[ { "loss": 0.7451, "learning_rate": 0.0002, "epoch": 0.02, "step": 1 }, { "loss": 0.7931, "learning_rate": 0.0002, "epoch": 0.04, "step": 2 }, { "loss": 0.7147, "learning_rate": 0.0002, "epoch": 0.05, "step": 3 }, { "loss": 0.6208, "learning_rate": 0.0002, "epoch": 0.07, "step": 4 }, { "loss": 0.6318, "learning_rate": 0.0002, "epoch": 0.09, "step": 5 }, { "loss": 0.5347, "learning_rate": 0.0002, "epoch": 0.11, "step": 6 }, { "loss": 0.5445, "learning_rate": 0.0002, "epoch": 0.12, "step": 7 }, { "loss": 0.5323, "learning_rate": 0.0002, "epoch": 0.14, "step": 8 }, { "loss": 0.5599, "learning_rate": 0.0002, "epoch": 0.16, "step": 9 }, { "loss": 0.544, "learning_rate": 0.0002, "epoch": 0.18, "step": 10 }, { "loss": 0.495, "learning_rate": 0.0002, "epoch": 0.19, "step": 11 }, { "loss": 0.4648, "learning_rate": 0.0002, "epoch": 0.21, "step": 12 }, { "loss": 0.5144, "learning_rate": 0.0002, "epoch": 0.23, "step": 13 }, { "loss": 0.3049, "learning_rate": 0.0002, "epoch": 0.25, "step": 14 }, { "loss": 0.2755, "learning_rate": 0.0002, "epoch": 0.26, "step": 15 }, { "loss": 0.3953, "learning_rate": 0.0002, "epoch": 0.28, "step": 16 }, { "loss": 0.293, "learning_rate": 0.0002, "epoch": 0.3, "step": 17 }, { "loss": 0.3035, "learning_rate": 0.0002, "epoch": 0.32, "step": 18 }, { "loss": 0.2193, "learning_rate": 0.0002, "epoch": 0.33, "step": 19 }, { "loss": 0.306, "learning_rate": 0.0002, "epoch": 0.35, "step": 20 }, { "loss": 0.3844, "learning_rate": 0.0002, "epoch": 0.37, "step": 21 }, { "loss": 0.4754, "learning_rate": 0.0002, "epoch": 0.39, "step": 22 }, { "loss": 0.247, "learning_rate": 0.0002, "epoch": 0.4, "step": 23 }, { "loss": 0.2831, "learning_rate": 0.0002, "epoch": 0.42, "step": 24 }, { "loss": 0.2395, "learning_rate": 0.0002, "epoch": 0.44, "step": 25 }, { "eval_code_hard_loss": 0.18990269303321838, "eval_code_hard_score": -0.06281973421573639, "eval_code_hard_brier_score": 0.06281973421573639, "eval_code_hard_average_probability": 0.8535524010658264, "eval_code_hard_accuracy": 0.91, "eval_code_hard_probabilities": [ 0.9951574206352234, 0.6952859163284302, 0.695438027381897, 1.0, 0.9999997615814209, 0.9999988079071045, 1.0, 0.9999998807907104, 0.9999998807907104, 0.9022552371025085, 0.9998458623886108, 0.9992383718490601, 1.0, 1.0, 1.0, 0.9705260396003723, 0.9934076070785522, 0.9893102645874023, 0.9892656803131104, 1.0, 1.0, 1.0, 0.9999995231628418, 0.9999997615814209, 0.999992847442627, 0.9999940395355225, 0.9999849796295166, 0.9993022680282593, 0.9998225569725037, 0.9997448325157166, 0.5516940355300903, 0.6634960770606995, 0.5038003325462341, 0.9990589022636414, 0.9990129470825195, 0.9992672801017761, 0.9999462366104126, 0.9998952150344849, 0.9999340772628784, 0.9476701021194458, 0.9273682832717896, 0.9702255725860596, 0.9999784231185913, 0.9999960660934448, 0.999988317489624, 0.6653634309768677, 0.4677712023258209, 0.5697581768035889, 0.8528237342834473, 0.8113780617713928, 0.7631744742393494, 0.4795503616333008, 0.4501705467700958, 0.45226800441741943, 0.9999998807907104, 0.9999998807907104, 