import torch import numpy as np import itertools from scipy.spatial import Delaunay from torch_scatter import scatter_mean, scatter_std from torch_geometric.utils import add_self_loops from src.transforms import Transform import src from src.data import NAG import pgeof from src.utils import print_tensor_info, isolated_nodes, edge_to_superedge, \ subedges, to_trimmed, cluster_radius_nn_graph, is_trimmed, \ base_vectors_3d, scatter_mean_orientation, POINT_FEATURES, \ SEGMENT_BASE_FEATURES, SUBEDGE_FEATURES, ON_THE_FLY_HORIZONTAL_FEATURES, \ ON_THE_FLY_VERTICAL_FEATURES, sanitize_keys __all__ = [ 'AdjacencyGraph', 'SegmentFeatures', 'DelaunayHorizontalGraph', 'RadiusHorizontalGraph', 'OnTheFlyHorizontalEdgeFeatures', 'OnTheFlyVerticalEdgeFeatures', 'NAGAddSelfLoops', 'ConnectIsolated', 'NodeSize'] class AdjacencyGraph(Transform): """Create the adjacency graph in `edge_index` and `edge_attr` based on the `Data.neighbor_index` and `Data.neighbor_distance`. NB: the produced graph is directed wrt Pytorch Geometric, but `CutPursuitPartition` happily takes it as an input. :param k: int Number of neighbors to consider for the adjacency graph. In view of calling `CutPursuitPartition`, note the higher the number of neighbors/edges per node, the longer the partition computation. Yet, if the number of neighbors is not sufficient, the :param w: float Scalar used to modulate the edge weight. If `w <= 0`, all edges will have a weight of 1. Otherwise, edges weights will follow: ```1 / (w + neighbor_distance / neighbor_distance.mean())``` """ def __init__(self, k=10, w=-1): self.k = k self.w = w def _process(self, data): assert data.has_neighbors, \ "Data must have 'neighbor_index' attribute to allow adjacency " \ "graph construction." assert getattr(data, 'neighbor_distance', None) is not None \ or self.w <= 0, \ "Data must have 'neighbor_distance' attribute to allow adjacency " \ "graph construction." assert self.k <= data.neighbor_index.shape[1] # Compute source and target indices based on neighbors source = torch.arange( data.num_nodes, device=data.device).repeat_interleave(self.k) target = data.neighbor_index[:, :self.k].flatten() # Account for -1 neighbors and delete corresponding edges mask = target >= 0 source = source[mask] target = target[mask] # Save edges and edge features in data data.edge_index = torch.stack((source, target)) if self.w > 0: # Recover the neighbor distances and apply the masking distances = data.neighbor_distance[:, :self.k].flatten()[mask] data.edge_attr = 1 / (self.w + distances / distances.mean()) else: data.edge_attr = torch.ones_like(source, dtype=torch.float) return data class SegmentFeatures(Transform): """Compute segment features for all the NAG levels except its first (i.e. the 0-level). These are handcrafted node features that will be saved in the node attributes. To make use of those at training time, remember to move them to the `x` attribute using `AddKeysTo` and `NAGAddKeysTo`. The supported feature keys are the following: - linearity - planarity - scattering - verticality - curvature - log_length - log_surface - log_volume - normal - log_size :param n_max: int Maximum number of level-0 points to sample in each cluster to when building node features :param n_min: int Minimum number of level-0 points to sample in each cluster, unless it contains fewer points :param keys: List(str), str, or None Features to be computed segment-wise and saved under ``. If None, all supported features will be computed :param mean_keys: List(str), str, or None Features to be computed from the points and the segment-wise mean aggregation will be saved under `mean_`. If None, all supported features will be computed :param std_keys: List(str), str, or None Features to be computed from the points and the segment-wise std aggregation will be saved under `std_`. If None, all supported features will be computed :param strict: bool If True, will raise an exception if an attribute from key is not within the input point Data keys """ _IN_TYPE = NAG _OUT_TYPE = NAG _NO_REPR = ['strict'] def __init__( self, n_max=32, n_min=5, keys=None, mean_keys=None, std_keys=None, strict=True): self.n_max = n_max self.n_min = n_min self.keys = sanitize_keys(keys, default=SEGMENT_BASE_FEATURES) self.mean_keys = sanitize_keys(mean_keys, default=POINT_FEATURES) self.std_keys = sanitize_keys(std_keys, default=POINT_FEATURES) self.strict = strict def _process(self, nag): for i_level in range(1, nag.num_levels): nag = _compute_cluster_features( i_level, nag, n_max=self.n_max, n_min=self.n_min, keys=self.keys, mean_keys=self.mean_keys, std_keys=self.std_keys, strict=self.strict) return nag def _compute_cluster_features( i_level, nag, n_max=32, n_min=5, keys=None, mean_keys=None, std_keys=None, strict=True): assert