File size: 19,243 Bytes
4e48d38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
"""
Half-Life Regularizer for FDRA Oscillators
This implements the exact mathematical regularizer from the Cursor instructions:
## Regularizer 1: Log-Uniform Half-Life Prior (primary)
Target distribution: p(τ) ∝ 1/τ for τ ∈ [τ_min, τ_max]
This gives equal mass per temporal decade (log scale).
Loss:
z_i = log(τ_i)
μ = mean(z_i)
σ² = mean((z_i - μ)²)
μ* = (log(τ_min) + log(τ_max)) / 2
σ²* = (log(τ_max) - log(τ_min))² / 12
L_HL = α*(μ - μ*)² + β*(σ² - σ²*)²
## Regularizer 2: Long-Tail Survival Constraint (supporting)
Ensure existence of long-range oscillators:
s_i = σ(k * (τ_i - γ*L))
tail_mass = mean(s_i)
L_tail = max(0, ρ - tail_mass)²
Where:
γ = 0.5 (fraction of full context)
ρ = 0.05 (minimum fraction of oscillators)
k = 10.0 (sigmoid sharpness)
## Regularizer 3: Tau Bounds Constraint (CRITICAL FIX)
The moment-matching loss (L_HL) can be satisfied by a pathological bimodal
distribution with taus outside [tau_min, tau_max]. This creates oscillators
that are either useless (tau << 1) or extreme (tau >> L).
L_bounds = mean(relu(tau_min - tau_i)^2) + mean(relu(tau_i - tau_max)^2)
## Combined Loss
L_total = L_task + λ1 * L_HL + λ2 * L_tail + λ3 * L_bounds
Authors: Half-Life Regularization Implementation
Date: 2026-01-22
"""
import numpy as np
from typing import Dict, Tuple, Optional, Any
from dataclasses import dataclass
from pathlib import Path
import json
from datetime import datetime
@dataclass
class HalfLifeRegularizerConfig:
"""Configuration for half-life regularization."""
# Task parameters
sequence_length: int = 4096 # L - max sequence length
tau_min: float = 1.0 # Minimum target half-life
tau_max: float = 4096.0 # Maximum target half-life (= L)
# Log-Uniform Prior coefficients
alpha: float = 1.0 # Weight for mean constraint
beta: float = 1.0 # Weight for variance constraint
# Long-Tail Survival coefficients
gamma: float = 0.5 # Fraction of full context for long-range
rho: float = 0.05 # Minimum fraction of long-range oscillators
k: float = 10.0 # Sigmoid sharpness
# Overall loss weights
lambda1: float = 0.01 # Weight for L_HL in total loss
lambda2: float = 0.01 # Weight for L_tail in total loss
# NEW: Tau bound constraint (prevents pathological distributions)
lambda3: float = 0.1 # Weight for L_bounds
bound_sharpness: float = 5.0 # Sharpness of soft bound penalties
class HalfLifeRegularizer:
"""
Half-Life Regularizer for FDRA Oscillator Banks.
Prevents decay parameter collapse by regularizing the half-life
distribution toward a log-uniform target.
Usage:
config = HalfLifeRegularizerConfig()
regularizer = HalfLifeRegularizer(config)
# During training:
lambdas = oscillator_bank.lambdas
loss, metrics = regularizer.compute(lambdas)
# Add to total loss:
total_loss = task_loss + loss
# Log metrics:
log(metrics)
"""
def __init__(self, config: HalfLifeRegularizerConfig):
self.config = config
# Pre-compute target statistics
z_min = np.log(config.tau_min)
z_max = np.log(config.tau_max)
# Target mean in log space (center of [z_min, z_max])
self.mu_star = (z_min + z_max) / 2.0
# Target variance in log space (variance of uniform on [z_min, z_max])
self.sigma2_star = (z_max - z_min) ** 2 / 12.0
# Long-range threshold
self.tau_threshold = config.gamma * config.sequence_length
def lambdas_to_half_lives(self, lambdas: np.ndarray) -> np.ndarray:
"""
Convert decay parameters to half-lives.
τ_i = ln(0.5) / ln(λ_i)
Args:
lambdas: Decay parameters, shape (N,)
Returns:
taus: Half-lives, shape (N,)
"""
# Clamp to avoid numerical issues
safe_lambdas = np.clip(lambdas, 1e-10, 1.0 - 1e-10)
taus = np.log(0.5) / np.log(safe_lambdas)
return taus
def compute_log_uniform_loss(
self,
lambdas: np.ndarray
) -> Tuple[float, Dict[str, float]]:
"""
Compute Log-Uniform Half-Life Prior loss.