1.0, 0.5940175652503967, 0.5912690162658691, 0.5215416550636292, 1.0, 1.0, 1.0, 0.5378963351249695, 0.4695456922054291, 0.8803982734680176, 0.9970523118972778, 0.9994822144508362, 0.9994255304336548, 0.7984318733215332, 0.6354186534881592, 0.8742010593414307, 0.9999979734420776, 0.9999983310699463, 0.999997615814209, 0.9906328916549683, 0.9663383364677429, 0.9692559838294983, 0.46825510263442993, 0.6134918928146362, 0.5529954433441162, 0.6660357713699341, 0.9829654097557068, 0.47695887088775635, 0.9999682903289795, 0.9999746084213257, 0.5424057841300964, 0.518418550491333, 0.4060291051864624, 0.5124395489692688, 0.9932987689971924, 0.9838415384292603, 0.975809633731842, 0.9949588179588318, 0.9947303533554077, 0.9956455230712891, 0.6032052636146545, 0.830151379108429, 0.38333284854888916, 0.7332690954208374 ], "eval_code_hard_runtime": 140.0539, "eval_code_hard_samples_per_second": 0.714, "eval_code_hard_steps_per_second": 0.029, "epoch": 0.44, "step": 25 }, { "loss": 0.217, "learning_rate": 0.0002, "epoch": 0.46, "step": 26 }, { "loss": 0.2851, "learning_rate": 0.0002, "epoch": 0.47, "step": 27 }, { "loss": 0.2988, "learning_rate": 0.0002, "epoch": 0.49, "step": 28 }, { "loss": 0.1119, "learning_rate": 0.0002, "epoch": 0.51, "step": 29 }, { "loss": 0.1369, "learning_rate": 0.0002, "epoch": 0.53, "step": 30 }, { "loss": 0.2311, "learning_rate": 0.0002, "epoch": 0.54, "step": 31 }, { "loss": 0.2201, "learning_rate": 0.0002, "epoch": 0.56, "step": 32 }, { "loss": 0.1824, "learning_rate": 0.0002, "epoch": 0.58, "step": 33 }, { "loss": 0.1181, "learning_rate": 0.0002, "epoch": 0.6, "step": 34 }, { "loss": 0.0781, "learning_rate": 0.0002, "epoch": 0.61, "step": 35 }, { "loss": 0.1475, "learning_rate": 0.0002, "epoch": 0.63, "step": 36 }, { "loss": 0.198, "learning_rate": 0.0002, "epoch": 0.65, "step": 37 }, { "loss": 0.1074, "learning_rate": 0.0002, "epoch": 0.67, "step": 38 }, { "loss": 0.3816, "learning_rate": 0.0002, "epoch": 0.68, "step": 39 }, { "loss": 0.2657, "learning_rate": 0.0002, "epoch": 0.7, "step": 40 }, { "loss": 0.1525, "learning_rate": 0.0002, "epoch": 0.72, "step": 41 }, { "loss": 0.1426, "learning_rate": 0.0002, "epoch": 0.74, "step": 42 }, { "loss": 0.1578, "learning_rate": 0.0002, "epoch": 0.75, "step": 43 }, { "loss": 0.1234, "learning_rate": 0.0002, "epoch": 0.77, "step": 44 }, { "loss": 0.1591, "learning_rate": 0.0002, "epoch": 0.79, "step": 45 }, { "loss": 0.0388, "learning_rate": 0.0002, "epoch": 0.81, "step": 46 }, { "loss": 0.1186, "learning_rate": 0.0002, "epoch": 0.82, "step": 47 }, { "loss": 0.2242, "learning_rate": 0.0002, "epoch": 0.84, "step": 48 }, { "loss": 0.2245, "learning_rate": 0.0002, "epoch": 0.86, "step": 49 }, { "loss": 0.0825, "learning_rate": 0.0002, "epoch": 0.88, "step": 50 }, { "eval_code_hard_loss": 0.1537313610315323, "eval_code_hard_score": -0.04667011648416519, "eval_code_hard_brier_score": 0.04667011648416519, "eval_code_hard_average_probability": 0.8784838318824768, "eval_code_hard_accuracy": 0.94, "eval_code_hard_probabilities": [ 0.9725497364997864, 