isinstance(nag, NAG) assert i_level > 0, "Cannot compute cluster features on level-0" assert nag[0].num_nodes < np.iinfo(np.uint32).max, \ "Too many nodes for `uint32` indices" keys = sanitize_keys(keys, default=SEGMENT_BASE_FEATURES) mean_keys = sanitize_keys(mean_keys, default=POINT_FEATURES) std_keys = sanitize_keys(std_keys, default=POINT_FEATURES) # Recover the i_level Data object we will be working on data = nag[i_level] num_nodes = data.num_nodes device = nag.device # Compute how many level-0 points each level cluster contains sub_size = nag.get_sub_size(i_level, low=0) # Sample points among the clusters. These will be used to compute # cluster geometric features idx_samples, ptr_samples = nag.get_sampling( high=i_level, low=0, n_max=n_max, n_min=n_min, return_pointers=True) # Compute cluster geometric features xyz = nag[0].pos[idx_samples].cpu().numpy() nn = np.arange(idx_samples.shape[0]).astype('uint32') nn_ptr = ptr_samples.cpu().numpy().astype('uint32') # Heuristic to avoid issues when a cluster sampling is such that # it produces singular covariance matrix (e.g. the sampling only # contains the same point repeated multiple times) xyz = xyz + torch.rand(xyz.shape).numpy() * 1e-5 # C++ geometric features computation on CPU f = pgeof.compute_features(xyz, nn, nn_ptr, 5, verbose=False) f = torch.from_numpy(f) # Recover length, surface and volume if 'linearity' in keys: data.linearity = f[:, 0].to(device).view(-1, 1) if 'planarity' in keys: data.planarity = f[:, 1].to(device).view(-1, 1) if 'scattering' in keys: data.scattering = f[:, 2].to(device).view(-1, 1) if 'verticality' in keys: data.verticality = f[:, 3].to(device).view(-1, 1) if 'curvature' in keys: data.curvature = f[:, 10].to(device).view(-1, 1) if 'log_length' in keys: data.log_length = torch.log(f[:, 7] + 1).to(device).view(-1, 1) if 'log_surface' in keys: data.log_surface = torch.log(f[:, 8] + 1).to(device).view(-1, 1) if 'log_volume' in keys: data.log_volume = torch.log(f[:, 9] + 1).to(device).view(-1, 1) # As a way to "stabilize" the normals' orientation, we choose to # express them as oriented in the z+ half-space if 'normal' in keys: data.normal = f[:, 4:7].view(-1, 3).to(device) data.normal[data.normal[:, 2] < 0] *= -1 if 'log_size' in keys: data.log_size = (torch.log(sub_size + 1).view(-1, 1) - np.log(2)) / 10 # Get the cluster index each poitn belongs to super_index = nag.get_super_index(i_level) # Add the mean of point attributes, identified by their key for key in mean_keys: f = getattr(nag[0], key, None) if f is None and strict: raise ValueError(f"No point key `{key}` to build 'mean_{key} key'") if f is None: continue if key == 'normal': data[f'mean_{key}'] = scatter_mean_orientation( nag[0][key], super_index) else: data[f'mean_{key}'] = scatter_mean(nag[0][key], super_index, dim=0) # Add the std of point attributes, identified by their key for key in std_keys: f = getattr(nag[0], key, None) if f is None and strict: raise ValueError(f"No point key `{key}` to build 'std_{key} key'") if f is None: continue data[f'std_{key}'] = scatter_std(nag[0][key], super_index, dim=0) # To debug sampling if src.is_debug_enabled(): data.super_super_index = super_index.to(device) data.node_idx_samples = idx_samples.to(device) data.node_xyz_samples = torch.from_numpy(xyz).to(device) data.node_nn_samples = torch.from_numpy(nn.astype('int64')).to(device) data.node_nn_ptr_samples = torch.from_numpy( nn_ptr.astype('int64')).to(device) end = ptr_samples[1:] start = ptr_samples[:-1] super_index_samples = torch.repeat_interleave( torch.arange(num_nodes), end - start) print('\n\n' + '*' * 50) print(f' cluster graph for level={i_level}') print('*' * 50 + '\n') print(f'nag: {nag}') print(f'data: {data}') print('\n* Sampling for superpoint features') print_tensor_info(idx_samples, name='idx_samples') print_tensor_info(ptr_samples, name='ptr_samples') print(f'all clusters have a ptr: ' f'{ptr_samples.shape[0] - 1 == num_nodes}') print(f'all clusters received n_min+ samples: ' f'{(end - start).ge(n_min).all()}') print(f'clusters which received no sample: ' f'{torch.where(end == start)[0].shape[0]}/{num_nodes}') print(f'all points belong to the correct clusters: ' f'{torch.equal(super_index[idx_samples], super_index_samples)}') # Update the i_level Data in the NAG nag._list[i_level] = data return nag class DelaunayHorizontalGraph(Transform): """Compute horizontal edges for all NAG levels except its first (i.e. the 0-level). These are the edges connecting the segments at each level, equipped with handcrafted edge features. This approach relies on the dual graph of the Delaunay triangulation of the point cloud. To reduce computation, each segment is susampled based on its size. This sampling still has