examples
71
+ ```bash
72
+ # Polynomial-based networks
73
+ python examples/polynomial_network.py
74
+
75
+ # Group theory networks
76
+ python examples/group_theory_network.py
77
+
78
+ # Geometric algebra networks
79
+ python examples/geometric_algebra_network.py
80
+
81
+ # Uncomputable neural networks
82
+ python examples/uncomputable_networks.py
83
+ ```
84
+
85
+ ## Structure
86
+
87
+ ```
88
+ ├── README.md # This file
89
+ ├── demo.py # Quick demonstration script
90
+ ├── algebraic_neural_network.py # Main implementation
91
+ ├── test_comprehensive.py # Test suite
92
+ ├── theory/ # Theoretical background
93
+ │ ├── algebraic_foundations.md # Mathematical foundations
94
+ │ ├── uncomputable_networks.md # Uncomputable neural networks theory
95
+ │ └── examples.md # Worked examples
96
+ └── examples/ # Practical examples
97
+ ├── polynomial_network.py # Polynomial-based network
98
+ ├── group_theory_network.py # Group theory implementation
99
+ ├── geometric_algebra_network.py # Geometric algebra network
100
+ └── uncomputable_networks.py # Uncomputable neural networks
101
+ ```
102
+
103
+ ## Testing
104
+
105
+ Run the comprehensive test suite to verify all components:
106
+
107
+ ```bash
108
+ python test_comprehensive.py
109
+ ```
110
+
111
+ This tests:
112
+ - Basic functionality of all layer types (algebraic and uncomputable)
113
+ - Network composition and data flow
114
+ - Deterministic behavior (same input → same output)
115
+ - Mathematical properties of algebraic operations
116
+ - Uncomputable layer approximations and bounds
117
+ - Edge cases and boundary conditions
algebraic_neural_network.py ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Algebraic Neural Network Implementation
3
+
4
+ This module implements various types of algebraic neural networks that don't require
5
+ traditional gradient-based training. Instead, they use algebraic structures and
6
+ operations to process information.
7
+
8
+ Author: Algebraic Neural Network Research
9
+ """
10
+
11
+ import numpy as np
12
+ from typing import List, Callable, Union
13
+ import math
14
+
15
+
16
+ class AlgebraicLayer:
17
+ """
18
+ Base class for algebraic layers that use mathematical operations
19
+ instead of learned weights.
20
+ """
21
+
22
+ def __init__(self, input_size: int, output_size: int, operation: str = "polynomial"):
23
+ self.input_size = input_size
24
+ self.output_size = output_size
25
+ self.operation = operation
26
+
27
+ def forward(self, x: np.ndarray) -> np.ndarray:
28
+ """Apply algebraic transformation to input."""
29
+ raise NotImplementedError("Subclasses must implement forward method")
30
+
31
+
32
+ class PolynomialLayer(AlgebraicLayer):
33
+ """
34
+ Layer that applies polynomial transformations without learned weights.
35
+ Uses fixed polynomial coefficients based on algebraic principles.
36
+ """
37
+
38
+ def __init__(self, input_size: int, output_size: int, degree: int = 2):
39
+ super().__init__(input_size, output_size, "polynomial")
40
+ self.degree = degree
41
+ # Generate coefficients using algebraic sequences (e.g., Fibonacci-based)
42
+ self.coefficients = self._generate_algebraic_coefficients()
43
+
44
+ def _generate_algebraic_coefficients(self) -> np.ndarray:
45
+ """Generate polynomial coefficients using algebraic sequences."""
46
+ # Use golden ratio and algebraic numbers for coefficients
47
+ phi = (1 + math.sqrt(5)) / 2 # Golden ratio
48
+ coeffs = []
49
+
50
+ for i in range(self.output_size):
51
+ for j in range(self.input_size):
52
+ # Generate coefficients using algebraic properties
53
+ coeff = (phi ** (i + 1)) / (j + 1) if j < self.input_size else 1.0
54
+ coeffs.append(coeff)
55
+
56
+ return np.array(coeffs).reshape(self.output_size, self.input_size)
57
+
58
+ def forward(self, x: np.ndarray) -> np.ndarray:
59
+ """Apply polynomial transformation."""
60
+ if x.ndim == 1:
61
+ x = x.reshape(1, -1)
62
+
63
+ result = np.zeros((x.shape[0], self.output_size))
64
+
65
+ for i in range(self.output_size):
66
+ # Apply polynomial of specified degree
67
+ poly_result = np.zeros(x.shape[0])
68
+ for degree in range(1, self.degree + 1):
69
+ poly_term = np.power(x, degree) @ self.coefficients[i]
70
+ poly_result += poly_term / math.factorial(degree)
71
+ result[:, i] = poly_result
72
+
73
+ return result
74
+
75
+
76
+ class GroupTheoryLayer(AlgebraicLayer):
77
+ """
78
+ Layer based on group theory operations, particularly using cyclic groups
79
+ and group actions for transformations.
80
+ """
81
+
82
+ def __init__(self, input_size: int, output_size: int, group_order: int = 8):
83
+ super().__init__(input_size, output_size, "group_theory")
84
+ self.group_order = group_order
85
+ # Generate group elements (rotations in this case)
86
+ self.group_elements = self._generate_cyclic_group()
87
+
88
+ def _generate_cyclic_group(self) -> List[np.ndarray]:
89
+ """Generate cyclic group elements as rotation matrices."""
90
+ elements = []
91
+ for k in range(self.group_order):
92
+ angle = 2 * math.pi * k / self.group_order
93
+ # For 2D case, use rotation matrices
94
+ if self.input_size == 2:
95
+ rotation = np.array([
96
+ [math.cos(angle), -math.sin(angle)],
97
+ [math.sin(angle), math.cos(angle)]
98
+ ])
99
+ elements.append(rotation)
100
+ else:
101
+ # For higher dimensions, use generalized rotations
102
+ rotation = np.eye(self.input_size)
103
+ if self.input_size >= 2:
104
+ rotation[0, 0] = math.cos(angle)
105
+ rotation[0, 1] = -math.sin(angle)
106
+ rotation[1, 0] = math.sin(angle)
107
+ rotation[1, 1] = math.cos(angle)
108
+ elements.append(rotation)
109
+ return elements
110
+
111
+ def forward(self, x: np.ndarray) -> np.ndarray:
112
+ """Apply group action to input."""
113
+ if x.ndim == 1:
114
+ x = x.reshape(1, -1)
115
+
116
+ results = []
117
+ for i, group_element in enumerate(self.group_elements[:self.output_size]):
118
+ if x.shape[1] == group_element.shape[0]:
119
+ transformed = x @ group_element.T
120
+ # Take the norm as a scalar output
121
+ result = np.linalg.norm(transformed, axis=1)
122
+ else:
123
+ # Fallback for size mismatch
124
+ result = np.sum(x * (i + 1), axis=1)
125
+ results.append(result)
126
+
127
+ return np.column_stack(results)
128
+
129
+
130
+ class GeometricAlgebraLayer(AlgebraicLayer):
131
+ """
132
+ Layer using geometric algebra (Clifford algebra) operations.
133
+ Implements basic geometric product and algebraic operations.
134
+ """
135
+
136
+ def __init__(self, input_size: int, output_size: int):
137
+ super().__init__(input_size, output_size, "geometric_algebra")
138
+ # Initialize basis vectors for geometric algebra
139
+ self.basis_vectors = self._generate_basis_vectors()
140
+
141
+ def _generate_basis_vectors(self) -> List[np.ndarray]:
142
+ """Generate basis vectors for geometric algebra."""
143
+ basis = []
144
+ # Scalar basis
145
+ basis.append(np.ones(self.input_size))
146
+
147
+ # Vector basis
148
+ for i in range(self.input_size):
149
+ e_i = np.zeros(self.input_size)
150
+ e_i[i] = 1.0
151
+ basis.append(e_i)
152
+
153
+ # Bivector basis (for pairs)
154
+ for i in range(self.input_size):
155
+ for j in range(i + 1, self.input_size):
156
+ e_ij = np.zeros(self.input_size)
157
+ e_ij[i] = 1.0
158
+ e_ij[j] = 1.0
159
+ basis.append(e_ij)
160
+
161
+ return basis[:self.output_size]
162
+
163
+ def geometric_product(self, a: np.ndarray, b: np.ndarray) -> float:
164
+ """Compute geometric product of two vectors."""
165
+ # Simplified geometric product: dot product + outer product norm
166
+ dot_prod = np.dot(a, b)
167
+ # Approximate outer product contribution
168
+ outer_norm = np.linalg.norm(np.outer(a, b))
169
+ return dot_prod + outer_norm
170
+
171
+ def forward(self, x: np.ndarray) -> np.ndarray:
172
+ """Apply geometric algebra transformations."""
173
+ if x.ndim == 1:
174
+ x = x.reshape(1, -1)
175
+
176
+ results = []
177
+ for basis_vector in self.basis_vectors:
178
+ # Compute geometric product with basis vector
179
+ result = []
180
+ for sample in x:
181
+ gp = self.geometric_product(sample, basis_vector)
182
+ result.append(gp)
183
+ results.append(np.array(result))
184
+
185
+ return np.column_stack(results)
186
+
187
+
188
+ class HaltingOracleLayer(AlgebraicLayer):
189
+ """
190
+ Layer that simulates a halting oracle for specific computational patterns.
191
+ Uses heuristics and bounded computation to approximate uncomputable halting decisions.
192
+ """
193
+
194
+ def __init__(self, input_size: int, output_size: int, max_iterations: int = 1000):
195
+ super().__init__(input_size, output_size, "halting_oracle")
196
+ self.max_iterations = max_iterations
197
+ # Fixed seed for deterministic "non-algorithmic" behavior
198
+ self.oracle_seed = 42
199
+
200
+ def _simulate_halting_oracle(self, program_encoding: float) -> float:
201
+ """Simulate halting oracle decision for encoded program."""
202
+ # Use fixed-seed randomness to simulate oracle behavior
203
+ np.random.seed(int(abs(program_encoding * 1000)) % 2**31)
204
+
205
+ # Simple heuristic: programs with certain patterns are more likely to halt
206
+ # This is a deterministic approximation of the uncomputable halting problem
207
+ complexity_factor = abs(program_encoding) % 1.0
208
+
209
+ if complexity_factor < 0.1: # Very simple programs likely halt
210
+ return 1.0
211
+ elif complexity_factor > 0.9: # Very complex programs might not halt
212
+ return 0.1
213
+ else:
214
+ # Use bounded computation simulation
215
+ iterations = int(complexity_factor * self.max_iterations)
216
+ # Simulate bounded program execution
217
+ state = program_encoding
218
+ for i in range(iterations):
219
+ state = (state * 1.618 + 0.786) % 1.0 # Simple state evolution
220
+ if abs(state - 0.5) < 0.01: # "Halting condition"
221
+ return 1.0
222
+ return 0.3 # Uncertain/timeout case
223
+
224
+ def forward(self, x: np.ndarray) -> np.ndarray:
225
+ """Apply halting oracle simulation to inputs."""
226
+ if x.ndim == 1:
227
+ x = x.reshape(1, -1)
228
+
229
+ results = []
230
+ for i in range(self.output_size):
231
+ oracle_results = []
232
+ for sample in x:
233
+ # Encode input as "program" for halting oracle
234
+ program_encoding = np.sum(sample * (i + 1)) / len(sample)
235
+ halting_prob = self._simulate_halting_oracle(program_encoding)
236
+ oracle_results.append(halting_prob)
237
+ results.append(np.array(oracle_results))
238
+
239
+ return np.column_stack(results)
240
+
241
+
242
+ class KolmogorovComplexityLayer(AlgebraicLayer):
243
+ """
244
+ Layer that approximates Kolmogorov complexity using compression-based heuristics.
245
+ Provides bounded approximations of the uncomputable Kolmogorov complexity function.
246
+ """
247
+
248
+ def __init__(self, input_size: int, output_size: int, precision: int = 8):
249
+ super().__init__(input_size, output_size, "kolmogorov_complexity")
250
+ self.precision = precision
251
+
252
+ def _approximate_kolmogorov_complexity(self, data: np.ndarray) -> float:
253
+ """Approximate Kolmogorov complexity using compressibility heuristics."""
254
+ # Convert to discrete representation
255
+ discretized = np.round(data * (2**self.precision)).astype(int)
256
+
257
+ # Simple compression simulation using pattern detection
258
+ data_str = ''.join(map(str, discretized))
259
+
260
+ # Count repetitive patterns (simple compression heuristic)
261
+ unique_chars = len(set(data_str))
262
+ total_chars = len(data_str)
263
+
264
+ # Estimate complexity based on entropy-like measure
265
+ if total_chars == 0:
266
+ return 0.0
267
+
268
+ # Normalized complexity estimate
269
+ entropy_approx = (unique_chars / total_chars) * np.log2(unique_chars + 1)
270
+
271
+ # Add pattern complexity (longer patterns suggest lower complexity)
272
+ pattern_factor = 1.0
273
+ for pattern_len in range(2, min(5, len(data_str))):
274
+ patterns = set()
275
+ for i in range(len(data_str) - pattern_len + 1):
276
+ patterns.add(data_str[i:i+pattern_len])
277
+ if len(patterns) < len(data_str) - pattern_len + 1:
278
+ pattern_factor *= 0.8 # Reduce complexity for repeated patterns
279
+
280
+ return entropy_approx * pattern_factor
281
+
282
+ def forward(self, x: np.ndarray) -> np.ndarray:
283
+ """Compute approximate Kolmogorov complexity for inputs."""
284
+ if x.ndim == 1:
285
+ x = x.reshape(1, -1)
286
+
287
+ results = []
288
+ for i in range(self.output_size):
289
+ complexity_results = []
290
+ for sample in x:
291
+ # Different projections for different outputs
292
+ projection = sample * (i + 1) / (self.output_size)
293
+ complexity = self._approximate_kolmogorov_complexity(projection)
294
+ complexity_results.append(complexity)
295
+ results.append(np.array(complexity_results))
296
+
297
+ return np.column_stack(results)
298
+
299
+
300
+ class BusyBeaverLayer(AlgebraicLayer):
301
+ """
302
+ Layer using Busy Beaver function values and approximations.
303
+ The Busy Beaver function is uncomputable for general n, but known for small values.
304
+ """
305
+
306
+ def __init__(self, input_size: int, output_size: int):
307
+ super().__init__(input_size, output_size, "busy_beaver")
308
+ # Known Busy Beaver values: BB(1)=1, BB(2)=4, BB(3)=6, BB(4)=13, BB(5)≥4098
309
+ self.known_bb_values = {1: 1, 2: 4, 3: 6, 4: 13, 5: 4098}
310
+
311
+ def _busy_beaver_approximation(self, n: int) -> float:
312
+ """Get Busy Beaver value or approximation."""
313
+ if n <= 0:
314
+ return 0.0
315
+ elif n in self.known_bb_values:
316
+ return float(self.known_bb_values[n])
317
+ elif n <= 5:
318
+ return float(self.known_bb_values[5])
319
+ else:
320
+ # For n > 5, use exponential approximation
321
+ # This is a heuristic since BB(n) grows faster than any computable function
322
+ return self.known_bb_values[5] * (2.0 ** (n - 5))
323
+
324
+ def forward(self, x: np.ndarray) -> np.ndarray:
325
+ """Apply Busy Beaver function to transformed inputs."""
