File size: 12,250 Bytes
76b087c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
"""
FDRA Oscillator Implementation with Explicit Decay Parameters

This implements the core FDRA oscillator dynamics where each oscillator has:
- A decay parameter λ_i ∈ (0, 1)
- Half-life Ο„_i = ln(0.5) / ln(Ξ»_i)

The key problem this addresses (from Melanie/Tiago's discovery):
- During training at GPT-2 scale, all Ξ»_i collapse to near 1.0 (very short half-lives)
- This means oscillators only attend to ~10 tokens instead of full context length
- The model works for short-context tasks but fails on long-context reasoning

Solution: Half-life regularization to maintain diversity across temporal scales.

Authors: FDRA Half-Life Regularization Implementation
Date: 2026-01-22
"""

import numpy as np
from typing import Dict, List, Tuple, Optional, Any
from dataclasses import dataclass
import json
from pathlib import Path


@dataclass
class OscillatorConfig:
    """Configuration for FDRA oscillator bank."""
    num_oscillators: int = 32        # Number of oscillators
    state_dim: int = 16              # Dimension per oscillator  
    sequence_length: int = 4096      # Max sequence length (L)
    tau_min: float = 1.0             # Minimum half-life
    tau_max: float = 4096.0          # Maximum half-life (typically = L)
    
    # Initialization
    init_method: str = "log_uniform"  # "log_uniform" or "random"
    

@dataclass
class OscillatorState:
    """State of an oscillator bank."""
    h: np.ndarray                    # Hidden states: (num_oscillators, state_dim)
    lambdas: np.ndarray              # Decay parameters: (num_oscillators,)
    
    def copy(self) -> 'OscillatorState':
        return OscillatorState(
            h=self.h.copy(),
            lambdas=self.lambdas.copy()
        )


class FDRAOscillatorBank:
    """
    FDRA Oscillator Bank with explicit decay parameters.
    
    Each oscillator i has:
        h_i(t+1) = Ξ»_i * h_i(t) + u_i(t)
        
    Where:
        λ_i ∈ (0, 1) is the decay parameter
        Ο„_i = ln(0.5) / ln(Ξ»_i) is the half-life
        
    Half-life interpretation:
        Ο„_i = number of steps for oscillator state to decay to 50%
        
    The goal of half-life regularization:
        Maintain log-uniform distribution of Ο„_i across [Ο„_min, Ο„_max]
        This ensures oscillators can attend to both short and long contexts.
    """
    
    def __init__(self, config: OscillatorConfig):
        self.config = config
        self.n = config.num_oscillators
        self.d = config.state_dim
        self.L = config.sequence_length
        
        # Initialize decay parameters
        self.lambdas = self._init_lambdas()
        
        # Initialize hidden states
        self.h = np.zeros((self.n, self.d))
        
        # Track history for analysis
        self.history: List[Dict[str, Any]] = []
        
    def _init_lambdas(self) -> np.ndarray:
        """
        Initialize decay parameters Ξ»_i.
        
        For log-uniform half-lives, we want:
            Ο„_i ~ LogUniform(Ο„_min, Ο„_max)
            
        Since Ο„ = ln(0.5) / ln(Ξ»), we have:
            Ξ» = 0.5^(1/Ο„)
            
        So for log-uniform Ο„:
            log(Ο„) ~ Uniform(log(Ο„_min), log(Ο„_max))
            Ο„ = exp(log_Ο„)
            Ξ» = 0.5^(1/Ο„)
        """
        if self.config.init_method == "log_uniform":
            # Log-uniform distribution of half-lives
            log_tau_min = np.log(self.config.tau_min)
            log_tau_max = np.log(self.config.tau_max)
            
            # Evenly spaced in log space
            log_taus = np.linspace(log_tau_min, log_tau_max, self.n)
            taus = np.exp(log_taus)
            
            # Convert half-lives to decay parameters
            # Ξ» = exp(ln(0.5) / Ο„) = 0.5^(1/Ο„)
            lambdas = np.power(0.5, 1.0 / taus)
            
        else:
            # Random initialization (not recommended)
            lambdas = np.random.uniform(0.5, 0.99, self.n)
            
        return lambdas
    
    def get_half_lives(self) -> np.ndarray:
        """
        Compute half-lives from decay parameters.
        