0.7011394500732422, 0.6710378527641296, 1.0, 1.0, 1.0, 0.9999716281890869, 0.9999884366989136, 0.999969482421875, 0.48456111550331116, 0.9981953501701355, 0.9864223003387451, 1.0, 1.0, 1.0, 0.9983637928962708, 0.9989921450614929, 0.9978587031364441, 1.0, 1.0, 1.0, 0.9999933242797852, 0.9999672174453735, 0.9999806880950928, 0.9999942779541016, 0.9999948740005493, 0.9999951124191284, 0.9994611144065857, 0.9993894100189209, 0.999222993850708, 0.8560943007469177, 0.8921459317207336, 0.7734678387641907, 0.9890369772911072, 0.9659588932991028, 0.9716930985450745, 0.9913560152053833, 0.9888952970504761, 0.9655161499977112, 0.882901132106781, 0.8454601168632507, 0.8470443487167358, 0.9999980926513672, 0.9999996423721313, 0.9999994039535522, 0.6798665523529053, 0.49168092012405396, 0.5368497967720032, 0.9873051047325134, 0.9402137994766235, 0.928394615650177, 0.35502684116363525, 0.9124428629875183, 0.946331799030304, 1.0, 1.0, 1.0, 0.6016813516616821, 0.49267151951789856, 0.6437432169914246, 1.0, 1.0, 1.0, 0.4486885964870453, 0.640812337398529, 0.879755437374115, 0.9916812777519226, 0.9911965131759644, 0.9993059635162354, 0.589796245098114, 0.7118774652481079, 0.9268589019775391, 0.9999767541885376, 0.9999942779541016, 0.9999902248382568, 0.9828012585639954, 0.9357141256332397, 0.9222304224967957, 0.5056607723236084, 0.7614033818244934, 0.7656963467597961, 0.6500656008720398, 0.8527267575263977, 0.5424817800521851, 0.9999986886978149, 0.999997615814209, 0.8840383291244507, 0.5736863613128662, 0.5833655595779419, 0.69774329662323, 0.9973189234733582, 0.9964283108711243, 0.9958376884460449, 0.9838255047798157, 0.9848774671554565, 0.9828516244888306, 0.7398984432220459, 0.9901463389396667, 0.3069886267185211, 0.7398353219032288 ], "eval_code_hard_runtime": 140.0621, "eval_code_hard_samples_per_second": 0.714, "eval_code_hard_steps_per_second": 0.029, "epoch": 0.88, "step": 50 }, { "loss": 0.1986, "learning_rate": 0.0002, "epoch": 0.89, "step": 51 }, { "loss": 0.1768, "learning_rate": 0.0002, "epoch": 0.91, "step": 52 }, { "loss": 0.1257, "learning_rate": 0.0002, "epoch": 0.93, "step": 53 }, { "loss": 0.1255, "learning_rate": 0.0002, "epoch": 0.95, "step": 54 }, { "loss": 0.067, "learning_rate": 0.0002, "epoch": 0.96, "step": 55 }, { "loss": 0.2208, "learning_rate": 0.0002, "epoch": 0.98, "step": 56 }, { "loss": 0.1187, "learning_rate": 0.0002, "epoch": 1.0, "step": 57 }, { "loss": 0.159, "learning_rate": 0.0002, "epoch": 1.02, "step": 58 }, { "loss": 0.0512, "learning_rate": 0.0002, "epoch": 1.04, "step": 59 }, { "loss": 0.0608, "learning_rate": 0.0002, "epoch": 1.05, "step": 60 }, { "loss": 0.1049, "learning_rate": 0.0002, "epoch": 1.07, "step": 61 }, { "loss": 0.0634, "learning_rate": 0.0002, "epoch": 1.09, "step": 62 }, { "loss": 0.0609, "learning_rate": 0.0002, "epoch": 1.11, "step": 63 }, { "loss": 0.0888, "learning_rate": 0.0002, "epoch": 1.12, "step": 64 }, { "loss": 0.1165, "learning_rate": 0.0002, "epoch": 1.14, "step": 65 }, { "loss": 0.017, "learning_rate": 0.0002, "epoch": 1.16, "step": 66 }, { "loss": 