326
+ if x.ndim == 1:
327
+ x = x.reshape(1, -1)
328
+
329
+ results = []
330
+ for i in range(self.output_size):
331
+ bb_results = []
332
+ for sample in x:
333
+ # Transform input to discrete parameter for Busy Beaver function
334
+ # Use log scale to keep values reasonable
335
+ param = max(1, int(abs(np.sum(sample) * (i + 1)) % 10) + 1)
336
+ bb_value = self._busy_beaver_approximation(param)
337
+ # Normalize to prevent overflow
338
+ normalized_bb = np.log1p(bb_value)
339
+ bb_results.append(normalized_bb)
340
+ results.append(np.array(bb_results))
341
+
342
+ return np.column_stack(results)
343
+
344
+
345
+ class NonRecursiveLayer(AlgebraicLayer):
346
+ """
347
+ Layer based on non-recursive sets and functions.
348
+ Simulates operations on computably enumerable but non-computable sets.
349
+ """
350
+
351
+ def __init__(self, input_size: int, output_size: int, enumeration_bound: int = 1000):
352
+ super().__init__(input_size, output_size, "non_recursive")
353
+ self.enumeration_bound = enumeration_bound
354
+ # Simulate a c.e. non-recursive set using a bounded enumeration
355
+ self.ce_set = self._generate_ce_set()
356
+
357
+ def _generate_ce_set(self) -> set:
358
+ """Generate a computably enumerable set simulation."""
359
+ ce_set = set()
360
+ # Simulate enumeration of a c.e. set (like the set of Gödel numbers of theorems)
361
+ for i in range(self.enumeration_bound):
362
+ # Simple enumeration rule (this is computable, but simulates c.e. behavior)
363
+ if self._enumeration_rule(i):
364
+ ce_set.add(i)
365
+ return ce_set
366
+
367
+ def _enumeration_rule(self, n: int) -> bool:
368
+ """Rule for enumerating elements (simulates theorem enumeration)."""
369
+ # Simple mathematical property that creates interesting patterns
370
+ # Simulates: numbers that can be expressed as sum of two squares
371
+ for i in range(int(np.sqrt(n)) + 1):
372
+ remainder = n - i*i
373
+ if remainder >= 0 and int(np.sqrt(remainder))**2 == remainder:
374
+ return True
375
+ return False
376
+
377
+ def _membership_oracle(self, value: float) -> float:
378
+ """Simulate membership oracle for non-recursive set."""
379
+ # Convert continuous value to discrete for set membership
380
+ discrete_val = int(abs(value * 1000)) % self.enumeration_bound
381
+
382
+ if discrete_val in self.ce_set:
383
+ return 1.0
384
+ else:
385
+ # For values not yet enumerated, return uncertainty
386
+ # This simulates the non-recursive nature
387
+ return 0.5
388
+
389
+ def forward(self, x: np.ndarray) -> np.ndarray:
390
+ """Apply non-recursive set operations to inputs."""
391
+ if x.ndim == 1:
392
+ x = x.reshape(1, -1)
393
+
394
+ results = []
395
+ for i in range(self.output_size):
396
+ membership_results = []
397
+ for sample in x:
398
+ # Transform input for membership testing
399
+ test_value = np.sum(sample * np.arange(len(sample))) * (i + 1)
400
+ membership = self._membership_oracle(test_value)
401
+ membership_results.append(membership)
402
+ results.append(np.array(membership_results))
403
+
404
+ return np.column_stack(results)
405
+
406
+
407
+ class AlgebraicNeuralNetwork:
408
+ """
409
+ Main class for Algebraic Neural Networks that combines different
410
+ algebraic layers to create a complete network.
411
+ """
412
+
413
+ def __init__(self):
414
+ self.layers = []
415
+
416
+ def add_layer(self, layer: AlgebraicLayer):
417
+ """Add an algebraic layer to the network."""
418
+ self.layers.append(layer)
419
+
420
+ def forward(self, x: np.ndarray) -> np.ndarray:
421
+ """Forward pass through all algebraic layers."""
422
+ current_input = x
423
+ for layer in self.layers:
424
+ current_input = layer.forward(current_input)
425
+ return current_input
426
+
427
+ def predict(self, x: np.ndarray) -> np.ndarray:
428
+ """Alias for forward pass."""
429
+ return self.forward(x)
430
+
431
+
432
+ def create_sample_network() -> AlgebraicNeuralNetwork:
433
+ """Create a sample algebraic neural network for demonstration."""
434
+ network = AlgebraicNeuralNetwork()
435
+
436
+ # Add different types of algebraic layers
437
+ network.add_layer(PolynomialLayer(4, 6, degree=2))
438
+ network.add_layer(GroupTheoryLayer(6, 4, group_order=8))
439
+ network.add_layer(GeometricAlgebraLayer(4, 2))
440
+
441
+ return network
442
+
443
+
444
+ def create_uncomputable_network() -> AlgebraicNeuralNetwork:
445
+ """Create a sample network with uncomputable layers for demonstration."""
446
+ network = AlgebraicNeuralNetwork()
447
+
448
+ # Add uncomputable layers
449
+ network.add_layer(HaltingOracleLayer(4, 5, max_iterations=500))
450
+ network.add_layer(KolmogorovComplexityLayer(5, 4, precision=6))
451
+ network.add_layer(BusyBeaverLayer(4, 3))
452
+ network.add_layer(NonRecursiveLayer(3, 2, enumeration_bound=500))
453
+
454
+ return network
455
+
456
+
457
+ def demo_algebraic_neural_network():
458
+ """Demonstrate the algebraic neural network with sample data."""
459
+ print("=== Algebraic Neural Network Demo ===\n")
460
+
461
+ # Create sample network
462
+ network = create_sample_network()
463
+
464
+ # Generate sample input data
465
+ np.random.seed(42)
466
+ sample_input = np.random.randn(5, 4) # 5 samples, 4 features each
467
+
468
+ print("Input data shape:", sample_input.shape)
469
+ print("Input data:\n", sample_input)
470
+
471
+ # Run prediction
472
+ output = network.predict(sample_input)
473
+
474
+ print("\nOutput data shape:", output.shape)
475
+ print("Output data:\n", output)
476
+
477
+ # Demonstrate individual layers
478
+ print("\n=== Individual Layer Demonstrations ===\n")
479
+
480
+ # Polynomial Layer
481
+ poly_layer = PolynomialLayer(4, 3, degree=2)
482
+ poly_output = poly_layer.forward(sample_input[0])
483
+ print("Polynomial Layer Output:", poly_output)
484
+
485
+ # Group Theory Layer
486
+ group_layer = GroupTheoryLayer(4, 3, group_order=6)
487
+ group_output = group_layer.forward(sample_input[0])
488
+ print("Group Theory Layer Output:", group_output)
489
+
490
+ # Geometric Algebra Layer
491
+ geo_layer = GeometricAlgebraLayer(4, 3)
492
+ geo_output = geo_layer.forward(sample_input[0])
493
+ print("Geometric Algebra Layer Output:", geo_output)
494
+
495
+
496
+ def demo_uncomputable_neural_network():
497
+ """Demonstrate the uncomputable neural network with sample data."""
498
+ print("\n=== Uncomputable Neural Network Demo ===\n")
499
+
500
+ # Create uncomputable network
501
+ network = create_uncomputable_network()
502
+
503
+ # Generate sample input data
504
+ np.random.seed(42)
505
+ sample_input = np.random.randn(3, 4) # 3 samples, 4 features each
506
+
507
+ print("Input data shape:", sample_input.shape)
508
+ print("Input data:\n", sample_input)
509
+
510
+ # Run prediction
511
+ output = network.predict(sample_input)
512
+
513
+ print("\nOutput data shape:", output.shape)
514
+ print("Output data:\n", output)
515
+
516
+ # Demonstrate individual uncomputable layers
517
+ print("\n=== Individual Uncomputable Layer Demonstrations ===\n")
518
+
519
+ # Halting Oracle Layer
520
+ halting_layer = HaltingOracleLayer(4, 3, max_iterations=100)
521
+ halting_output = halting_layer.forward(sample_input[0])
522
+ print("Halting Oracle Layer Output:", halting_output)
523
+
524
+ # Kolmogorov Complexity Layer
525
+ kolmogorov_layer = KolmogorovComplexityLayer(4, 3, precision=6)
526
+ kolmogorov_output = kolmogorov_layer.forward(sample_input[0])
527
+ print("Kolmogorov Complexity Layer Output:", kolmogorov_output)
528
+
529
+ # Busy Beaver Layer
530
+ bb_layer = BusyBeaverLayer(4, 3)
531
+ bb_output = bb_layer.forward(sample_input[0])
532
+ print("Busy Beaver Layer Output:", bb_output)
533
+
534
+ # Non-Recursive Layer
535
+ nr_layer = NonRecursiveLayer(4, 3, enumeration_bound=100)
536
+ nr_output = nr_layer.forward(sample_input[0])
537
+ print("Non-Recursive Layer Output:", nr_output)
538
+
539
+
540
+ if __name__ == "__main__":
541
+ demo_algebraic_neural_network()
542
+ demo_uncomputable_neural_network()
demo.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Quick demonstration of Algebraic Neural Networks
4
+
5
+ Run this script to see the basic functionality of algebraic neural networks.
6
+ """
7
+
8
+ import numpy as np
9
+ from algebraic_neural_network import create_sample_network, create_uncomputable_network
10
+
11
+ def main():
12
+ print("🧮 Algebraic Neural Network Quick Demo")
13
+ print("="*50)
14
+
15
+ # Create a sample network
16
+ print("1. Creating algebraic neural network...")
17
+ network = create_sample_network()
18
+ print(" ✓ Network created with polynomial, group theory, and geometric algebra layers")
19
+
20
+ # Generate sample data
21
+ print("\n2. Generating sample data...")
22
+ np.random.seed(42) # For reproducible results
23
+ sample_data = np.random.randn(3, 4)
24
+ print(f" ✓ Generated {sample_data.shape[0]} samples with {sample_data.shape[1]} features each")
25
+
26
+ # Make predictions
27
+ print("\n3. Processing data through algebraic transformations...")
28
+ predictions = network.predict(sample_data)
29
+ print(f" ✓ Output shape: {predictions.shape}")
30
+ print(f" ✓ Output range: [{np.min(predictions):.3f}, {np.max(predictions):.3f}]")
31
+
32
+ # Show the data
33
+ print("\n4. Results:")
34
+ print(" Input data:")
35
+ for i, sample in enumerate(sample_data):
36
+ print(f" Sample {i+1}: [{sample[0]:6.3f}, {sample[1]:6.3f}, {sample[2]:6.3f}, {sample[3]:6.3f}]")
37
+
38
+ print("\n Algebraic neural network output:")
39
+ for i, output in enumerate(predictions):
40
+ print(f" Output {i+1}: [{output[0]:8.3f}, {output[1]:8.3f}]")
41
+
42
+ # Demonstrate determinism
43
+ print("\n5. Demonstrating deterministic behavior...")
44
+ predictions2 = network.predict(sample_data)
45
+ difference = np.linalg.norm(predictions - predictions2)
46
+ print(f" ✓ Difference between runs: {difference:.10f} (should be 0)")
47
+
48
+ print("\n" + "="*50)
49
+ print("✅ Demo completed! Algebraic neural networks work without training.")
50
+
51
+ # Bonus: Quick uncomputable network demo
52
+ print("\n🔬 Bonus: Uncomputable Neural Network Quick Demo")
53
+ print("="*50)
54
+
55
+ print("1. Creating uncomputable neural network...")
56
+ uncomputable_network = create_uncomputable_network()
57
+ print(" ✓ Network created with halting oracle, Kolmogorov complexity, Busy Beaver, and non-recursive layers")
58
+
59
+ print("\n2. Processing same data through uncomputable transformations...")
60
+ uncomputable_predictions = uncomputable_network.predict(sample_data)
61
+ print(f" ✓ Output shape: {uncomputable_predictions.shape}")
62
+ print(f" ✓ Output range: [{np.min(uncomputable_predictions):.3f}, {np.max(uncomputable_predictions):.3f}]")
63
+
64
+ print("\n Uncomputable neural network output:")
65
+ for i, output in enumerate(uncomputable_predictions):
66
+ print(f" Output {i+1}: [{output[0]:6.3f}, {output[1]:6.3f}]")
67
+
68
+ print("\n" + "="*50)
69
+ print("🎯 Both networks operate without training but explore different mathematical domains!")
70
+ print("📚 See theory/ and examples/ directories for more details.")
71
+
72
+ if __name__ == "__main__":
73
+ main()
examples/geometric_algebra_network.py ADDED
@@ -0,0 +1,461 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Geometric Algebra (Clifford Algebra) Neural Network
3
+
4
+ This example demonstrates neural networks using geometric algebra operations
5
+ for processing geometric and spatial data.
6
+ """
7
+
8
+ import numpy as np
9
+ from typing import List, Tuple, Dict, Union
10
+ import math
11
+
12
+
13
+ class GeometricAlgebraNetwork:
14
+ """
15
+ Neural network based on geometric algebra (Clifford algebra) operations.
16
+ """
17
+
18
+ def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, signature: str = "euclidean"):
19
+ self.input_dim = input_dim
20
+ self.hidden_dim = hidden_dim
21
+ self.output_dim = output_dim
22
+ self.signature = signature
23
+
24
+ # Initialize geometric algebra basis
25
+ self.basis_elements = self._generate_basis_elements()
26
+ self.metric = self._generate_metric()
27
+
28
+ # Generate transformation coefficients
29
+ self.coefficients = self._generate_ga_coefficients()
30
+
31
+ def _generate_metric(self) -> np.ndarray:
32
+ """Generate metric tensor for the geometric algebra."""
33
+ if self.signature == "euclidean":
34
+ return np.eye(self.input_dim)
35
+ elif self.signature == "minkowski":
36
+ metric = np.eye(self.input_dim)
37
+ metric[0, 0] = -1 # Time component with opposite signature
38
+ return metric
39
+ elif self.signature == "conformal":
40
+ # Conformal geometric algebra Cl(n+1,1)
41
+ metric = np.eye(self.input_dim + 2)
42
+ metric[-1, -1] = -1 # One negative signature
43
+ return metric
44
+ else:
45
+ return np.eye(self.input_dim)
46
+
47
+ def _generate_basis_elements(self) -> List[Tuple[str, np.ndarray]]:
48
+ """Generate basis elements for geometric algebra."""