        Ο„_i = ln(0.5) / ln(Ξ»_i)
        """
        # Clamp lambdas to avoid log(1) = 0
        safe_lambdas = np.clip(self.lambdas, 1e-10, 1.0 - 1e-10)
        taus = np.log(0.5) / np.log(safe_lambdas)
        return taus
    
    def get_log_half_lives(self) -> np.ndarray:
        """Get log of half-lives: z_i = log(Ο„_i)."""
        return np.log(self.get_half_lives())
    
    def forward(self, u: np.ndarray) -> np.ndarray:
        """
        One step of oscillator dynamics.
        
        h_i(t+1) = Ξ»_i * h_i(t) + u_i(t)
        
        Args:
            u: Input signal, shape (num_oscillators, state_dim)
            
        Returns:
            Updated hidden states, shape (num_oscillators, state_dim)
        """
        # Broadcast lambdas across state dimensions
        lambdas_broadcast = self.lambdas[:, np.newaxis]  # (n, 1)
        
        # Apply dynamics
        self.h = lambdas_broadcast * self.h + u
        
        return self.h.copy()
    
    def reset(self):
        """Reset oscillator states to zero."""
        self.h = np.zeros((self.n, self.d))
    
    def get_half_life_statistics(self) -> Dict[str, float]:
        """
        Compute statistics of half-life distribution.
        
        Returns:
            Dictionary with mean, std, min, max in log space.
        """
        taus = self.get_half_lives()
        z = np.log(taus)
        
        return {
            "tau_min": float(np.min(taus)),
            "tau_max": float(np.max(taus)),
            "tau_mean": float(np.mean(taus)),
            "tau_median": float(np.median(taus)),
            "log_tau_mean": float(np.mean(z)),
            "log_tau_std": float(np.std(z)),
            "log_tau_min": float(np.min(z)),
            "log_tau_max": float(np.max(z)),
        }
    
    def get_state(self) -> OscillatorState:
        """Get current oscillator state."""
        return OscillatorState(
            h=self.h.copy(),
            lambdas=self.lambdas.copy()
        )
    
    def set_state(self, state: OscillatorState):
        """Set oscillator state."""
        self.h = state.h.copy()
        self.lambdas = state.lambdas.copy()


class FDRAWithOscillators:
    """
    Full FDRA agent with oscillator bank for memory.
    
    This extends the basic FDRA agent to use an oscillator bank
    with explicit decay parameters that can be regularized.
    
    Architecture:
        Input β†’ [Oscillator Bank] β†’ Slow State β†’ Output
                     ↑                    ↓
                 Fast State ←──────────────
    """
    
    def __init__(
        self,
        osc_config: Optional[OscillatorConfig] = None,
        wlc_threshold: float = 1.0
    ):
        self.config = osc_config or OscillatorConfig()
        self.oscillators = FDRAOscillatorBank(self.config)
        self.wlc_threshold = wlc_threshold
        
        # Fast state (reactive, for computation)
        self.fast = np.zeros(self.config.state_dim)
        
        # Energy tracking
        self.energy = 0.0
        
        self.history: List[Dict[str, Any]] = []
        
    def get_slow_state(self) -> np.ndarray:
        """
        Aggregate slow state from oscillator bank.
        
        The slow state is a weighted sum of oscillator states,
        with weights proportional to half-life.
        """
        taus = self.oscillators.get_half_lives()
        weights = taus / np.sum(taus)  # Normalize
        
        # Weighted sum across oscillators
        weighted_h = self.oscillators.h * weights[:, np.newaxis]
        slow = np.sum(weighted_h, axis=0)  # (state_dim,)
        
        return slow
    
    def forward_dynamics(self, action: np.ndarray) -> np.ndarray:
        """
        Forward dynamics with oscillator bank.
        