L_HL = α*(μ - μ*)² + β*(σ² - σ²*)²
Args:
lambdas: Decay parameters, shape (N,)
Returns:
loss: Scalar loss value
metrics: Dictionary of component metrics
"""
# Compute half-lives and log half-lives
taus = self.lambdas_to_half_lives(lambdas)
z = np.log(taus)
# Current statistics
mu = np.mean(z)
sigma2 = np.var(z)
# Compute loss components
mean_loss = self.config.alpha * (mu - self.mu_star) ** 2
var_loss = self.config.beta * (sigma2 - self.sigma2_star) ** 2
loss = mean_loss + var_loss
metrics = {
"log_tau_mean": float(mu),
"log_tau_var": float(sigma2),
"log_tau_target_mean": float(self.mu_star),
"log_tau_target_var": float(self.sigma2_star),
"mean_deviation": float(abs(mu - self.mu_star)),
"var_deviation": float(abs(sigma2 - self.sigma2_star)),
"log_uniform_loss": float(loss),
}
return float(loss), metrics
def compute_long_tail_loss(
self,
lambdas: np.ndarray
) -> Tuple[float, Dict[str, float]]:
"""
Compute Long-Tail Survival Constraint loss.
s_i = σ(k * (τ_i - γ*L))
tail_mass = mean(s_i)
L_tail = max(0, ρ - tail_mass)²
Args:
lambdas: Decay parameters, shape (N,)
Returns:
loss: Scalar loss value
metrics: Dictionary of component metrics
"""
# Compute half-lives
taus = self.lambdas_to_half_lives(lambdas)
# Sigmoid for soft thresholding (with numerical stability)
# s_i ≈ 1 if τ_i > threshold, ≈ 0 otherwise
x = self.config.k * (taus - self.tau_threshold)
x = np.clip(x, -500, 500) # Prevent overflow
s = 1.0 / (1.0 + np.exp(-x))
# Fraction of oscillators in long-tail regime
tail_mass = np.mean(s)
# Loss: penalize if tail_mass < rho
deficit = max(0, self.config.rho - tail_mass)
loss = deficit ** 2
# Count actual long-range oscillators (hard threshold)
n_long_range = np.sum(taus > self.tau_threshold)
frac_long_range = n_long_range / len(taus)
metrics = {
"tail_mass": float(tail_mass),
"tail_target": float(self.config.rho),
"tail_deficit": float(deficit),
"n_long_range": int(n_long_range),
"frac_long_range": float(frac_long_range),
"tau_threshold": float(self.tau_threshold),
"long_tail_loss": float(loss),
}
return float(loss), metrics
def compute_bounds_loss(
self,
lambdas: np.ndarray
) -> Tuple[float, Dict[str, float]]:
"""
Compute tau bounds constraint loss.
CRITICAL FIX: The moment-matching loss alone can be satisfied by
a pathological bimodal distribution with taus outside [tau_min, tau_max].
This loss penalizes taus below tau_min or above tau_max:
L_bounds = mean(relu(tau_min - tau_i)^2) + mean(relu(tau_i - tau_max)^2)
Uses soft penalty with configurable sharpness.
"""
taus = self.lambdas_to_half_lives(lambdas)
k = self.config.bound_sharpness
# Soft lower bound: penalize tau < tau_min
below_min = np.maximum(0, self.config.tau_min - taus)
lower_penalty = np.mean((k * below_min) ** 2)
# Soft upper bound: penalize tau > tau_max
above_max = np.maximum(0, taus - self.config.tau_max)
upper_penalty = np.mean((k * above_max) ** 2)
loss = lower_penalty + upper_penalty
n_below_min = np.sum(taus < self.config.tau_min)
n_above_max = np.sum(taus > self.config.tau_max)
metrics = {
"bounds_loss": float(loss),
"lower_bound_penalty": float(lower_penalty),
"upper_bound_penalty": float(upper_penalty),
"n_below_tau_min": int(n_below_min),
"n_above_tau_max": int(n_above_max),
"frac_in_bounds": float(1 - (n_below_min + n_above_max) / len(taus)),
}
return float(loss), metrics
def compute(self, lambdas: np.ndarray) -> Tuple[float, Dict[str, Any]]:
"""
Compute total half-life regularization loss.
L_total = λ1 * L_HL + λ2 * L_tail + λ3 * L_bounds
CRITICAL: L_bounds prevents the pathological case where moment-matching
is satisfied by a bimodal distribution with taus outside [tau_min, tau_max].