49
+ basis = []
50
+
51
+ # Scalar (grade 0)
52
+ scalar_basis = np.zeros(2**self.input_dim)
53
+ scalar_basis[0] = 1.0
54
+ basis.append(("scalar", scalar_basis))
55
+
56
+ # Vector basis elements (grade 1)
57
+ for i in range(self.input_dim):
58
+ vector_basis = np.zeros(2**self.input_dim)
59
+ vector_basis[2**i] = 1.0
60
+ basis.append((f"e{i+1}", vector_basis))
61
+
62
+ # Bivector basis elements (grade 2)
63
+ for i in range(self.input_dim):
64
+ for j in range(i+1, self.input_dim):
65
+ bivector_basis = np.zeros(2**self.input_dim)
66
+ bivector_basis[2**i + 2**j] = 1.0
67
+ basis.append((f"e{i+1}e{j+1}", bivector_basis))
68
+
69
+ # Higher grade elements for small dimensions
70
+ if self.input_dim <= 4:
71
+ # Trivectors (grade 3)
72
+ for i in range(self.input_dim):
73
+ for j in range(i+1, self.input_dim):
74
+ for k in range(j+1, self.input_dim):
75
+ trivector_basis = np.zeros(2**self.input_dim)
76
+ trivector_basis[2**i + 2**j + 2**k] = 1.0
77
+ basis.append((f"e{i+1}e{j+1}e{k+1}", trivector_basis))
78
+
79
+ # Pseudoscalar (highest grade)
80
+ if self.input_dim >= 2:
81
+ pseudo_basis = np.zeros(2**self.input_dim)
82
+ pseudo_basis[-1] = 1.0
83
+ basis.append(("pseudoscalar", pseudo_basis))
84
+
85
+ return basis
86
+
87
+ def _generate_ga_coefficients(self) -> Dict[str, np.ndarray]:
88
+ """Generate coefficients for geometric algebra transformations."""
89
+ coeffs = {}
90
+
91
+ # Constants from geometric algebra theory
92
+ sqrt2 = math.sqrt(2)
93
+ sqrt3 = math.sqrt(3)
94
+ phi = (1 + math.sqrt(5)) / 2 # Golden ratio
95
+
96
+ constants = [1.0, 1/sqrt2, 1/sqrt3, 1/phi, phi/3, sqrt2/3, sqrt3/5]
97
+
98
+ # Input to hidden transformation
99
+ num_basis = len(self.basis_elements)
100
+ coeffs['input_hidden'] = np.zeros((self.hidden_dim, self.input_dim, num_basis))
101
+
102
+ for i in range(self.hidden_dim):
103
+ for j in range(self.input_dim):
104
+ for k in range(num_basis):
105
+ const_idx = (i + j + k) % len(constants)
106
+ coeffs['input_hidden'][i, j, k] = constants[const_idx]
107
+
108
+ # Hidden to output transformation
109
+ coeffs['hidden_output'] = np.zeros((self.output_dim, self.hidden_dim, num_basis))
110
+
111
+ for i in range(self.output_dim):
112
+ for j in range(self.hidden_dim):
113
+ for k in range(num_basis):
114
+ const_idx = (i + j + k + 1) % len(constants)
115
+ coeffs['hidden_output'][i, j, k] = constants[const_idx]
116
+
117
+ return coeffs
118
+
119
+ def geometric_product(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
120
+ """Compute geometric product of two multivectors."""
121
+ # Simplified geometric product implementation
122
+ # In full implementation, this would use the basis multiplication table
123
+
124
+ if len(a) != len(b):
125
+ min_len = min(len(a), len(b))
126
+ a, b = a[:min_len], b[:min_len]
127
+
128
+ # For this implementation, approximate with:
129
+ # ab = a·b + a∧b (dot + wedge products)
130
+
131
+ # Dot product component (grade reduction)
132
+ dot_product = np.dot(a, b)
133
+
134
+ # Wedge product component (grade increase) - simplified
135
+ wedge_magnitude = np.linalg.norm(np.outer(a, b) - np.outer(b, a))
136
+
137
+ # Combine into multivector representation
138
+ result = np.zeros(max(len(a), 2**self.input_dim))
139
+ result[0] = dot_product # Scalar part
140
+
141
+ if len(result) > 1:
142
+ result[1] = wedge_magnitude # Vector part approximation
143
+
144
+ # Additional components based on input structure
145
+ for i in range(2, min(len(result), len(a) + len(b) - 1)):
146
+ result[i] = (a[i % len(a)] * b[i % len(b)] +
147
+ b[i % len(b)] * a[i % len(a)]) / 2
148
+
149
+ return result[:len(a)]
150
+
151
+ def outer_product(self, a: np.ndarray, b: np.ndarray) -> float:
152
+ """Compute outer (wedge) product magnitude."""
153
+ if len(a) >= 2 and len(b) >= 2:
154
+ # 2D outer product as determinant
155
+ return abs(a[0] * b[1] - a[1] * b[0])
156
+ else:
157
+ # Higher dimensional approximation
158
+ return np.linalg.norm(np.outer(a, b) - np.outer(b, a))
159
+
160
+ def inner_product(self, a: np.ndarray, b: np.ndarray) -> float:
161
+ """Compute inner (dot) product."""
162
+ return np.dot(a, b)
163
+
164
+ def reverse(self, mv: np.ndarray) -> np.ndarray:
165
+ """Compute reverse of multivector (reverse order of basis elements)."""
166
+ # For bivectors and higher grades, reverse changes sign
167
+ reversed_mv = mv.copy()
168
+
169
+ # Approximate reversal by alternating signs for higher components
170
+ for i in range(1, len(reversed_mv)):
171
+ grade = bin(i).count('1') # Grade based on binary representation
172
+ if grade % 4 in [2, 3]: # Bivectors and trivectors change sign
173
+ reversed_mv[i] *= -1
174
+
175
+ return reversed_mv
176
+
177
+ def magnitude(self, mv: np.ndarray) -> float:
178
+ """Compute magnitude of multivector."""
179
+ # Magnitude is sqrt(mv * reverse(mv))
180
+ reversed_mv = self.reverse(mv)
181
+ product = self.geometric_product(mv, reversed_mv)
182
+ return math.sqrt(abs(product[0])) # Scalar part should be positive
183
+
184
+ def normalize(self, mv: np.ndarray) -> np.ndarray:
185
+ """Normalize multivector."""
186
+ mag = self.magnitude(mv)
187
+ if mag > 1e-10:
188
+ return mv / mag
189
+ else:
190
+ return mv
191
+
192
+ def apply_ga_transformation(self, x: np.ndarray, coeffs: np.ndarray) -> np.ndarray:
193
+ """Apply geometric algebra transformation."""
194
+ if x.ndim == 1:
195
+ x = x.reshape(1, -1)
196
+
197
+ batch_size, input_size = x.shape
198
+ output_size = coeffs.shape[0]
199
+ num_basis = len(self.basis_elements)
200
+
201
+ result = np.zeros((batch_size, output_size))
202
+
203
+ for batch_idx in range(batch_size):
204
+ for out_idx in range(output_size):
205
+ # Construct multivector from input
206
+ multivector = np.zeros(num_basis)
207
+
208
+ for in_idx in range(min(input_size, self.input_dim)):
209
+ for basis_idx in range(num_basis):
210
+ basis_name, basis_vector = self.basis_elements[basis_idx]
211
+ coeff = coeffs[out_idx, in_idx, basis_idx]
212
+
213
+ # Ensure basis_vector has correct length
214
+ basis_component = basis_vector[:num_basis] if len(basis_vector) >= num_basis else np.pad(basis_vector, (0, num_basis - len(basis_vector)))
215
+
216
+ # Weight by input value and coefficient
217
+ multivector += x[batch_idx, in_idx] * coeff * basis_component
218
+
219
+ # Apply geometric algebra operations
220
+ # 1. Geometric product with basis elements
221
+ transformed_mv = multivector.copy()
222
+
223
+ for basis_idx in range(min(3, num_basis)): # Use first few basis elements
224
+ _, basis_vector = self.basis_elements[basis_idx]
225
+ transformed_mv = self.geometric_product(transformed_mv, basis_vector[:num_basis])
226
+
227
+ # 2. Extract scalar and vector parts
228
+ scalar_part = transformed_mv[0] if len(transformed_mv) > 0 else 0
229
+ vector_magnitude = np.linalg.norm(transformed_mv[1:min(4, len(transformed_mv))])
230
+
231
+ # 3. Combine into output
232
+ result[batch_idx, out_idx] = scalar_part + vector_magnitude
233
+
234
+ return result
235
+
236
+ def forward(self, x: np.ndarray) -> np.ndarray:
237
+ """Forward pass through geometric algebra network."""
238
+ # Input to hidden layer
239
+ hidden = self.apply_ga_transformation(x, self.coefficients['input_hidden'])
240
+
241
+ # Apply nonlinearity (preserve geometric structure)
242
+ hidden = np.tanh(hidden)
243
+
244
+ # Hidden to output layer
245
+ output = self.apply_ga_transformation(hidden, self.coefficients['hidden_output'])
246
+
247
+ return output
248
+
249
+ def predict(self, x: np.ndarray) -> np.ndarray:
250
+ """Prediction method."""
251
+ return self.forward(x)
252
+
253
+
254
+ def test_geometric_operations():
255
+ """Test basic geometric algebra operations."""
256
+ print("=== Geometric Algebra: Basic Operations Test ===\n")
257
+
258
+ network = GeometricAlgebraNetwork(input_dim=3, hidden_dim=4, output_dim=2)
259
+
260
+ # Test vectors
261
+ a = np.array([1, 0, 0]) # e1
262
+ b = np.array([0, 1, 0]) # e2
263
+ c = np.array([1, 1, 0]) # e1 + e2
264
+
265
+ print("Testing geometric algebra operations:")
266
+
267
+ # Inner products
268
+ inner_ab = network.inner_product(a, b)
269
+ inner_aa = network.inner_product(a, a)
270
+ print(f"Inner product a·b = {inner_ab:.3f} (should be 0)")
271
+ print(f"Inner product a·a = {inner_aa:.3f} (should be 1)")
272
+
273
+ # Outer products
274
+ outer_ab = network.outer_product(a, b)
275
+ outer_aa = network.outer_product(a, a)
276
+ print(f"Outer product a∧b magnitude = {outer_ab:.3f} (should be 1)")
277
+ print(f"Outer product a∧a magnitude = {outer_aa:.3f} (should be 0)")
278
+
279
+ # Geometric products
280
+ geom_ab = network.geometric_product(a, b)
281
+ print(f"Geometric product a*b = {geom_ab[:3]} (first 3 components)")
282
+
283
+ # Magnitudes
284
+ mag_a = network.magnitude(a)
285
+ mag_c = network.magnitude(c)
286
+ print(f"Magnitude |a| = {mag_a:.3f}")
287
+ print(f"Magnitude |c| = {mag_c:.3f}")
288
+
289
+ print()
290
+
291
+
292
+ def test_3d_rotation_processing():
293
+ """Test processing of 3D rotational data."""
294
+ print("=== Geometric Algebra: 3D Rotation Processing ===\n")
295
+
296
+ network = GeometricAlgebraNetwork(input_dim=3, hidden_dim=6, output_dim=4)
297
+
298
+ # Generate 3D rotation data (axis-angle representation)
299
+ rotation_axes = [
300
+ [1, 0, 0], # X-axis rotation
301
+ [0, 1, 0], # Y-axis rotation
302
+ [0, 0, 1], # Z-axis rotation
303
+ [1, 1, 1], # Diagonal rotation
304
+ [1, -1, 0], # Mixed rotation
305
+ ]
306
+
307
+ print("Processing 3D rotation data:")
308
+
309
+ for i, axis in enumerate(rotation_axes):
310
+ axis = np.array(axis, dtype=float)
311
+ axis = axis / np.linalg.norm(axis) # Normalize
312
+
313
+ # Different rotation angles
314
+ angles = [0, np.pi/4, np.pi/2, np.pi, 3*np.pi/2]
315
+
316
+ outputs = []
317
+ for angle in angles:
318
+ # Rotation vector (axis * angle)
319
+ rotation_vector = axis * angle
320
+ output = network.predict(rotation_vector.reshape(1, -1))
321
+ outputs.append(output[0])
322
+
323
+ outputs = np.array(outputs)
324
+
325
+ print(f"\nRotation axis {i+1}: {axis}")
326
+ print(f" Output range: [{np.min(outputs):.3f}, {np.max(outputs):.3f}]")
327
+ print(f" Output variance: {np.var(outputs, axis=0)}")
328
+
329
+ # Check for periodic behavior (rotations should have 2π periodicity)
330
+ first_output = outputs[0] # 0 radians
331
+ last_output = outputs[-1] # 3π/2 radians, should be similar to π/2
332
+
333
+ periodicity_error = np.linalg.norm(first_output - outputs[2]) # Compare 0 and π
334
+ print(f" Periodicity error (0 vs π): {periodicity_error:.6f}")
335
+
336
+
337
+ def test_conformal_geometry():
338
+ """Test conformal geometric algebra for 2D points."""
339
+ print("=== Geometric Algebra: Conformal Geometry ===\n")
340
+
341
+ # Use conformal signature for 2D conformal GA
342
+ network = GeometricAlgebraNetwork(input_dim=2, hidden_dim=8, output_dim=4, signature="conformal")
343
+
344
+ # Test geometric primitives
345
+ geometric_objects = {
346
+ "Point": np.array([1, 1]),
347
+ "Origin": np.array([0, 0]),
348
+ "Unit_X": np.array([1, 0]),
349
+ "Unit_Y": np.array([0, 1]),
350
+ "Diagonal": np.array([1, 1]) / np.sqrt(2)
351
+ }
352
+
353
+ print("Processing geometric objects in conformal space:")
354
+
355
+ object_features = {}
356
+ for obj_name, point in geometric_objects.items():
357
+ # Convert to conformal representation
358
+ # In conformal GA: P = point + 0.5*|point|²*e∞ + e₀
359
+ point_squared = np.dot(point, point)
360
+ conformal_point = np.concatenate([point, [0.5 * point_squared, 1]])
361
+
362
+ # Process through network
363
+ output = network.predict(conformal_point.reshape(1, -1))
364
+ object_features[obj_name] = output[0]
365
+
366
+ print(f"{obj_name:>10}: {point} → output: {output[0]}")
367
+
368
+ # Analyze relationships between objects
369
+ print("\nAnalyzing geometric relationships:")
370
+
371
+ origin_features = object_features["Origin"]
372
+ for obj_name, features in object_features.items():
373
+ if obj_name != "Origin":
374
+ distance = np.linalg.norm(features - origin_features)
375
+ print(f" Feature distance from origin to {obj_name}: {distance:.4f}")
376
+
377
+
378
+ def test_bivector_operations():
379
+ """Test bivector operations for oriented areas."""
380
+ print("=== Geometric Algebra: Bivector Operations ===\n")
381
+
382
+ network = GeometricAlgebraNetwork(input_dim=4, hidden_dim=6, output_dim=3)
383
+
384
+ # Create bivectors representing oriented areas
385
+ bivectors = [
386
+ [1, 0, 1, 0], # e1∧e3
387
+ [0, 1, 0, 1], # e2∧e4
388
+ [1, 1, 0, 0], # e1∧e2
389
+ [0, 0, 1, 1], # e3∧e4
390
+ [1, 0, 0, 1], # e1∧e4
391
+ ]
392
+
393
+ print("Processing bivector data:")
394
+
395
+ for i, bivector in enumerate(bivectors):
396
+ bv = np.array(bivector, dtype=float)
397
+ output = network.predict(bv.reshape(1, -1))
398
+
399
+ # Calculate bivector magnitude
400
+ bv_magnitude = np.linalg.norm(bv)
401
+
402
+ print(f"Bivector {i+1}: {bv}")
403
+ print(f" Magnitude: {bv_magnitude:.3f}")
404
+ print(f" Network output: {output[0]}")
405
+ print(f" Output magnitude: {np.linalg.norm(output[0]):.3f}")
406
+ print()
407
+
408
+
409
+ def test_multivector_algebra():
410
+ """Test general multivector operations."""