        1. Distribute action across oscillators
        2. Update oscillator bank
        3. Compute slow state from oscillators
        4. Update fast state
        """
        # Distribute action to oscillators (same input, different decays)
        u = np.tile(action, (self.config.num_oscillators, 1))  # (n, d)
        
        # Scale by oscillator-specific factors (optional: could learn these)
        scale = 0.1 * np.ones((self.config.num_oscillators, 1))
        u = u * scale
        
        # Update oscillators
        self.oscillators.forward(u)
        
        # Get slow state from oscillators
        slow = self.get_slow_state()
        
        # Update fast state (reactive)
        self.fast = 0.9 * self.fast + action
        
        # Energy
        self.energy += np.linalg.norm(action) * 0.1
        
        return slow
    
    def get_coherence(self) -> float:
        """Coherence between slow and fast states."""
        slow = self.get_slow_state()
        slow_norm = np.linalg.norm(slow)
        fast_norm = np.linalg.norm(self.fast)
        
        if slow_norm < 1e-10 or fast_norm < 1e-10:
            return 0.0
            
        return float(np.dot(slow, self.fast) / (slow_norm * fast_norm))
    
    def step(self, action: np.ndarray) -> Dict[str, Any]:
        """Execute one step and return diagnostics."""
        slow = self.forward_dynamics(action)
        coherence = self.get_coherence()
        
        stats = self.oscillators.get_half_life_statistics()
        
        result = {
            "slow_norm": float(np.linalg.norm(slow)),
            "fast_norm": float(np.linalg.norm(self.fast)),
            "coherence": coherence,
            "energy": self.energy,
            **stats
        }
        
        self.history.append(result)
        return result
    
    def reset(self):
        """Reset all state."""
        self.oscillators.reset()
        self.fast = np.zeros(self.config.state_dim)
        self.energy = 0.0
        self.history = []


def demo_oscillators():
    """Demonstrate oscillator bank behavior."""
    print("=" * 60)
    print("FDRA OSCILLATOR BANK DEMONSTRATION")
    print("=" * 60)
    
    config = OscillatorConfig(
        num_oscillators=16,
        state_dim=8,
        sequence_length=4096,
        tau_min=1.0,
        tau_max=4096.0
    )
    
    bank = FDRAOscillatorBank(config)
    
    print("\n1. Initial Half-Life Distribution")
    print("-" * 40)
    stats = bank.get_half_life_statistics()
    print(f"   Ο„ range: [{stats['tau_min']:.1f}, {stats['tau_max']:.1f}]")
    print(f"   Ο„ mean: {stats['tau_mean']:.1f}")
    print(f"   log(Ο„) mean: {stats['log_tau_mean']:.3f}")
    print(f"   log(Ο„) std: {stats['log_tau_std']:.3f}")
    
    print("\n2. Half-Lives per Oscillator")
    print("-" * 40)
    taus = bank.get_half_lives()
    for i, tau in enumerate(taus):
        bar = "β–ˆ" * int(np.log(tau) * 3)
        print(f"   Osc {i:2d}: Ο„ = {tau:7.1f} steps  {bar}")
    
    print("\n3. Simulating Input Sequence")
    print("-" * 40)
    
    # Pulse input at t=0
    u = np.random.randn(config.num_oscillators, config.state_dim)
    bank.forward(u)
    initial_norms = np.linalg.norm(bank.h, axis=1)
    
    # Decay for 100 steps with zero input
    decay_steps = [10, 50, 100, 500, 1000]
    zero_input = np.zeros((config.num_oscillators, config.state_dim))
    
    step = 0
    for target in decay_steps:
        while step < target:
            bank.forward(zero_input)
            step += 1
        
        current_norms = np.linalg.norm(bank.h, axis=1)
        retention = current_norms / (initial_norms + 1e-10)
        
        print(f"\n   After {step} steps:")
        for i, (tau, ret) in enumerate(zip(taus, retention)):
            if tau < step * 0.5:
                expected = "βœ— (should be < 50%)"
            else:
                expected = "βœ“ (should be > 50%)"
            print(f"      Osc {i:2d}: Ο„={tau:7.1f}, retention={ret:.1%} {expected}")
            if i >= 3:
                print(f"      ... ({len(taus) - 4} more)")
                break
    
    print("\n" + "=" * 60)
    print("OBSERVATION: Oscillators with Ο„ > t retain more than 50% of signal")
    print("This is the desired behavior for long-context modeling.")
    print("=" * 60)


if __name__ == "__main__":
    demo_oscillators()