Args:
lambdas: Decay parameters, shape (N,)
Returns:
loss: Total regularization loss
metrics: All component metrics
"""
# Compute component losses
log_uniform_loss, log_uniform_metrics = self.compute_log_uniform_loss(lambdas)
long_tail_loss, long_tail_metrics = self.compute_long_tail_loss(lambdas)
bounds_loss, bounds_metrics = self.compute_bounds_loss(lambdas)
# Weighted combination (bounds loss is CRITICAL)
total_loss = (
self.config.lambda1 * log_uniform_loss +
self.config.lambda2 * long_tail_loss +
self.config.lambda3 * bounds_loss
)
# Compute half-life distribution for logging
taus = self.lambdas_to_half_lives(lambdas)
metrics = {
"total_regularization_loss": float(total_loss),
"log_uniform_component": float(self.config.lambda1 * log_uniform_loss),
"long_tail_component": float(self.config.lambda2 * long_tail_loss),
"bounds_component": float(self.config.lambda3 * bounds_loss),
"tau_min": float(np.min(taus)),
"tau_max": float(np.max(taus)),
"tau_mean": float(np.mean(taus)),
"tau_median": float(np.median(taus)),
**log_uniform_metrics,
**long_tail_metrics,
**bounds_metrics,
}
return float(total_loss), metrics
def compute_gradient(
self,
lambdas: np.ndarray,
epsilon: float = 1e-5
) -> np.ndarray:
"""
Compute gradient of regularization loss w.r.t. lambdas.
Uses finite differences for simplicity.
In a real implementation, this would use autodiff.
Args:
lambdas: Decay parameters, shape (N,)
epsilon: Perturbation size
Returns:
grad: Gradient, shape (N,)
"""
grad = np.zeros_like(lambdas)
for i in range(len(lambdas)):
# Positive perturbation
lambdas_plus = lambdas.copy()
lambdas_plus[i] += epsilon
loss_plus, _ = self.compute(lambdas_plus)
# Negative perturbation
lambdas_minus = lambdas.copy()
lambdas_minus[i] -= epsilon
loss_minus, _ = self.compute(lambdas_minus)
# Central difference
grad[i] = (loss_plus - loss_minus) / (2 * epsilon)
return grad
def diagnose(self, lambdas: np.ndarray) -> str:
"""
Generate diagnostic string for current half-life distribution.
Args:
lambdas: Decay parameters
Returns:
Diagnostic string
"""
loss, metrics = self.compute(lambdas)
taus = self.lambdas_to_half_lives(lambdas)
lines = [
"=" * 60,
"HALF-LIFE REGULARIZER DIAGNOSTICS",
"=" * 60,
"",
"Current Distribution:",
f" τ range: [{metrics['tau_min']:.1f}, {metrics['tau_max']:.1f}]",
f" τ mean: {metrics['tau_mean']:.1f}",
f" τ median: {metrics['tau_median']:.1f}",
"",
"Target Distribution:",
f" τ range: [{self.config.tau_min}, {self.config.tau_max}]",
f" log(τ) target mean: {self.mu_star:.3f}",
f" log(τ) target var: {self.sigma2_star:.3f}",
"",
"Log-Uniform Prior:",
f" log(τ) mean: {metrics['log_tau_mean']:.3f} (target: {metrics['log_tau_target_mean']:.3f})",
f" log(τ) var: {metrics['log_tau_var']:.3f} (target: {metrics['log_tau_target_var']:.3f})",
f" Mean deviation: {metrics['mean_deviation']:.3f}",
f" Var deviation: {metrics['var_deviation']:.3f}",
f" Loss: {metrics['log_uniform_loss']:.6f}",
"",
"Long-Tail Survival:",
f" Threshold: τ > {metrics['tau_threshold']:.1f}",
f" Long-range count: {metrics['n_long_range']}/{len(lambdas)} ({metrics['frac_long_range']:.1%})",
f" Tail mass (soft): {metrics['tail_mass']:.3f} (target: {metrics['tail_target']:.3f})",
f" Loss: {metrics['long_tail_loss']:.6f}",
"",
"Total Regularization Loss:",
f" Log-uniform component: {metrics['log_uniform_component']:.6f}",
f" Long-tail component: {metrics['long_tail_component']:.6f}",
f" Total: {metrics['total_regularization_loss']:.6f}",
"",
]
# Add half-life histogram
lines.append("Half-Life Histogram (log scale):")
bins = np.logspace(0, np.log10(self.config.tau_max), 11)
hist, _ = np.histogram(taus, bins=bins)
for i, count in enumerate(hist):
bar = "█" * count
lines.append(f" [{bins[i]:7.1f}, {bins[i+1]:7.1f}): {count:2d} {bar}")
lines.append("")
lines.append("=" * 60)
return "\n".join(lines)
def simulate_collapse_and_recovery():
"""
Simulate the half-life collapse problem and demonstrate regularization.