411
+ print("=== Geometric Algebra: Multivector Operations ===\n")
412
+
413
+ network = GeometricAlgebraNetwork(input_dim=3, hidden_dim=5, output_dim=2)
414
+
415
+ # Create multivectors with different grade components
416
+ multivectors = [
417
+ [1, 0, 0], # Pure vector e1
418
+ [0, 1, 0], # Pure vector e2
419
+ [0, 0, 1], # Pure vector e3
420
+ [1, 1, 0], # e1 + e2
421
+ [1, 1, 1], # e1 + e2 + e3
422
+ [2, -1, 0.5], # 2*e1 - e2 + 0.5*e3
423
+ ]
424
+
425
+ print("Multivector algebra processing:")
426
+
427
+ for i, mv in enumerate(multivectors):
428
+ mv_array = np.array(mv, dtype=float)
429
+
430
+ # Test reverse operation
431
+ reversed_mv = network.reverse(mv_array)
432
+
433
+ # Test magnitude
434
+ magnitude = network.magnitude(mv_array)
435
+
436
+ # Test normalization
437
+ normalized_mv = network.normalize(mv_array)
438
+
439
+ # Network processing
440
+ output = network.predict(mv_array.reshape(1, -1))
441
+
442
+ print(f"\nMultivector {i+1}: {mv}")
443
+ print(f" Reversed: {reversed_mv}")
444
+ print(f" Magnitude: {magnitude:.4f}")
445
+ print(f" Normalized: {normalized_mv}")
446
+ print(f" Network output: {output[0]}")
447
+
448
+
449
+ if __name__ == "__main__":
450
+ print("Geometric Algebra Neural Network Demo\n")
451
+ print("="*60)
452
+
453
+ # Run tests
454
+ test_geometric_operations()
455
+ test_3d_rotation_processing()
456
+ test_conformal_geometry()
457
+ test_bivector_operations()
458
+ test_multivector_algebra()
459
+
460
+ print("\n" + "="*60)
461
+ print("Geometric algebra demo completed successfully!")
examples/group_theory_network.py ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Group Theory-based Algebraic Neural Network
3
+
4
+ This example demonstrates neural networks that use group theory operations
5
+ for data transformations, particularly focusing on symmetry groups.
6
+ """
7
+
8
+ import numpy as np
9
+ from typing import List, Tuple, Dict
10
+ import math
11
+
12
+
13
+ class GroupTheoryNetwork:
14
+ """
15
+ Neural network based on group theory operations and symmetries.
16
+ """
17
+
18
+ def __init__(self, input_dim: int, group_types: List[str], output_dim: int):
19
+ self.input_dim = input_dim
20
+ self.group_types = group_types
21
+ self.output_dim = output_dim
22
+
23
+ # Initialize group operations
24
+ self.groups = self._initialize_groups()
25
+
26
+ def _initialize_groups(self) -> Dict[str, List[np.ndarray]]:
27
+ """Initialize various group operations."""
28
+ groups = {}
29
+
30
+ for group_type in self.group_types:
31
+ if group_type.startswith("cyclic_"):
32
+ n = int(group_type.split("_")[1])
33
+ groups[group_type] = self._generate_cyclic_group(n)
34
+ elif group_type.startswith("dihedral_"):
35
+ n = int(group_type.split("_")[1])
36
+ groups[group_type] = self._generate_dihedral_group(n)
37
+ elif group_type == "symmetric_3":
38
+ groups[group_type] = self._generate_symmetric_group_3()
39
+ elif group_type == "reflection":
40
+ groups[group_type] = self._generate_reflection_group()
41
+
42
+ return groups
43
+
44
+ def _generate_cyclic_group(self, n: int) -> List[np.ndarray]:
45
+ """Generate cyclic group Cn as rotation matrices."""
46
+ group_elements = []
47
+
48
+ for k in range(n):
49
+ angle = 2 * math.pi * k / n
50
+
51
+ if self.input_dim == 2:
52
+ # 2D rotation matrix
53
+ rotation = np.array([
54
+ [math.cos(angle), -math.sin(angle)],
55
+ [math.sin(angle), math.cos(angle)]
56
+ ])
57
+ elif self.input_dim >= 3:
58
+ # 3D rotation around z-axis, identity for higher dimensions
59
+ rotation = np.eye(self.input_dim)
60
+ if self.input_dim >= 2:
61
+ rotation[0, 0] = math.cos(angle)
62
+ rotation[0, 1] = -math.sin(angle)
63
+ rotation[1, 0] = math.sin(angle)
64
+ rotation[1, 1] = math.cos(angle)
65
+ else:
66
+ # 1D case - just scaling
67
+ rotation = np.array([[(-1) ** k]])
68
+
69
+ group_elements.append(rotation)
70
+
71
+ return group_elements
72
+
73
+ def _generate_dihedral_group(self, n: int) -> List[np.ndarray]:
74
+ """Generate dihedral group Dn (rotations + reflections)."""
75
+ group_elements = []
76
+
77
+ # Add rotations (same as cyclic group)
78
+ rotations = self._generate_cyclic_group(n)
79
+ group_elements.extend(rotations)
80
+
81
+ # Add reflections
82
+ for k in range(n):
83
+ angle = 2 * math.pi * k / n
84
+
85
+ if self.input_dim == 2:
86
+ # Reflection across line through origin at angle/2
87
+ reflection_angle = angle / 2
88
+ cos_2theta = math.cos(2 * reflection_angle)
89
+ sin_2theta = math.sin(2 * reflection_angle)
90
+
91
+ reflection = np.array([
92
+ [cos_2theta, sin_2theta],
93
+ [sin_2theta, -cos_2theta]
94
+ ])
95
+ else:
96
+ # For higher dimensions, reflect across first coordinate
97
+ reflection = np.eye(self.input_dim)
98
+ reflection[0, 0] = -1
99
+
100
+ group_elements.append(reflection)
101
+
102
+ return group_elements
103
+
104
+ def _generate_symmetric_group_3(self) -> List[np.ndarray]:
105
+ """Generate symmetric group S3 (permutations of 3 elements)."""
106
+ if self.input_dim < 3:
107
+ # For lower dimensions, use reduced representation
108
+ return self._generate_cyclic_group(3)
109
+
110
+ # All permutations of 3 elements as permutation matrices
111
+ permutations = [
112
+ [0, 1, 2], # identity
113
+ [1, 2, 0], # (0 1 2)
114
+ [2, 0, 1], # (0 2 1)
115
+ [1, 0, 2], # (0 1)
116
+ [0, 2, 1], # (0 2)
117
+ [2, 1, 0], # (1 2)
118
+ ]
119
+
120
+ group_elements = []
121
+ for perm in permutations:
122
+ matrix = np.eye(self.input_dim)
123
+ for i in range(3):
124
+ if i < self.input_dim and perm[i] < self.input_dim:
125
+ matrix[i, i] = 0
126
+ matrix[i, perm[i]] = 1
127
+ group_elements.append(matrix)
128
+
129
+ return group_elements
130
+
131
+ def _generate_reflection_group(self) -> List[np.ndarray]:
132
+ """Generate group of reflections across coordinate axes."""
133
+ group_elements = []
134
+
135
+ # Identity
136
+ group_elements.append(np.eye(self.input_dim))
137
+
138
+ # Reflections across each coordinate axis
139
+ for i in range(self.input_dim):
140
+ reflection = np.eye(self.input_dim)
141
+ reflection[i, i] = -1
142
+ group_elements.append(reflection)
143
+
144
+ # Reflections across diagonal planes (for 2D and 3D)
145
+ if self.input_dim == 2:
146
+ # Reflection across y = x
147
+ diag_reflection = np.array([[0, 1], [1, 0]])
148
+ group_elements.append(diag_reflection)
149
+
150
+ # Reflection across y = -x
151
+ anti_diag_reflection = np.array([[0, -1], [-1, 0]])
152
+ group_elements.append(anti_diag_reflection)
153
+
154
+ return group_elements
155
+
156
+ def apply_group_actions(self, x: np.ndarray, group_name: str) -> np.ndarray:
157
+ """Apply all group actions to input data."""
158
+ if x.ndim == 1:
159
+ x = x.reshape(1, -1)
160
+
161
+ group_elements = self.groups[group_name]
162
+ results = []
163
+
164
+ for element in group_elements:
165
+ if x.shape[1] == element.shape[0]:
166
+ transformed = x @ element.T
167
+ else:
168
+ # Handle dimension mismatch by padding or truncating
169
+ min_dim = min(x.shape[1], element.shape[0])
170
+ transformed = x[:, :min_dim] @ element[:min_dim, :min_dim].T
171
+
172
+ # Compute invariant features
173
+ norm = np.linalg.norm(transformed, axis=1, keepdims=True)
174
+ mean = np.mean(transformed, axis=1, keepdims=True)
175
+ std = np.std(transformed, axis=1, keepdims=True) + 1e-8
176
+
177
+ # Combine features
178
+ features = np.concatenate([norm, mean, std], axis=1)
179
+ results.append(features)
180
+
181
+ return np.concatenate(results, axis=1)
182
+
183
+ def forward(self, x: np.ndarray) -> np.ndarray:
184
+ """Forward pass through group theory network."""
185
+ all_features = []
186
+
187
+ # Apply each group type
188
+ for group_name in self.group_types:
189
+ group_features = self.apply_group_actions(x, group_name)
190
+ all_features.append(group_features)
191
+
192
+ # Concatenate all features
193
+ combined_features = np.concatenate(all_features, axis=1)
194
+
195
+ # Linear combination to get desired output dimension
196
+ feature_dim = combined_features.shape[1]
197
+ if feature_dim >= self.output_dim:
198
+ # Take first output_dim features
199
+ output = combined_features[:, :self.output_dim]
200
+ else:
201
+ # Repeat features to reach output_dim
202
+ repeats = (self.output_dim + feature_dim - 1) // feature_dim
203
+ repeated = np.tile(combined_features, (1, repeats))
204
+ output = repeated[:, :self.output_dim]
205
+
206
+ return output
207
+
208
+ def predict(self, x: np.ndarray) -> np.ndarray:
209
+ """Prediction method."""
210
+ return self.forward(x)
211
+
212
+
213
+ def test_rotation_invariance():
214
+ """Test rotation invariance of the group theory network."""
215
+ print("=== Group Theory Network: Rotation Invariance Test ===\n")
216
+
217
+ # Create network with cyclic group
218
+ network = GroupTheoryNetwork(
219
+ input_dim=2,
220
+ group_types=["cyclic_8"],
221
+ output_dim=4
222
+ )
223
+
224
+ # Create test patterns
225
+ original_pattern = np.array([[1, 0], [0, 1], [1, 1]])
226
+
227
+ # Manual rotations for comparison
228
+ rotation_angles = [0, np.pi/4, np.pi/2, np.pi, 3*np.pi/2]
229
+
230
+ print("Testing rotation invariance:")
231
+ outputs = []
232
+
233
+ for angle in rotation_angles:
234
+ # Manually rotate the pattern
235
+ cos_a, sin_a = np.cos(angle), np.sin(angle)
236
+ rotation_matrix = np.array([[cos_a, -sin_a], [sin_a, cos_a]])
237
+ rotated_pattern = original_pattern @ rotation_matrix.T
238
+
239
+ # Get network output
240
+ output = network.predict(rotated_pattern)
241
+ outputs.append(output)
242
+
243
+ print(f" Rotation {angle:.2f} rad: mean output = {np.mean(output):.4f}")
244
+
245
+ # Check invariance (outputs should be similar)
246
+ output_array = np.array(outputs)
247
+ variance_across_rotations = np.var(output_array, axis=0)
248
+ mean_variance = np.mean(variance_across_rotations)
249
+
250
+ print(f"\nMean variance across rotations: {mean_variance:.6f}")
251
+ print("(Lower values indicate better rotation invariance)\n")
252
+
253
+ return outputs
254
+
255
+
256
+ def test_symmetry_detection():
257
+ """Test the network's ability to detect different symmetries."""
258
+ print("=== Group Theory Network: Symmetry Detection ===\n")
259
+
260
+ # Create network with multiple group types
261
+ network = GroupTheoryNetwork(
262
+ input_dim=2,
263
+ group_types=["cyclic_4", "dihedral_4", "reflection"],
264
+ output_dim=6
265
+ )
266
+
267
+ # Define test patterns with different symmetries
268
+ patterns = {
269
+ "Square": np.array([[1, 1], [1, -1], [-1, -1], [-1, 1]]),
270
+ "Triangle": np.array([[1, 0], [-0.5, np.sqrt(3)/2], [-0.5, -np.sqrt(3)/2]]),
271
+ "Line": np.array([[1, 0], [0.5, 0], [0, 0], [-0.5, 0], [-1, 0]]),
272
+ "Circle": np.array([[np.cos(θ), np.sin(θ)] for θ in np.linspace(0, 2*np.pi, 8)]),
273
+ "Asymmetric": np.array([[1, 0], [0, 1], [0.3, 0.7], [0.8, 0.2]])
274
+ }
275
+
276
+ print("Symmetry detection results:")
277
+ pattern_outputs = {}
278
+
279
+ for pattern_name, pattern_points in patterns.items():
280
+ output = network.predict(pattern_points)
281
+ pattern_outputs[pattern_name] = output
282
+
283
+ print(f"\n{pattern_name}:")
284
+ print(f" Mean output: {np.mean(output, axis=0)}")
285
+ print(f" Output std: {np.std(output, axis=0)}")
286
+
287
+ return pattern_outputs
288
+
289
+
290
+ def test_group_composition():
291
+ """Test composition of group operations."""
292
+ print("=== Group Theory Network: Group Composition ===\n")
293
+
294
+ network = GroupTheoryNetwork(
295
+ input_dim=3,
296
+ group_types=["symmetric_3"],
297
+ output_dim=3
298
+ )
299
+
300
+ # Test group properties
301
+ test_input = np.array([[1, 2, 3]])
302
+
303
+ print("Testing group composition properties:")
304
+
305
+ # Get all group elements
306
+ group_elements = network.groups["symmetric_3"]
307
+
308
+ # Test identity element (should be first)
309
+ identity_result = test_input @ group_elements[0].T
310
+ print(f"Identity transformation: {test_input[0]} → {identity_result[0]}")
311
+
312
+ # Test composition of operations
313
+ for i, g1 in enumerate(group_elements[:3]):
314
+ for j, g2 in enumerate(group_elements[:3]):
315
+ # Apply g1 then g2
316
+ intermediate = test_input @ g1.T
317
+ final = intermediate @ g2.T
318
+
319
+ # Apply composition g2∘g1
320
+ composition = g2 @ g1
321
+ direct = test_input @ composition.T
322
+
323
+ # Check if they're the same (within numerical precision)
324
+ difference = np.linalg.norm(final - direct)
325
+ print(f" g{j}∘g{i}: composition error = {difference:.8f}")
326
+
327
+
328
+ def test_invariant_features():
329
+ """Test extraction of invariant features."""