0.0504, "learning_rate": 0.0002, "epoch": 1.18, "step": 67 }, { "loss": 0.0958, "learning_rate": 0.0002, "epoch": 1.19, "step": 68 }, { "loss": 0.0276, "learning_rate": 0.0002, "epoch": 1.21, "step": 69 }, { "loss": 0.0394, "learning_rate": 0.0002, "epoch": 1.23, "step": 70 }, { "loss": 0.0398, "learning_rate": 0.0002, "epoch": 1.25, "step": 71 }, { "loss": 0.108, "learning_rate": 0.0002, "epoch": 1.26, "step": 72 }, { "loss": 0.0392, "learning_rate": 0.0002, "epoch": 1.28, "step": 73 }, { "loss": 0.0233, "learning_rate": 0.0002, "epoch": 1.3, "step": 74 }, { "loss": 0.1554, "learning_rate": 0.0002, "epoch": 1.32, "step": 75 }, { "eval_code_hard_loss": 0.13956719636917114, "eval_code_hard_score": -0.042688366025686264, "eval_code_hard_brier_score": 0.042688366025686264, "eval_code_hard_average_probability": 0.9274539947509766, "eval_code_hard_accuracy": 0.93, "eval_code_hard_probabilities": [ 0.9999963045120239, 0.9699520468711853, 0.9745141267776489, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.35654664039611816, 0.886887788772583, 0.9559746980667114, 1.0, 1.0, 1.0, 0.9999935626983643, 0.9999960660934448, 0.9999923706054688, 0.9999997615814209, 1.0, 0.9999996423721313, 1.0, 1.0, 1.0, 1.0, 0.9999995231628418, 0.9999997615814209, 0.9998072981834412, 0.9999998807907104, 0.999997615814209, 0.9905921816825867, 0.9987447261810303, 0.9492596983909607, 1.0, 0.9999996423721313, 0.9999969005584717, 1.0, 0.9999995231628418, 0.9999992847442627, 0.9940958023071289, 0.9881225228309631, 0.9979448914527893, 1.0, 1.0, 1.0, 0.9875559210777283, 0.578984797000885, 0.643305242061615, 0.9999995231628418, 0.9999939203262329, 0.9999977350234985, 0.005097602494060993, 0.9997228980064392, 0.9975023865699768, 1.0, 1.0, 1.0, 0.3311256468296051, 0.45201003551483154, 0.7562749981880188, 1.0, 1.0, 1.0, 0.9942985773086548, 0.9975347518920898, 0.9981868863105774, 0.9999996423721313, 0.9999785423278809, 1.0, 0.46586939692497253, 0.9903834462165833, 0.9999986886978149, 1.0, 1.0, 1.0, 0.9817127585411072, 0.2876265347003937, 0.8499608635902405, 0.61001056432724, 0.996311604976654, 0.999902606010437, 0.9834624528884888, 0.9992788434028625, 0.9218541383743286, 1.0, 1.0, 0.9609642028808594, 0.7825002074241638, 0.9717795252799988, 0.9860764741897583, 0.9999998807907104, 0.9999990463256836, 0.9999997615814209, 0.9999983310699463, 0.9999971389770508, 0.9999949932098389, 0.9969584941864014, 0.9999991655349731, 0.15736030042171478, 0.9994120597839355 ], "eval_code_hard_runtime": 140.0578, "eval_code_hard_samples_per_second": 0.714, "eval_code_hard_steps_per_second": 0.029, "epoch": 1.32, "step": 75 }, { "loss": 0.0227, "learning_rate": 0.0002, "epoch": 1.33, "step": 76 }, { "loss": 0.0849, "learning_rate": 0.0002, "epoch": 1.35, "step": 77 }, { "loss": 0.1094, "learning_rate": 0.0002, "epoch": 1.37, "step": 78 }, { "loss": 0.0689, "learning_rate": 0.0002, "epoch": 1.39, "step": 79 }, { "loss": 0.0418, "learning_rate": 0.0002, "epoch": 1.4, "step": 80 }, { "loss": 0.0886, "learning_rate": 0.0002, "epoch": 1.42, "step": 81 }, { "loss": 