This shows:
1. Initial log-uniform distribution (good)
2. Simulated collapse to short half-lives (bad, mimics training at scale)
3. Regularization gradient direction (recovery)
"""
print("=" * 70)
print("HALF-LIFE COLLAPSE AND REGULARIZATION DEMONSTRATION")
print("=" * 70)
config = HalfLifeRegularizerConfig(
sequence_length=4096,
tau_min=1.0,
tau_max=4096.0,
lambda1=0.01,
lambda2=0.01
)
regularizer = HalfLifeRegularizer(config)
# --- Initial Distribution (good) ---
print("\n1. INITIAL DISTRIBUTION (Log-Uniform)")
print("-" * 60)
n_oscillators = 32
log_taus_init = np.linspace(np.log(1.0), np.log(4096.0), n_oscillators)
taus_init = np.exp(log_taus_init)
lambdas_init = np.power(0.5, 1.0 / taus_init)
loss_init, metrics_init = regularizer.compute(lambdas_init)
print(f" Half-lives: [{metrics_init['tau_min']:.1f}, {metrics_init['tau_max']:.1f}]")
print(f" Regularization loss: {loss_init:.6f}")
print(f" Long-range oscillators: {metrics_init['n_long_range']}/{n_oscillators}")
# --- Collapsed Distribution (bad) ---
print("\n2. COLLAPSED DISTRIBUTION (Training at Scale)")
print("-" * 60)
print(" Simulating what happens during GPT-2 scale training...")
# All half-lives collapse to < 10 steps
taus_collapsed = np.random.uniform(2, 10, n_oscillators)
lambdas_collapsed = np.power(0.5, 1.0 / taus_collapsed)
loss_collapsed, metrics_collapsed = regularizer.compute(lambdas_collapsed)
print(f" Half-lives: [{metrics_collapsed['tau_min']:.1f}, {metrics_collapsed['tau_max']:.1f}]")
print(f" Regularization loss: {loss_collapsed:.6f} ({loss_collapsed/loss_init:.0f}x initial)")
print(f" Long-range oscillators: {metrics_collapsed['n_long_range']}/{n_oscillators}")
# --- Regularization Gradient ---
print("\n3. REGULARIZATION GRADIENT ANALYSIS")
print("-" * 60)
grad = regularizer.compute_gradient(lambdas_collapsed)
print(" Gradient direction indicates how to adjust λ_i to reduce loss:")
print(" (Negative gradient → increase λ → longer half-life)")
print()
# Show gradient for first few oscillators
for i in range(min(5, n_oscillators)):
tau_i = taus_collapsed[i]
grad_i = grad[i]
direction = "→ increase τ" if grad_i < 0 else "→ decrease τ"
print(f" Osc {i}: τ={tau_i:.1f}, grad={grad_i:+.4f} {direction}")
print(f" ... ({n_oscillators - 5} more)")
print(f"\n Mean gradient magnitude: {np.mean(np.abs(grad)):.4f}")
# --- After One Regularization Step ---
print("\n4. AFTER REGULARIZATION STEP")
print("-" * 60)
lr = 1.0 # Learning rate
lambdas_reg = lambdas_collapsed - lr * grad
lambdas_reg = np.clip(lambdas_reg, 0.01, 0.9999) # Keep valid
loss_reg, metrics_reg = regularizer.compute(lambdas_reg)
print(f" Half-lives: [{metrics_reg['tau_min']:.1f}, {metrics_reg['tau_max']:.1f}]")
print(f" Regularization loss: {loss_reg:.6f} ({loss_reg/loss_collapsed:.1%} of collapsed)")
print(f" Long-range oscillators: {metrics_reg['n_long_range']}/{n_oscillators}")
# --- Summary ---
print("\n5. SUMMARY")
print("-" * 60)
print(f"""
State | Loss | τ range | Long-range
-------------------|-----------|-----------------|------------
Initial (good) | {loss_init:.6f} | [{metrics_init['tau_min']:.1f}, {metrics_init['tau_max']:.1f}] | {metrics_init['n_long_range']}/{n_oscillators}
Collapsed (bad) | {loss_collapsed:.6f} | [{metrics_collapsed['tau_min']:.1f}, {metrics_collapsed['tau_max']:.1f}] | {metrics_collapsed['n_long_range']}/{n_oscillators}
After 1 reg step | {loss_reg:.6f} | [{metrics_reg['tau_min']:.1f}, {metrics_reg['tau_max']:.1f}] | {metrics_reg['n_long_range']}/{n_oscillators}
""")
print("=" * 70)
print("CONCLUSION:")
print(" The regularizer provides gradients that push collapsed half-lives")
print(" back toward a log-uniform distribution spanning the full context.")
print("=" * 70)
return {
"initial": {"loss": loss_init, "metrics": metrics_init},
"collapsed": {"loss": loss_collapsed, "metrics": metrics_collapsed},
"regularized": {"loss": loss_reg, "metrics": metrics_reg},
}
if __name__ == "__main__":
simulate_collapse_and_recovery()
|