330
+ print("=== Group Theory Network: Invariant Feature Extraction ===\n")
331
+
332
+ # Network for extracting rotation-invariant features
333
+ network = GroupTheoryNetwork(
334
+ input_dim=2,
335
+ group_types=["cyclic_16"], # Fine rotation sampling
336
+ output_dim=8
337
+ )
338
+
339
+ # Test patterns with known geometric properties
340
+ test_cases = [
341
+ ("Unit Circle", np.array([[np.cos(θ), np.sin(θ)] for θ in np.linspace(0, 2*np.pi, 10)])),
342
+ ("Ellipse", np.array([[2*np.cos(θ), np.sin(θ)] for θ in np.linspace(0, 2*np.pi, 10)])),
343
+ ("Square", np.array([[1, 1], [1, -1], [-1, -1], [-1, 1]])),
344
+ ("Random", np.random.randn(8, 2))
345
+ ]
346
+
347
+ print("Invariant feature analysis:")
348
+
349
+ for case_name, points in test_cases:
350
+ # Original features
351
+ original_features = network.predict(points)
352
+
353
+ # Rotated version
354
+ rotation_45 = np.array([[np.cos(np.pi/4), -np.sin(np.pi/4)],
355
+ [np.sin(np.pi/4), np.cos(np.pi/4)]])
356
+ rotated_points = points @ rotation_45.T
357
+ rotated_features = network.predict(rotated_points)
358
+
359
+ # Measure feature consistency
360
+ feature_difference = np.linalg.norm(original_features - rotated_features)
361
+ relative_difference = feature_difference / (np.linalg.norm(original_features) + 1e-8)
362
+
363
+ print(f"\n{case_name}:")
364
+ print(f" Feature difference: {feature_difference:.6f}")
365
+ print(f" Relative difference: {relative_difference:.6f}")
366
+ print(f" Original features mean: {np.mean(original_features):.4f}")
367
+ print(f" Rotated features mean: {np.mean(rotated_features):.4f}")
368
+
369
+
370
+ if __name__ == "__main__":
371
+ print("Group Theory Algebraic Neural Network Demo\n")
372
+ print("="*60)
373
+
374
+ # Run tests
375
+ test_rotation_invariance()
376
+ test_symmetry_detection()
377
+ test_group_composition()
378
+ test_invariant_features()
379
+
380
+ print("\n" + "="*60)
381
+ print("Group theory demo completed successfully!")
examples/polynomial_network.py ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Polynomial-based Algebraic Neural Network
3
+
4
+ This example demonstrates a neural network that uses polynomial transformations
5
+ with coefficients derived from algebraic number theory.
6
+ """
7
+
8
+ import numpy as np
9
+ import matplotlib.pyplot as plt
10
+ from typing import Tuple
11
+ import math
12
+
13
+
14
+ class PolynomialAlgebraicNetwork:
15
+ """
16
+ Neural network using polynomial basis functions with algebraic coefficients.
17
+ """
18
+
19
+ def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, max_degree: int = 3):
20
+ self.input_dim = input_dim
21
+ self.hidden_dim = hidden_dim
22
+ self.output_dim = output_dim
23
+ self.max_degree = max_degree
24
+
25
+ # Generate polynomial coefficients using algebraic numbers
26
+ self.coefficients = self._generate_algebraic_coefficients()
27
+
28
+ def _generate_algebraic_coefficients(self) -> dict:
29
+ """Generate coefficients using famous algebraic constants."""
30
+ coeffs = {}
31
+
32
+ # Golden ratio and related algebraic numbers
33
+ phi = (1 + math.sqrt(5)) / 2 # Golden ratio
34
+ phi_conjugate = (1 - math.sqrt(5)) / 2
35
+
36
+ # Silver ratio
37
+ silver = 1 + math.sqrt(2)
38
+
39
+ # Euler's number approximation using continued fractions
40
+ e_approx = 2.718281828
41
+
42
+ # Pi approximation
43
+ pi_approx = math.pi
44
+
45
+ algebraic_constants = [1, phi, phi_conjugate, silver, e_approx, pi_approx]
46
+
47
+ # Generate coefficients for input to hidden transformation
48
+ coeffs['input_hidden'] = np.zeros((self.hidden_dim, self.input_dim, self.max_degree + 1))
49
+ for i in range(self.hidden_dim):
50
+ for j in range(self.input_dim):
51
+ for k in range(self.max_degree + 1):
52
+ # Use algebraic constants in a systematic way
53
+ const_idx = (i + j + k) % len(algebraic_constants)
54
+ base_coeff = algebraic_constants[const_idx]
55
+
56
+ # Scale by factorial to maintain stability
57
+ coeffs['input_hidden'][i, j, k] = base_coeff / math.factorial(k + 1)
58
+
59
+ # Generate coefficients for hidden to output transformation
60
+ coeffs['hidden_output'] = np.zeros((self.output_dim, self.hidden_dim, self.max_degree + 1))
61
+ for i in range(self.output_dim):
62
+ for j in range(self.hidden_dim):
63
+ for k in range(self.max_degree + 1):
64
+ const_idx = (i + j + k + 1) % len(algebraic_constants)
65
+ base_coeff = algebraic_constants[const_idx]
66
+ coeffs['hidden_output'][i, j, k] = base_coeff / math.factorial(k + 1)
67
+
68
+ return coeffs
69
+
70
+ def _polynomial_activation(self, x: np.ndarray, coeffs: np.ndarray) -> np.ndarray:
71
+ """Apply polynomial activation with given coefficients."""
72
+ if x.ndim == 1:
73
+ x = x.reshape(1, -1)
74
+
75
+ batch_size, input_size = x.shape
76
+ output_size = coeffs.shape[0]
77
+
78
+ result = np.zeros((batch_size, output_size))
79
+
80
+ for i in range(output_size):
81
+ for j in range(input_size):
82
+ for degree in range(self.max_degree + 1):
83
+ if degree == 0:
84
+ poly_term = coeffs[i, j, degree]
85
+ else:
86
+ poly_term = coeffs[i, j, degree] * (x[:, j] ** degree)
87
+ result[:, i] += poly_term
88
+
89
+ return result
90
+
91
+ def forward(self, x: np.ndarray) -> np.ndarray:
92
+ """Forward pass through the polynomial network."""
93
+ # Input to hidden layer
94
+ hidden = self._polynomial_activation(x, self.coefficients['input_hidden'])
95
+
96
+ # Apply hyperbolic tangent for stability
97
+ hidden = np.tanh(hidden)
98
+
99
+ # Hidden to output layer
100
+ output = self._polynomial_activation(hidden, self.coefficients['hidden_output'])
101
+
102
+ return output
103
+
104
+ def predict(self, x: np.ndarray) -> np.ndarray:
105
+ """Prediction method."""
106
+ return self.forward(x)
107
+
108
+
109
+ def test_function_approximation():
110
+ """Test the polynomial network on function approximation tasks."""
111
+ print("=== Polynomial Network Function Approximation ===\n")
112
+
113
+ # Create network
114
+ network = PolynomialAlgebraicNetwork(input_dim=1, hidden_dim=5, output_dim=1, max_degree=3)
115
+
116
+ # Test on various mathematical functions
117
+ test_functions = [
118
+ ("Sine", lambda x: np.sin(2 * np.pi * x)),
119
+ ("Cosine", lambda x: np.cos(2 * np.pi * x)),
120
+ ("Quadratic", lambda x: x**2 - 0.5*x + 0.1),
121
+ ("Cubic", lambda x: x**3 - x**2 + 0.5*x),
122
+ ("Exponential", lambda x: np.exp(-x**2))
123
+ ]
124
+
125
+ x_test = np.linspace(-1, 1, 50).reshape(-1, 1)
126
+
127
+ results = {}
128
+ for func_name, func in test_functions:
129
+ y_true = func(x_test.flatten())
130
+ y_pred = network.predict(x_test).flatten()
131
+
132
+ # Calculate approximation error
133
+ mse = np.mean((y_true - y_pred)**2)
134
+ mae = np.mean(np.abs(y_true - y_pred))
135
+
136
+ results[func_name] = {
137
+ 'mse': mse,
138
+ 'mae': mae,
139
+ 'y_true': y_true,
140
+ 'y_pred': y_pred
141
+ }
142
+
143
+ print(f"{func_name}:")
144
+ print(f" MSE: {mse:.6f}")
145
+ print(f" MAE: {mae:.6f}")
146
+ print()
147
+
148
+ return results, x_test
149
+
150
+
151
+ def test_pattern_recognition():
152
+ """Test polynomial network on 2D pattern recognition."""
153
+ print("=== Polynomial Network Pattern Recognition ===\n")
154
+
155
+ # Create 2D network
156
+ network = PolynomialAlgebraicNetwork(input_dim=2, hidden_dim=8, output_dim=3, max_degree=2)
157
+
158
+ # Generate test patterns
159
+ def generate_circle_points(n_points=20, radius=0.8):
160
+ angles = np.linspace(0, 2*np.pi, n_points, endpoint=False)
161
+ return np.column_stack([radius * np.cos(angles), radius * np.sin(angles)])
162
+
163
+ def generate_square_points(n_points=20, side=1.0):
164
+ points_per_side = n_points // 4
165
+ side_points = []
166
+
167
+ # Bottom side
168
+ x = np.linspace(-side/2, side/2, points_per_side)
169
+ y = np.full(points_per_side, -side/2)
170
+ side_points.extend(zip(x, y))
171
+
172
+ # Right side
173
+ x = np.full(points_per_side, side/2)
174
+ y = np.linspace(-side/2, side/2, points_per_side)
175
+ side_points.extend(zip(x, y))
176
+
177
+ # Top side
178
+ x = np.linspace(side/2, -side/2, points_per_side)
179
+ y = np.full(points_per_side, side/2)
180
+ side_points.extend(zip(x, y))
181
+
182
+ # Left side
183
+ x = np.full(points_per_side, -side/2)
184
+ y = np.linspace(side/2, -side/2, points_per_side)
185
+ side_points.extend(zip(x, y))
186
+
187
+ return np.array(side_points[:n_points])
188
+
189
+ def generate_triangle_points(n_points=18, size=0.8):
190
+ angles = np.array([0, 2*np.pi/3, 4*np.pi/3])
191
+ vertices = size * np.column_stack([np.cos(angles), np.sin(angles)])
192
+
193
+ points = []
194
+ points_per_edge = n_points // 3
195
+
196
+ for i in range(3):
197
+ start = vertices[i]
198
+ end = vertices[(i + 1) % 3]
199
+ edge_points = np.linspace(start, end, points_per_edge, endpoint=False)
200
+ points.extend(edge_points)
201
+
202
+ return np.array(points[:n_points])
203
+
204
+ # Generate patterns
205
+ circles = generate_circle_points()
206
+ squares = generate_square_points()
207
+ triangles = generate_triangle_points()
208
+
209
+ # Process with network
210
+ circle_outputs = network.predict(circles)
211
+ square_outputs = network.predict(squares)
212
+ triangle_outputs = network.predict(triangles)
213
+
214
+ # Analyze outputs
215
+ print("Circle pattern analysis:")
216
+ print(f" Mean output: {np.mean(circle_outputs, axis=0)}")
217
+ print(f" Std output: {np.std(circle_outputs, axis=0)}")
218
+
219
+ print("\nSquare pattern analysis:")
220
+ print(f" Mean output: {np.mean(square_outputs, axis=0)}")
221
+ print(f" Std output: {np.std(square_outputs, axis=0)}")
222
+
223
+ print("\nTriangle pattern analysis:")
224
+ print(f" Mean output: {np.mean(triangle_outputs, axis=0)}")
225
+ print(f" Std output: {np.std(triangle_outputs, axis=0)}")
226
+
227
+ return {
228
+ 'circles': (circles, circle_outputs),
229
+ 'squares': (squares, square_outputs),
230
+ 'triangles': (triangles, triangle_outputs)
231
+ }
232
+
233
+
234
+ def demonstrate_coefficient_properties():
235
+ """Demonstrate properties of the algebraic coefficients."""
236
+ print("=== Algebraic Coefficient Properties ===\n")
237
+
238
+ network = PolynomialAlgebraicNetwork(input_dim=3, hidden_dim=4, output_dim=2)
239
+
240
+ # Analyze coefficient matrices
241
+ input_hidden_coeffs = network.coefficients['input_hidden']
242
+ hidden_output_coeffs = network.coefficients['hidden_output']
243
+
244
+ print("Input-Hidden Coefficients:")
245
+ print(f" Shape: {input_hidden_coeffs.shape}")
246
+ print(f" Min coefficient: {np.min(input_hidden_coeffs):.6f}")
247
+ print(f" Max coefficient: {np.max(input_hidden_coeffs):.6f}")
248
+ print(f" Mean coefficient: {np.mean(input_hidden_coeffs):.6f}")
249
+ print(f" Std coefficient: {np.std(input_hidden_coeffs):.6f}")
250
+
251
+ print("\nHidden-Output Coefficients:")
252
+ print(f" Shape: {hidden_output_coeffs.shape}")
253
+ print(f" Min coefficient: {np.min(hidden_output_coeffs):.6f}")
254
+ print(f" Max coefficient: {np.max(hidden_output_coeffs):.6f}")
255
+ print(f" Mean coefficient: {np.mean(hidden_output_coeffs):.6f}")
256
+ print(f" Std coefficient: {np.std(hidden_output_coeffs):.6f}")
257
+
258
+ # Test stability with different input magnitudes
259
+ print("\nStability Analysis:")
260
+ test_inputs = [
261
+ np.array([[0.1, 0.1, 0.1]]),
262
+ np.array([[0.5, 0.5, 0.5]]),
263
+ np.array([[1.0, 1.0, 1.0]]),
264
+ np.array([[2.0, 2.0, 2.0]]),
265
+ ]
266
+
267
+ for i, test_input in enumerate(test_inputs):
268
+ output = network.predict(test_input)
269
+ magnitude = np.linalg.norm(test_input)
270
+ output_magnitude = np.linalg.norm(output)
271
+ print(f" Input magnitude {magnitude:.1f} → Output magnitude {output_magnitude:.6f}")
272
+
273
+
274
+ if __name__ == "__main__":
275
+ # Run demonstrations
276
+ print("Polynomial Algebraic Neural Network Demo\n")
277
+ print("="*50)
278
+
279
+ # Function approximation test
280
+ func_results, x_vals = test_function_approximation()
281
+
282
+ # Pattern recognition test
283
+ pattern_results = test_pattern_recognition()
284
+
285
+ # Coefficient analysis
286
+ demonstrate_coefficient_properties()
287
+
288
+ print("\n" + "="*50)
289
+ print("Demo completed successfully!")
examples/uncomputable_networks.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Uncomputable Neural Network Examples
4
+
5
+ This script demonstrates the various types of uncomputable neural network layers
6
+ and their theoretical foundations.
7
+ """
8
+
9
+ import numpy as np
10
+ import sys
11
+ import os
12
+
13
+ # Add parent directory to path
14
+ sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
15
+
16
+ from algebraic_neural_network import (
17
+ HaltingOracleLayer, KolmogorovComplexityLayer, BusyBeaverLayer,
18
+ NonRecursiveLayer, create_uncomputable_network
19
+ )
20
+
21
+ def demonstrate_halting_oracle():
22
+ """Demonstrate the Halting Oracle Layer."""
23
+ print("=== Halting Oracle Layer Demonstration ===\n")
24
+
25
+ print("The Halting Oracle Layer simulates access to a halting oracle,")
26
+ print("which can theoretically answer whether a program halts on given input.")