0.1833, "learning_rate": 0.0002, "epoch": 1.44, "step": 82 }, { "loss": 0.1213, "learning_rate": 0.0002, "epoch": 1.46, "step": 83 }, { "loss": 0.0424, "learning_rate": 0.0002, "epoch": 1.47, "step": 84 }, { "loss": 0.0194, "learning_rate": 0.0002, "epoch": 1.49, "step": 85 }, { "loss": 0.0229, "learning_rate": 0.0002, "epoch": 1.51, "step": 86 }, { "loss": 0.0231, "learning_rate": 0.0002, "epoch": 1.53, "step": 87 }, { "loss": 0.0263, "learning_rate": 0.0002, "epoch": 1.54, "step": 88 }, { "loss": 0.0619, "learning_rate": 0.0002, "epoch": 1.56, "step": 89 }, { "loss": 0.0365, "learning_rate": 0.0002, "epoch": 1.58, "step": 90 }, { "loss": 0.0523, "learning_rate": 0.0002, "epoch": 1.6, "step": 91 }, { "loss": 0.0172, "learning_rate": 0.0002, "epoch": 1.61, "step": 92 }, { "loss": 0.0455, "learning_rate": 0.0002, "epoch": 1.63, "step": 93 }, { "loss": 0.2764, "learning_rate": 0.0002, "epoch": 1.65, "step": 94 }, { "loss": 0.0225, "learning_rate": 0.0002, "epoch": 1.67, "step": 95 }, { "loss": 0.0133, "learning_rate": 0.0002, "epoch": 1.68, "step": 96 }, { "loss": 0.0188, "learning_rate": 0.0002, "epoch": 1.7, "step": 97 }, { "loss": 0.0207, "learning_rate": 0.0002, "epoch": 1.72, "step": 98 }, { "loss": 0.012, "learning_rate": 0.0002, "epoch": 1.74, "step": 99 }, { "loss": 0.0628, "learning_rate": 0.0002, "epoch": 1.75, "step": 100 }, { "eval_code_hard_loss": 0.1615547239780426, "eval_code_hard_score": -0.03736421465873718, "eval_code_hard_brier_score": 0.03736421465873718, "eval_code_hard_average_probability": 0.9438884854316711, "eval_code_hard_accuracy": 0.95, "eval_code_hard_probabilities": [ 1.0, 0.9725049734115601, 0.9244245886802673, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.07730857282876968, 0.9794886112213135, 0.999785840511322, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9999511241912842, 1.0, 1.0, 0.9999926090240479, 1.0, 0.9999614953994751, 1.0, 1.0, 1.0, 1.0, 0.9999998807907104, 1.0, 0.9999260902404785, 0.9998406171798706, 0.9999992847442627, 1.0, 1.0, 1.0, 0.9999581575393677, 0.6513886451721191, 0.7881560921669006, 1.0, 1.0, 1.0, 0.00015713961329311132, 1.0, 0.9999954700469971, 1.0, 1.0, 1.0, 0.4968324303627014, 0.40699660778045654, 0.9514529705047607, 1.0, 1.0, 1.0, 1.0, 0.9999997615814209, 1.0, 1.0, 1.0, 1.0, 0.9981179237365723, 0.999592125415802, 0.9999996423721313, 1.0, 1.0, 1.0, 0.9999996423721313, 0.9520946741104126, 0.9975154399871826, 0.5100582242012024, 0.9827112555503845, 0.9999972581863403, 0.9999854564666748, 1.0, 0.9896236062049866, 1.0, 1.0, 0.8571937680244446, 0.796758770942688, 0.9510358572006226, 0.9994876384735107, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9998961687088013, 1.0, 0.10666914284229279, 1.0 ], "eval_code_hard_runtime": 140.0373, "eval_code_hard_samples_per_second": 0.714, "eval_code_hard_steps_per_second": 0.029, "epoch": 1.75, "step": 100 }, { "train_runtime": 12026.9778, "train_samples_per_second": 0.266, "train_steps_per_second": 0.008, "total_flos": 0.0, "train_loss": 0.19655362625606357, "epoch": 1.75, "step": 100 } ]