27
+ print("This is uncomputable in general, but we provide bounded approximations.\n")
28
+
29
+ layer = HaltingOracleLayer(4, 3, max_iterations=1000)
30
+
31
+ # Test with different "program" inputs
32
+ test_cases = [
33
+ ([1, 0, 0, 0], "Simple program"),
34
+ ([0.5, 0.5, 0.5, 0.5], "Balanced program"),
35
+ ([0.9, 0.9, 0.9, 0.9], "Complex program"),
36
+ ([0.1, 0.1, 0.1, 0.1], "Minimal program"),
37
+ ]
38
+
39
+ for i, (input_data, description) in enumerate(test_cases, 1):
40
+ input_array = np.array(input_data).reshape(1, -1)
41
+ output = layer.forward(input_array)
42
+
43
+ print(f"Test {i}: {description}")
44
+ print(f" Input: {input_data}")
45
+ print(f" Halting probabilities: {output[0]}")
46
+ print(f" Interpretation: {['Unlikely to halt' if p < 0.5 else 'Likely to halt' for p in output[0]]}")
47
+ print()
48
+
49
+ def demonstrate_kolmogorov_complexity():
50
+ """Demonstrate the Kolmogorov Complexity Layer."""
51
+ print("=== Kolmogorov Complexity Layer Demonstration ===\n")
52
+
53
+ print("The Kolmogorov Complexity Layer approximates the Kolmogorov complexity")
54
+ print("of inputs - the length of the shortest program that outputs the input.")
55
+ print("True Kolmogorov complexity is uncomputable, but we use compression heuristics.\n")
56
+
57
+ layer = KolmogorovComplexityLayer(4, 3, precision=8)
58
+
59
+ # Test with different complexity patterns
60
+ test_cases = [
61
+ ([1, 1, 1, 1], "Highly regular pattern"),
62
+ ([1, 2, 3, 4], "Simple arithmetic sequence"),
63
+ ([0.123, 0.456, 0.789, 0.012], "Seemingly random"),
64
+ ([1, 1, 2, 3], "Fibonacci-like pattern"),
65
+ ]
66
+
67
+ for i, (input_data, description) in enumerate(test_cases, 1):
68
+ input_array = np.array(input_data).reshape(1, -1)
69
+ output = layer.forward(input_array)
70
+
71
+ print(f"Test {i}: {description}")
72
+ print(f" Input: {input_data}")
73
+ print(f" Complexity estimates: {output[0]}")
74
+ print(f" Average complexity: {np.mean(output[0]):.3f}")
75
+ print()
76
+
77
+ def demonstrate_busy_beaver():
78
+ """Demonstrate the Busy Beaver Layer."""
79
+ print("=== Busy Beaver Layer Demonstration ===\n")
80
+
81
+ print("The Busy Beaver Layer uses the Busy Beaver function BB(n),")
82
+ print("which gives the maximum number of steps a halting n-state Turing machine can take.")
83
+ print("BB(n) is uncomputable for general n, but known for small values.\n")
84
+
85
+ layer = BusyBeaverLayer(4, 3)
86
+
87
+ # Known BB values for reference
88
+ print("Known Busy Beaver values:")
89
+ print(" BB(1) = 1")
90
+ print(" BB(2) = 4")
91
+ print(" BB(3) = 6")
92
+ print(" BB(4) = 13")
93
+ print(" BB(5) ≥ 4098")
94
+ print()
95
+
96
+ # Test with inputs that map to different BB parameters
97
+ test_cases = [
98
+ ([0.1, 0, 0, 0], "Maps to small machine"),
99
+ ([0.5, 0.5, 0, 0], "Maps to medium machine"),
100
+ ([1.0, 1.0, 1.0, 1.0], "Maps to larger machine"),
101
+ ]
102
+
103
+ for i, (input_data, description) in enumerate(test_cases, 1):
104
+ input_array = np.array(input_data).reshape(1, -1)
105
+ output = layer.forward(input_array)
106
+
107
+ print(f"Test {i}: {description}")
108
+ print(f" Input: {input_data}")
109
+ print(f" Log BB values: {output[0]}")
110
+ print(f" Approximate BB values: {np.exp(output[0]) - 1}")
111
+ print()
112
+
113
+ def demonstrate_non_recursive():
114
+ """Demonstrate the Non-Recursive Layer."""
115
+ print("=== Non-Recursive Layer Demonstration ===\n")
116
+
117
+ print("The Non-Recursive Layer simulates operations on computably enumerable")
118
+ print("but non-recursive sets. These are sets that can be enumerated but")
119
+ print("for which membership cannot be decided algorithmically.\n")
120
+
121
+ layer = NonRecursiveLayer(4, 3, enumeration_bound=1000)
122
+
123
+ print(f"The layer simulates a c.e. set with {len(layer.ce_set)} enumerated elements")
124
+ print("using the rule: numbers expressible as sum of two squares\n")
125
+
126
+ # Test membership for different inputs
127
+ test_cases = [
128
+ ([1, 0, 0, 0], "Simple input"),
129
+ ([2, 3, 5, 7], "Prime-like pattern"),
130
+ ([1, 4, 9, 16], "Perfect squares"),
131
+ ([0.5, 0.25, 0.125, 0.0625], "Geometric sequence"),
132
+ ]
133
+
134
+ for i, (input_data, description) in enumerate(test_cases, 1):
135
+ input_array = np.array(input_data).reshape(1, -1)
136
+ output = layer.forward(input_array)
137
+
138
+ print(f"Test {i}: {description}")
139
+ print(f" Input: {input_data}")
140
+ print(f" Membership probabilities: {output[0]}")
141
+ print(f" Interpretations: {['Not enumerated' if p == 0.5 else ('In set' if p == 1.0 else 'Not in set') for p in output[0]]}")
142
+ print()
143
+
144
+ def demonstrate_complete_network():
145
+ """Demonstrate a complete uncomputable neural network."""
146
+ print("=== Complete Uncomputable Neural Network ===\n")
147
+
148
+ print("This demonstrates a full network combining all uncomputable layer types.")
149
+ print("The network processes inputs through:")
150
+ print(" 1. Halting Oracle Layer (4→5)")
151
+ print(" 2. Kolmogorov Complexity Layer (5→4)")
152
+ print(" 3. Busy Beaver Layer (4→3)")
153
+ print(" 4. Non-Recursive Layer (3→2)")
154
+ print()
155
+
156
+ network = create_uncomputable_network()
157
+
158
+ # Test with various input patterns
159
+ test_cases = [
160
+ "Random data",
161
+ "Structured sequence",
162
+ "Constant values",
163
+ "Alternating pattern"
164
+ ]
165
+
166
+ np.random.seed(42)
167
+ test_inputs = [
168
+ np.random.randn(4),
169
+ np.array([1, 2, 3, 4]) / 4.0,
170
+ np.ones(4) * 0.5,
171
+ np.array([1, -1, 1, -1]) * 0.5
172
+ ]
173
+
174
+ for i, (input_data, description) in enumerate(zip(test_inputs, test_cases), 1):
175
+ output = network.predict(input_data.reshape(1, -1))
176
+
177
+ print(f"Test {i}: {description}")
178
+ print(f" Input: {input_data}")
179
+ print(f" Final output: {output[0]}")
180
+ print(f" Output interpretation: Decision values for uncomputable questions")
181
+ print()
182
+
183
+ # Demonstrate deterministic behavior
184
+ print("Deterministic behavior verification:")
185
+ test_input = np.random.randn(1, 4)
186
+ output1 = network.predict(test_input)
187
+ output2 = network.predict(test_input)
188
+ difference = np.linalg.norm(output1 - output2)
189
+ print(f" Same input produces identical outputs: {difference < 1e-10}")
190
+ print(f" Difference: {difference:.2e}")
191
+
192
+ def main():
193
+ """Run all uncomputable neural network demonstrations."""
194
+ print("🔬 Uncomputable Neural Networks Examples")
195
+ print("=" * 60)
196
+ print("Exploring the theoretical boundaries of computation through")
197
+ print("neural networks that incorporate uncomputable functions.\n")
198
+
199
+ demonstrate_halting_oracle()
200
+ print("\n" + "─" * 60 + "\n")
201
+
202
+ demonstrate_kolmogorov_complexity()
203
+ print("\n" + "─" * 60 + "\n")
204
+
205
+ demonstrate_busy_beaver()
206
+ print("\n" + "─" * 60 + "\n")
207
+
208
+ demonstrate_non_recursive()
209
+ print("\n" + "─" * 60 + "\n")
210
+
211
+ demonstrate_complete_network()
212
+
213
+ print("\n" + "=" * 60)
214
+ print("✅ Uncomputable neural network demonstrations completed!")
215
+ print("📚 See theory/uncomputable_networks.md for mathematical foundations.")
216
+
217
+ if __name__ == "__main__":
218
+ main()
test_comprehensive.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Comprehensive test suite for Algebraic Neural Networks
4
+
5
+ This script tests all components of the algebraic neural network implementation
6
+ to ensure everything works correctly together.
7
+ """
8
+
9
+ import sys
10
+ import os
11
+ import numpy as np
12
+
13
+ # Add the parent directory to the path to import our modules
14
+ sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
15
+
16
+ # Import all our implementations
17
+ from algebraic_neural_network import (
18
+ AlgebraicNeuralNetwork, PolynomialLayer, GroupTheoryLayer,
19
+ GeometricAlgebraLayer, HaltingOracleLayer, KolmogorovComplexityLayer,
20
+ BusyBeaverLayer, NonRecursiveLayer, create_sample_network, create_uncomputable_network
21
+ )
22
+
23
+ def test_basic_functionality():
24
+ """Test basic functionality of all layer types."""
25
+ print("=== Testing Basic Functionality ===\n")
26
+
27
+ # Test data
28
+ test_input = np.random.randn(3, 4)
29
+ print(f"Test input shape: {test_input.shape}")
30
+
31
+ # Test individual layers
32
+ print("\n1. Testing PolynomialLayer:")
33
+ poly_layer = PolynomialLayer(4, 3, degree=2)
34
+ poly_output = poly_layer.forward(test_input)
35
+ print(f" Input: {test_input.shape} → Output: {poly_output.shape}")
36
+ print(f" Output range: [{np.min(poly_output):.3f}, {np.max(poly_output):.3f}]")
37
+
38
+ print("\n2. Testing GroupTheoryLayer:")
39
+ group_layer = GroupTheoryLayer(4, 3, group_order=6)
40
+ group_output = group_layer.forward(test_input)
41
+ print(f" Input: {test_input.shape} → Output: {group_output.shape}")
42
+ print(f" Output range: [{np.min(group_output):.3f}, {np.max(group_output):.3f}]")
43
+
44
+ print("\n3. Testing GeometricAlgebraLayer:")
45
+ geo_layer = GeometricAlgebraLayer(4, 3)
46
+ geo_output = geo_layer.forward(test_input)
47
+ print(f" Input: {test_input.shape} → Output: {geo_output.shape}")
48
+ print(f" Output range: [{np.min(geo_output):.3f}, {np.max(geo_output):.3f}]")
49
+
50
+ return True
51
+
52
+ def test_network_composition():
53
+ """Test composition of multiple algebraic layers."""
54
+ print("\n=== Testing Network Composition ===\n")
55
+
56
+ # Create a complete network
57
+ network = AlgebraicNeuralNetwork()
58
+ network.add_layer(PolynomialLayer(5, 8, degree=2))
59
+ network.add_layer(GroupTheoryLayer(8, 6, group_order=8))
60
+ network.add_layer(GeometricAlgebraLayer(6, 3))
61
+ network.add_layer(PolynomialLayer(3, 2, degree=1))
62
+
63
+ # Test with different input sizes
64
+ test_cases = [
65
+ np.random.randn(1, 5), # Single sample
66
+ np.random.randn(5, 5), # Multiple samples
67
+ np.random.randn(10, 5), # Larger batch
68
+ ]
69
+
70
+ for i, test_case in enumerate(test_cases):
71
+ output = network.predict(test_case)
72
+ print(f"Test case {i+1}:")
73
+ print(f" Input shape: {test_case.shape}")
74
+ print(f" Output shape: {output.shape}")
75
+ print(f" Output mean: {np.mean(output):.4f}")
76
+ print(f" Output std: {np.std(output):.4f}")
77
+
78
+ return True
79
+
80
+ def test_deterministic_behavior():
81
+ """Test that the networks are deterministic."""
82
+ print("\n=== Testing Deterministic Behavior ===\n")
83
+
84
+ # Create network
85
+ network = create_sample_network()
86
+
87
+ # Same input should produce same output
88
+ test_input = np.random.randn(3, 4)
89
+
90
+ output1 = network.predict(test_input)
91
+ output2 = network.predict(test_input)
92
+ output3 = network.predict(test_input)
93
+
94
+ # Check if outputs are identical
95
+ diff_12 = np.linalg.norm(output1 - output2)
96
+ diff_13 = np.linalg.norm(output1 - output3)
97
+ diff_23 = np.linalg.norm(output2 - output3)
98
+
99
+ print(f"Input shape: {test_input.shape}")
100
+ print(f"Output 1 vs 2 difference: {diff_12:.10f}")
101
+ print(f"Output 1 vs 3 difference: {diff_13:.10f}")
102
+ print(f"Output 2 vs 3 difference: {diff_23:.10f}")
103
+
104
+ is_deterministic = (diff_12 < 1e-10) and (diff_13 < 1e-10) and (diff_23 < 1e-10)
105
+ print(f"Network is deterministic: {is_deterministic}")
106
+
107
+ return is_deterministic
108
+
109
+ def test_mathematical_properties():
110
+ """Test mathematical properties of algebraic operations."""
111
+ print("\n=== Testing Mathematical Properties ===\n")
112
+
113
+ # Test polynomial layer properties
114
+ print("1. Polynomial Layer Properties:")
115
+ poly_layer = PolynomialLayer(2, 3, degree=2)
116
+
117
+ # Linearity test (for degree 1 components)
118
+ x1 = np.array([[1, 0]])
119
+ x2 = np.array([[0, 1]])
120
+ x_sum = np.array([[1, 1]])
121
+
122
+ y1 = poly_layer.forward(x1)
123
+ y2 = poly_layer.forward(x2)
124
+ y_sum = poly_layer.forward(x_sum)
125
+
126
+ # Note: Due to higher degree terms, this won't be exactly linear
127
+ linearity_error = np.linalg.norm(y_sum - (y1 + y2))
128
+ print(f" Linearity deviation (expected for degree > 1): {linearity_error:.4f}")
129
+
130
+ # Test group theory layer properties
131
+ print("\n2. Group Theory Layer Properties:")
132
+ group_layer = GroupTheoryLayer(2, 4, group_order=4)
133
+
134
+ # Test with unit vectors
135
+ unit_x = np.array([[1, 0]])
136
+ unit_y = np.array([[0, 1]])
137
+
138
+ out_x = group_layer.forward(unit_x)
139
+ out_y = group_layer.forward(unit_y)
140
+
141
+ print(f" Unit X output norm: {np.linalg.norm(out_x):.4f}")
142
+ print(f" Unit Y output norm: {np.linalg.norm(out_y):.4f}")
143
+
144
+ # Test geometric algebra layer properties
145
+ print("\n3. Geometric Algebra Layer Properties:")
146
+ geo_layer = GeometricAlgebraLayer(3, 4)
147
+
148
+ # Test with orthogonal vectors
149
+ e1 = np.array([[1, 0, 0]])
150
+ e2 = np.array([[0, 1, 0]])
151
+ e3 = np.array([[0, 0, 1]])
152
+
153
+ out1 = geo_layer.forward(e1)
154
+ out2 = geo_layer.forward(e2)
155
+ out3 = geo_layer.forward(e3)
156
+
157
+ print(f" e1 output: {out1[0]}")
158
+ print(f" e2 output: {out2[0]}")
159
+ print(f" e3 output: {out3[0]}")
160
+
161
+ return True
162
+
163
+ def test_uncomputable_layers():
164
+ """Test uncomputable neural network layers."""
165
+ print("\n=== Testing Uncomputable Layers ===\n")
166
+
167
+ test_input = np.random.randn(3, 4)
168
+
169
+ # Test Halting Oracle Layer
170
+ print("1. Testing HaltingOracleLayer:")
171
+ halting_layer = HaltingOracleLayer(4, 3, max_iterations=100)
172
+ halting_output = halting_layer.forward(test_input)
173
+ print(f" Input: {test_input.shape} → Output: {halting_output.shape}")
174
+ print(f" Output range: [{np.min(halting_output):.3f}, {np.max(halting_output):.3f}]")
175
+ # Outputs should be probabilities between 0 and 1
176
+ assert np.all(halting_output >= 0) and np.all(halting_output <= 1), "Halting oracle outputs must be in [0,1]"
177
+
178
+ # Test Kolmogorov Complexity Layer
179
+ print("\n2. Testing KolmogorovComplexityLayer:")
180
+ kolmogorov_layer = KolmogorovComplexityLayer(4, 3, precision=6)
181
+ kolmogorov_output = kolmogorov_layer.forward(test_input)
182
+ print(f" Input: {test_input.shape} → Output: {kolmogorov_output.shape}")
183
+ print(f" Output range: [{np.min(kolmogorov_output):.3f}, {np.max(kolmogorov_output):.3f}]")
184
+ # Complexity should be non-negative
185
+ assert np.all(kolmogorov_output >= 0), "Kolmogorov complexity must be non-negative"
186
+
187
+ # Test Busy Beaver Layer
188
+ print("\n3. Testing BusyBeaverLayer:")
189
+ bb_layer = BusyBeaverLayer(4, 3)
190
+ bb_output = bb_layer.forward(test_input)
191
+ print(f" Input: {test_input.shape} → Output: {bb_output.shape}")
192
+ print(f" Output range: [{np.min(bb_output):.3f}, {np.max(bb_output):.3f}]")
193
+ # BB values should be positive
194
+ assert np.all(bb_output > 0), "Busy Beaver values must be positive"
195
+
196
+ # Test Non-Recursive Layer
197
+ print("\n4. Testing NonRecursiveLayer:")
198
+ nr_layer = NonRecursiveLayer(4, 3, enumeration_bound=100)
199
+ nr_output = nr_layer.forward(test_input)
200
+ print(f" Input: {test_input.shape} → Output: {nr_output.shape}")
201
+ print(f" Output range: [{np.min(nr_output):.3f}, {np.max(nr_output):.3f}]")
202
+ # Membership values should be in [0,1]
203
+ assert np.all(nr_output >= 0) and np.all(nr_output <= 1), "Membership values must be in [0,1]"
204
+
205
+ # Test deterministic behavior of uncomputable layers
206
+ print("\n5. Testing deterministic behavior:")
207
+ halting_output2 = halting_layer.forward(test_input)
208
+ diff = np.linalg.norm(halting_output - halting_output2)
209
+ print(f" Determinism check: difference = {diff:.10f}")
210
+ assert diff < 1e-10, "Uncomputable layers must be deterministic"
211
+
212
+ return True
213
+
214
+ def test_uncomputable_network_composition():
215
+ """Test composition of uncomputable neural network."""
216
+ print("\n=== Testing Uncomputable Network Composition ===\n")
217
+
218
+ # Create uncomputable network
219
+ network = create_uncomputable_network()
220
+
221
+ # Test with different input sizes
222
+ test_cases = [
223
+ (1, 4), # Single sample
224
+ (5, 4), # Multiple samples
225
+ (10, 4) # Larger batch
226
+ ]
227
+
228
+ for i, (batch_size, input_size) in enumerate(test_cases, 1):
229
+ test_input = np.random.randn(batch_size, input_size)
230
+ output = network.predict(test_input)
231
+
232
+ print(f"Test case {i}:")
233
+ print(f" Input shape: {test_input.shape}")
234
+ print(f" Output shape: {output.shape}")
235
+ print(f" Output mean: {np.mean(output):.4f}")
236
+ print(f" Output std: {np.std(output):.4f}")
237
+
238
+ return True
239
+
240
+ def test_edge_cases():
241
+ """Test edge cases and boundary conditions."""
242
+ print("\n=== Testing Edge Cases ===\n")
243
+
244
+ network = create_sample_network()
245
+
246
+ # Test with zero input
247
+ zero_input = np.zeros((2, 4))
248
+ zero_output = network.predict(zero_input)
249
+ print(f"1. Zero input test:")
250
+ print(f" Input: all zeros, shape {zero_input.shape}")
251
+ print(f" Output: {zero_output}")
252
+
253
+ # Test with very small inputs
254
+ small_input = np.ones((2, 4)) * 1e-6
255
+ small_output = network.predict(small_input)
256
+ print(f"\n2. Small input test:")
257
+ print(f" Input: 1e-6, shape {small_input.shape}")
258
+ print(f" Output range: [{np.min(small_output):.8f}, {np.max(small_output):.8f}]")
259
+
260
+ # Test with large inputs
261
+ large_input = np.ones((2, 4)) * 100
262
+ large_output = network.predict(large_input)
263
+ print(f"\n3. Large input test:")
264
+ print(f" Input: 100, shape {large_input.shape}")
265
+ print(f" Output range: [{np.min(large_output):.3f}, {np.max(large_output):.3f}]")
266
+
267
+ # Test with single sample
268
+ single_input = np.random.randn(4) # 1D input
269
+ single_output = network.predict(single_input)
270
+ print(f"\n4. Single sample test:")
271
+ print(f" Input shape: {single_input.shape}")
272
+ print(f" Output shape: {single_output.shape}")
273
+
274
+ return True
275
+
276
+ def run_comprehensive_test():
277
+ """Run all tests and report results."""
278
+ print("Comprehensive Algebraic Neural Network Test Suite")
279
+ print("="*60)
280
+
281
+ tests = [
282
+ ("Basic Functionality", test_basic_functionality),
283
+ ("Network Composition", test_network_composition),
284
+ ("Deterministic Behavior", test_deterministic_behavior),
285
+ ("Mathematical Properties", test_mathematical_properties),
286
+ ("Uncomputable Layers", test_uncomputable_layers),
287
+ ("Uncomputable Network Composition", test_uncomputable_network_composition),
288
+ ("Edge Cases", test_edge_cases),
289
+ ]
290
+
291
+ results = []
292
+
293
+ for test_name, test_func in tests:
294
+ try:
295
+ result = test_func()
296
+ results.append((test_name, result, None))
297
+ print(f"\n✓ {test_name}: PASSED")
298
+ except Exception as e:
299
+ results.append((test_name, False, str(e)))
300
+ print(f"\n✗ {test_name}: FAILED - {e}")
301
+
302
+ # Summary
303
+ print("\n" + "="*60)
304
+ print("TEST SUMMARY")
305
+ print("="*60)
306
+
307
+ passed = sum(1 for _, result, _ in results if result)
308
+ total = len(results)
309
+
310
+ for test_name, result, error in results:
311
+ status = "PASS" if result else "FAIL"
312
+ print(f"{test_name:.<30} {status}")
313
+ if error:
314
+ print(f" Error: {error}")
315
+
316
+ print(f"\nOverall: {passed}/{total} tests passed")
317
+
318
+ if passed == total:
319
+ print("🎉 All tests passed! Algebraic Neural Network implementation is working correctly.")
320
+ else:
321
+ print("⚠️ Some tests failed. Please review the implementation.")
322
+
323
+ return passed == total
324
+
325
+ if __name__ == "__main__":
326
+ success = run_comprehensive_test()
327
+ sys.exit(0 if success else 1)
theory/algebraic_foundations.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Algebraic Foundations of Non-Trained Neural Networks
2
+
3
+ ## Introduction
4
+
5
+ Algebraic Neural Networks (ANNs) represent a fundamental departure from traditional neural networks by eliminating the need for gradient-based training. Instead, they leverage mathematical structures from abstract algebra to perform computations.
6
+
7
+ ## Mathematical Foundations
8
+
9
+ ### 1. Algebraic Structures
10
+
11
+ #### Groups
12
+ A group (G, ∘) is a set G with a binary operation ∘ that satisfies:
13
+ - **Closure**: ∀ a, b ∈ G, a ∘ b ∈ G
14
+ - **Associativity**: ∀ a, b, c ∈ G, (a ∘ b) ∘ c = a ∘ (b ∘ c)
15
+ - **Identity**: ∃ e ∈ G such that ∀ a ∈ G, e ∘ a = a ∘ e = a
16
+ - **Inverse**: ∀ a ∈ G, ∃ a⁻¹ ∈ G such that a ∘ a⁻¹ = a⁻¹ ∘ a = e
17
+
18
+ In our neural networks, we use group actions to transform input data systematically.
19
+
20
+ #### Rings and Fields
21
+ A ring (R, +, ×) provides two operations (addition and multiplication) that interact via distributive laws. Fields extend rings by requiring multiplicative inverses for non-zero elements.
22
+
23
+ #### Algebras
24
+ An algebra over a field F is a vector space A over F equipped with a bilinear multiplication operation.
25
+
26
+ ### 2. Polynomial Algebras
27
+
28
+ Polynomial algebras form the basis for our polynomial layers. For a field F and variables x₁, x₂, ..., xₙ, the polynomial algebra F[x₁, x₂, ..., xₙ] consists of all polynomials in these variables.
29
+
30
+ #### Key Properties:
31
+ - **Linearity**: P(ax + by) = aP(x) + bP(y) for linear terms
32
+ - **Homomorphism**: Polynomial mappings preserve algebraic structure
33
+ - **Universal Property**: Polynomial algebras are initial objects in certain categories
34
+
35
+ ### 3. Geometric Algebra (Clifford Algebra)
36
+
37
+ Geometric algebra extends vector algebra with a geometric product that unifies dot and cross products.
38
+
39
+ For vectors a and b:
40
+ **Geometric Product**: ab = a·b + a∧b
41
+
42
+ Where:
43
+ - a·b is the dot product (scalar)
44
+ - a∧b is the outer product (bivector)
45
+
46
+ #### Properties:
47
+ - **Associative**: (ab)c = a(bc)
48
+ - **Distributive**: a(b + c) = ab + ac
49
+ - **Contraction**: a² = |a|² (for vectors)
50
+
51
+ ### 4. Group Actions in Neural Networks
52
+
53
+ A group action of G on a set X is a function G × X → X such that:
54
+ - Identity action: ex = x for all x ∈ X
55
+ - Compatibility: (gh)x = g(hx)
56
+
57
+ In neural networks, we use group actions to:
58
+ - Transform input features systematically
59
+ - Preserve important symmetries
60
+ - Generate multiple representations
61
+
62
+ ## Algebraic Neural Network Architecture
63
+
64
+ ### Layer Types
65
+
66
+ #### 1. Polynomial Layers
67
+ Transform inputs using polynomial functions with algebraically determined coefficients:
68
+
69
+ ```
70
+ f(x) = Σᵢ₌₁ⁿ Σⱼ₌₁ᵈ (aᵢⱼ/j!) xʲ
71
+ ```
72
+
73
+ Where aᵢⱼ are coefficients derived from algebraic sequences (e.g., involving golden ratio φ).
74
+
75
+ #### 2. Group Theory Layers
76
+ Apply group elements to transform inputs:
77
+
78
+ ```
79
+ y = g · x for g ∈ G
80
+ ```
81
+
82
+ Common groups used:
83
+ - **Cyclic groups**: Cₙ = {e, g, g², ..., gⁿ⁻¹}
84
+ - **Dihedral groups**: Symmetries of regular polygons
85
+ - **Symmetric groups**: Permutations of elements
86
+
87
+ #### 3. Geometric Algebra Layers
88
+ Use geometric product operations:
89
+
90
+ ```
91
+ y = x ∘ eᵢ
92
+ ```
93
+
94
+ Where eᵢ are basis elements of the geometric algebra.
95
+
96
+ ### Composition of Layers
97
+
98
+ Layers compose through function composition, preserving algebraic properties:
99
+
100
+ ```
101
+ f = fₙ ∘ fₙ₋₁ ∘ ... ∘ f₁
102
+ ```
103
+
104
+ ## Advantages of Algebraic Approach
105
+
106
+ ### 1. No Training Required
107
+ - Networks are constructed using mathematical principles
108
+ - No gradient computation needed
109
+ - No optimization algorithms required
110
+
111
+ ### 2. Deterministic Behavior
112
+ - Outputs are completely determined by algebraic rules
113
+ - Reproducible results
114
+ - No randomness in weights
115
+
116
+ ### 3. Mathematical Interpretability
117
+ - Clear mathematical meaning for each operation
118
+ - Theoretical guarantees on behavior
119
+ - Connection to established mathematical theory
120
+
121
+ ### 4. Computational Efficiency
122
+ - No backpropagation required
123
+ - Direct computation of outputs
124
+ - Parallel computation of group actions
125
+
126
+ ## Theoretical Guarantees
127
+
128
+ ### Universal Approximation
129
+ Under certain conditions, algebraic neural networks can approximate continuous functions:
130
+
131
+ **Theorem**: Let f: Rⁿ → Rᵐ be a continuous function on a compact set K. Then for any ε > 0, there exists an algebraic neural network F such that ||f - F||∞ < ε on K.
132
+
133
+ ### Stability Properties
134
+ Algebraic operations provide stability guarantees:
135
+ - Polynomial layers have bounded derivatives
136
+ - Group actions preserve norms (for orthogonal groups)
137
+ - Geometric algebra operations maintain geometric relationships
138
+
139
+ ## Applications
140
+
141
+ ### 1. Signal Processing
142
+ - Fourier transforms as group actions
143
+ - Wavelet transforms using algebraic structures
144
+ - Filter design using polynomial algebras
145
+
146
+ ### 2. Computer Vision
147
+ - Geometric transformations using group theory
148
+ - Feature extraction using geometric algebra
149
+ - Invariant pattern recognition
150
+
151
+ ### 3. Scientific Computing
152
+ - Solving differential equations
153
+ - Numerical integration
154
+ - Optimization problems with algebraic constraints
155
+
156
+ ## References
157
+
158
+ 1. Clifford, W.K. (1878). "Applications of Grassmann's Extensive Algebra"
159
+ 2. Doran, C. & Lasenby, A. (2003). "Geometric Algebra for Physicists"
160
+ 3. Rotman, J.J. (2012). "A First Course in Abstract Algebra"
161
+ 4. MacLane, S. & Birkhoff, G. (1999). "Algebra"
162
+ 5. Cybenko, G. (1989). "Approximation by Superpositions of a Sigmoidal Function"
theory/examples.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Worked Examples of Algebraic Neural Networks
2
+
3
+ ## Example 1: Polynomial Network for Function Approximation
4
+
5
+ ### Problem
6
+ Approximate the function f(x, y) = x² + 2xy + y² using an algebraic neural network.
7
+
8
+ ### Solution
9
+
10
+ ```python
11
+ import numpy as np
12
+ from algebraic_neural_network import PolynomialLayer
13
+
14
+ # Create a polynomial layer
15
+ poly_layer = PolynomialLayer(input_size=2, output_size=1, degree=2)
16
+
17
+ # Test points
18
+ test_points = np.array([
19
+ [1, 1], # f(1,1) = 1 + 2 + 1 = 4
20
+ [2, 3], # f(2,3) = 4 + 12 + 9 = 25
21
+ [0, 1], # f(0,1) = 0 + 0 + 1 = 1
22
+ [-1, 2] # f(-1,2) = 1 - 4 + 4 = 1
23
+ ])
24
+
25
+ # Apply the polynomial transformation
26
+ output = poly_layer.forward(test_points)
27
+ print("Polynomial approximation results:", output.flatten())
28
+ ```
29
+
30
+ ### Mathematical Analysis
31
+ The polynomial layer generates coefficients using the golden ratio φ = (1 + √5)/2:
32
+ - For output neuron 1: coefficient matrix uses φ¹ and φ²
33
+ - The transformation applies: y = Σᵢ Σⱼ (aᵢⱼ/j!) xʲ
34
+
35
+ ## Example 2: Group Theory Network for Rotation Invariance
36
+
37
+ ### Problem
38
+ Create a network that recognizes patterns invariant under rotations.
39
+
40
+ ### Solution
41
+
42
+ ```python
43
+ import numpy as np
44
+ from algebraic_neural_network import GroupTheoryLayer
45
+
46
+ # Create a group theory layer using 8-fold rotational symmetry
47
+ group_layer = GroupTheoryLayer(input_size=2, output_size=4, group_order=8)
48
+
49
+ # Test with a simple pattern (vector pointing in different directions)
50
+ patterns = np.array([
51
+ [1, 0], # Point along x-axis
52
+ [0, 1], # Point along y-axis
53
+ [1/√2, 1/√2], # Point along 45° diagonal
54
+ [-1, 0] # Point along negative x-axis
55
+ ])
56
+
57
+ # Apply group transformations
58
+ transformed = group_layer.forward(patterns)
59
+ print("Group theory transformation results:")
60
+ print(transformed)
61
+ ```
62
+
63
+ ### Mathematical Analysis
64
+ The group theory layer applies rotations from the cyclic group C₈:
65
+ - Rotation angles: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°
66
+ - Each rotation is represented by a 2×2 rotation matrix
67
+ - The norm of the transformed vector provides rotation-invariant features
68
+
69
+ ## Example 3: Geometric Algebra Network for 3D Processing
70
+
71
+ ### Problem
72
+ Process 3D geometric data using geometric algebra operations.
73
+
74
+ ### Solution
75
+
76
+ ```python
77
+ import numpy as np
78
+ from algebraic_neural_network import GeometricAlgebraLayer
79
+
80
+ # Create geometric algebra layer
81
+ geo_layer = GeometricAlgebraLayer(input_size=3, output_size=4)
82
+
83
+ # 3D vectors representing different geometric entities
84
+ vectors = np.array([
85
+ [1, 0, 0], # Unit vector along x
86
+ [0, 1, 0], # Unit vector along y
87
+ [0, 0, 1], # Unit vector along z
88
+ [1, 1, 1] # Diagonal vector
89
+ ])
90
+
91
+ # Apply geometric algebra transformations
92
+ geo_output = geo_layer.forward(vectors)
93
+ print("Geometric algebra results:")
94
+ print(geo_output)
95
+ ```
96
+
97
+ ### Mathematical Analysis
98
+ The geometric algebra layer computes:
99
+ - Scalar products: a·b
100
+ - Vector products: a∧b (bivectors)
101
+ - Trivector products: a∧b∧c
102
+ - Mixed products combining all grades
103
+
104
+ ## Example 4: Complete Network for Pattern Classification
105
+
106
+ ### Problem
107
+ Build a complete algebraic neural network for classifying 2D patterns.
108
+
109
+ ### Solution
110
+
111
+ ```python
112
+ from algebraic_neural_network import AlgebraicNeuralNetwork, PolynomialLayer, GroupTheoryLayer
113
+
114
+ # Create network architecture
115
+ network = AlgebraicNeuralNetwork()
116
+ network.add_layer(PolynomialLayer(2, 4, degree=2)) # Feature extraction
117
+ network.add_layer(GroupTheoryLayer(4, 3, group_order=6)) # Symmetry processing
118
+ network.add_layer(PolynomialLayer(3, 1, degree=1)) # Final classification
119
+
120
+ # Test patterns
121
+ circle_points = np.array([
122
+ [np.cos(θ), np.sin(θ)] for θ in np.linspace(0, 2*np.pi, 8)
123
+ ])
124
+
125
+ square_points = np.array([
126
+ [1, 1], [1, -1], [-1, -1], [-1, 1],
127
+ [1, 0], [0, 1], [-1, 0], [0, -1]
128
+ ])
129
+
130
+ # Classify patterns
131
+ circle_scores = network.predict(circle_points)
132
+ square_scores = network.predict(square_points)
133
+
134
+ print("Circle pattern scores:", np.mean(circle_scores))
135
+ print("Square pattern scores:", np.mean(square_scores))
136
+ ```
137
+
138
+ ### Analysis
139
+ This network demonstrates:
140
+ 1. **Feature Extraction**: Polynomial layer extracts nonlinear features
141
+ 2. **Symmetry Processing**: Group theory layer handles rotational symmetries
142
+ 3. **Classification**: Final layer provides decision boundary
143
+
144
+ ## Example 5: Time Series Processing with Algebraic Networks
145
+
146
+ ### Problem
147
+ Process time series data using algebraic transformations.
148
+
149
+ ### Solution
150
+
151
+ ```python
152
+ import numpy as np
153
+
154
+ def create_time_series_network():
155
+ network = AlgebraicNeuralNetwork()
156
+ # Window-based polynomial features
157
+ network.add_layer(PolynomialLayer(5, 6, degree=2)) # 5-point window
158
+ # Temporal symmetries
159
+ network.add_layer(GroupTheoryLayer(6, 4, group_order=4))
160
+ # Final prediction
161
+ network.add_layer(PolynomialLayer(4, 1, degree=1))
162
+ return network
163
+
164
+ # Generate sample time series
165
+ t = np.linspace(0, 4*np.pi, 100)
166
+ signal = np.sin(t) + 0.3*np.sin(3*t) + 0.1*np.random.randn(100)
167
+
168
+ # Create windows of 5 consecutive points
169
+ windows = np.array([signal[i:i+5] for i in range(len(signal)-4)])
170
+
171
+ # Process with algebraic network
172
+ ts_network = create_time_series_network()
173
+ predictions = ts_network.predict(windows)
174
+
175
+ print(f"Processed {len(windows)} time windows")
176
+ print(f"Prediction range: [{np.min(predictions):.3f}, {np.max(predictions):.3f}]")
177
+ ```
178
+
179
+ ### Analysis
180
+ This demonstrates algebraic networks for temporal data:
181
+ - **Windowing**: Convert time series to fixed-size vectors
182
+ - **Polynomial Features**: Capture local nonlinear patterns
183
+ - **Temporal Symmetries**: Handle time-shift invariances
184
+
185
+ ## Performance Characteristics
186
+
187
+ ### Computational Complexity
188
+ - **Polynomial Layers**: O(nd) where n is input size, d is degree
189
+ - **Group Theory Layers**: O(ng) where g is group order
190
+ - **Geometric Algebra Layers**: O(n²) for geometric products
191
+
192
+ ### Memory Requirements
193
+ - **Fixed Coefficients**: No weight storage needed
194
+ - **Intermediate Results**: Only temporary computation storage
195
+ - **Total Memory**: O(n) where n is largest layer size
196
+
197
+ ### Accuracy Analysis
198
+ Algebraic networks provide:
199
+ - **Consistency**: Same input always produces same output
200
+ - **Stability**: Small input changes → small output changes
201
+ - **Interpretability**: Mathematical meaning for each operation
202
+
203
+ ## Practical Considerations
204
+
205
+ ### When to Use Algebraic Networks
206
+ - **Known Mathematical Structure**: Problem has clear algebraic properties
207
+ - **No Training Data**: When gradient-based training isn't feasible
208
+ - **Interpretability Required**: Need mathematical understanding of operations
209
+ - **Real-time Processing**: Fast, deterministic computation needed
210
+
211
+ ### Limitations
212
+ - **Limited Expressivity**: May not capture all possible patterns
213
+ - **Parameter Selection**: Choosing group orders, polynomial degrees
214
+ - **Scaling**: Performance with very high-dimensional data
215
+
216
+ ### Extensions
217
+ - **Adaptive Coefficients**: Use algebraic sequences that adapt to data
218
+ - **Hybrid Networks**: Combine with traditional neural networks
219
+ - **Custom Algebras**: Develop problem-specific algebraic structures
theory/uncomputable_networks.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Uncomputable Neural Networks
2
+
3
+ ## Introduction
4
+
5
+ Uncomputable Neural Networks represent a theoretical extension of non-trained neural networks that incorporate uncomputable functions and non-algorithmic operations. These networks explore the boundaries of computation and demonstrate concepts from theoretical computer science.
6
+
7
+ ## Mathematical Foundations
8
+
9
+ ### 1. Computability Theory
10
+
11
+ #### Computable vs Uncomputable Functions
12
+ - **Computable functions**: Can be computed by a Turing machine in finite time
13
+ - **Uncomputable functions**: Cannot be computed by any algorithm (e.g., halting problem)
14
+
15
+ #### The Halting Problem
16
+ The halting problem asks: Given a program P and input I, will P halt on I?
17
+ This is formally uncomputable - no algorithm can solve it for all cases.
18
+
19
+ ### 2. Oracle Machines
20
+
21
+ An Oracle machine is a theoretical Turing machine with access to an "oracle" that can answer questions about uncomputable problems in constant time.
22
+
23
+ #### Oracle Operations
24
+ - **Halting Oracle**: O_H(P,I) = 1 if program P halts on input I, 0 otherwise
25
+ - **Kolmogorov Oracle**: O_K(x) returns the Kolmogorov complexity of string x
26
+ - **Busy Beaver Oracle**: O_BB(n) returns the nth Busy Beaver number
27
+
28
+ ### 3. Hypercomputation
29
+
30
+ Hypercomputation refers to computational models that can solve uncomputable problems:
31
+ - Infinite time Turing machines
32
+ - Analog computers with real number precision
33
+ - Quantum computers with hypothetical capabilities
34
+
35
+ ## Uncomputable Neural Network Architecture
36
+
37
+ ### Layer Types
38
+
39
+ #### 1. Halting Oracle Layer
40
+ Simulates access to a halting oracle for specific problem domains:
41
+
42
+ ```
43
+ f(x) = O_H(encode(x), input_program)
44
+ ```
45
+
46
+ Where `encode(x)` transforms the input into a program representation.
47
+
48
+ #### 2. Kolmogorov Complexity Layer
49
+ Approximates Kolmogorov complexity using compression-based heuristics:
50
+
51
+ ```
52
+ f(x) = K_approx(x) = min{|p| : U(p) = x, |p| ≤ threshold}
53
+ ```
54
+
55
+ #### 3. Busy Beaver Layer
56
+ Uses known Busy Beaver values and approximations for larger inputs:
57
+
58
+ ```
59
+ f(x) = BB(⌊log₂(||x||)⌋)
60
+ ```
61
+
62
+ #### 4. Non-Recursive Enumeration Layer
63
+ Operates on sets that are computably enumerable but not computable:
64
+
65
+ ```
66
+ f(x) = indicator_function(x ∈ RE_set)
67
+ ```
68
+
69
+ ### Composition and Determinism
70
+
71
+ Despite incorporating uncomputable concepts, these networks maintain practical determinism through:
72
+ - Finite approximations of infinite processes
73
+ - Bounded computation with oracle simulation
74
+ - Heuristic approaches to uncomputable problems
75
+
76
+ ## Implementation Strategies
77
+
78
+ ### 1. Oracle Simulation
79
+ - Use lookup tables for known cases
80
+ - Apply heuristics for unknown cases
81
+ - Incorporate randomness with fixed seeds for determinism
82
+
83
+ ### 2. Bounded Approximation
84
+ - Limit computation depth to maintain practical execution
85
+ - Use asymptotic behaviors for large inputs
86
+ - Approximate infinite processes with finite resources
87
+
88
+ ### 3. Theoretical Consistency
89
+ - Maintain mathematical rigor in approximations
90
+ - Document assumptions and limitations
91
+ - Preserve algebraic properties where possible
92
+
93
+ ## Applications and Use Cases
94
+
95
+ ### 1. Complexity Analysis
96
+ - Estimating computational complexity of algorithms
97
+ - Pattern recognition in program behavior
98
+ - Automated theorem proving assistance
99
+
100
+ ### 2. Theoretical Computer Science Education
101
+ - Demonstrating computability concepts
102
+ - Exploring limits of computation
103
+ - Understanding oracle hierarchies
104
+
105
+ ### 3. Research in Hypercomputation
106
+ - Modeling hypothetical computational paradigms
107
+ - Investigating quantum computational advantages
108
+ - Exploring analog computation limits
109
+
110
+ ## Limitations and Considerations
111
+
112
+ ### 1. Practical Constraints
113
+ - True uncomputable functions cannot be implemented
114
+ - All implementations are approximations or simulations
115
+ - Finite resources limit theoretical completeness
116
+
117
+ ### 2. Determinism vs Uncomputability
118
+ - Balance between theoretical concepts and practical determinism
119
+ - Fixed seed randomness for reproducible "non-algorithmic" behavior
120
+ - Clear documentation of approximation methods
121
+
122
+ ### 3. Verification Challenges
123
+ - Difficult to verify correctness of uncomputable approximations
124
+ - Limited testing capabilities for infinite processes
125
+ - Reliance on theoretical foundations rather than empirical validation
126
+
127
+ ## Relationship to Other Non-Trained Networks
128
+
129
+ Uncomputable neural networks extend the paradigm of non-trained networks by:
130
+ - Eliminating not just training but algorithmic computation itself
131
+ - Incorporating theoretical computer science concepts
132
+ - Exploring computational limits and capabilities
133
+ - Maintaining deterministic behavior through careful design
134
+
135
+ ## References
136
+
137
+ 1. Turing, A. M. (1936). "On Computable Numbers, with an Application to the Entscheidungsproblem"
138
+ 2. Rogers, H. (1987). "Theory of Recursive Functions and Effective Computability"
139
+ 3. Copeland, B. J. (2002). "Hypercomputation: philosophical issues"
140
+ 4. Beggs, E., Costa, J. F., Tucker, J. V. (2012). "The impact of models of a physical oracle on computational power"
141
+ 5. Aaronson, S. (2013). "Quantum Computing since Democritus"