downsides and the triangulation remains fairly long for large clouds, due to its O(N²) complexity. Besides, the horizontal graph induced by the triangulation is a visibility-based graph, meaning neighboring segments may not be connected if a large enough segment separates them. A faster alternative is `RadiusHorizontalGraph`. By default, a series of handcrafted edge attributes are computed and stored in the corresponding `Data.edge_attr`. However, if one only needs a subset of those at train time, one may make use of `SelectColumns` and `NAGSelectColumns`. The supported feature keys are the following: - mean_off - std_off - mean_dist :param n_max_edge: int Maximum number of level-0 points to sample in each cluster to when building edges and edge features from Delaunay triangulation and edge features :param n_min: int Minimum number of level-0 points to sample in each cluster, unless it contains fewer points :param max_dist: float or List(float) Maximum distance allowed for edges. If zero, this is ignored. Otherwise, edges whose distance is larger than max_dist. We pay particular attention here to avoid isolating nodes by distance filtering. If a node was isolated by max_dist filtering, we preserve its shortest edge to avoid it, even if it is larger than max_dist :param keys: List(str) Features to be computed. Attributes will be saved under `` """ _IN_TYPE = NAG _OUT_TYPE = NAG def __init__(self, n_max_edge=64, n_min=5, max_dist=-1, keys=None): self.n_max_edge = n_max_edge self.n_min = n_min self.max_dist = max_dist self.keys = sanitize_keys(keys, default=SUBEDGE_FEATURES) def _process(self, nag): assert isinstance(self.max_dist, (int, float, list)), \ "Expected a scalar or a List" max_dist = self.max_dist if not isinstance(max_dist, list): max_dist = [max_dist] * (nag.num_levels - 1) for i_level, md in zip(range(1, nag.num_levels), max_dist): nag = _horizontal_graph_by_delaunay( i_level, nag, n_max_edge=self.n_max_edge, n_min=self.n_min, max_dist=md, keys=self.keys) return nag def _horizontal_graph_by_delaunay( i_level, nag, n_max_edge=64, n_min=5, max_dist=-1, keys=None): assert isinstance(nag, NAG) assert i_level > 0, "Cannot compute cluster graph on level 0" assert nag[0].has_edges, \ "Level-0 must have an adjacency structure in 'edge_index' to allow " \ "guided sampling for superedges construction." assert nag[0].num_nodes < np.iinfo(np.uint32).max, \ "Too many nodes for `uint32` indices" assert nag[0].num_edges < np.iinfo(np.uint32).max, \ "Too many edges for `uint32` indices" keys = sanitize_keys(keys, default=SUBEDGE_FEATURES) # Recover the i_level Data object we will be working on data = nag[i_level] num_nodes = data.num_nodes device = nag.device # Exit in case the i_level graph contains only one node if num_nodes < 2: data.edge_index = None data.edge_attr = None nag._list[i_level] = data return nag # To guide the sampling for superedges, we want to sample among # points whose neighbors in the level-0 adjacency graph belong to # a different cluster in the i_level graph. To this end, we first # need to tell whose i_level cluster each level-0 point belongs to. # This step requires having access to the whole NAG, since we need # to convert level-0 point indices into their corresponding level-i # superpoint indices super_index = nag.get_super_index(i_level) # Once we know the i_level cluster each level-0 point belongs to, # we can search for level-0 edges between i_level clusters. These # in turn tell us which level-0 points to sample from edges_point_adj = super_index[nag[0].edge_index] inter_cluster = torch.where(edges_point_adj[0] != edges_point_adj[1])[0] edges_point_adj_inter = edges_point_adj[:, inter_cluster] idx_edge_point = nag[0].edge_index[:, inter_cluster].unique() # Some nodes may be isolated and not be connected to the other nodes # in the level-0 adjacency graph. For that reason, we need to look # for such isolated nodes and sample point inside them, since the # above approach will otherwise ignore them # TODO: This approach has 2 downsides: it samples points anywhere in # the isolated cluster and does not drive the other clusters # sampling around the isolated clusters. This means that edges may # not be the true visibility-based, simplest edges of the isolated # clusters. Could be solved by dense sampling inside the clusters # with points near the isolated clusters, but requires a bit of # effort... is_isolated = isolated_nodes(edges_point_adj_inter, num_nodes=num_nodes) is_isolated_point = is_isolated[super_index] # Combine the point indices into a point mask mask = is_isolated_point mask[idx_edge_point] = True mask = torch.where(mask)[0] # Sample points among the clusters. These will be used to compute # cluster adjacency graph and edge features. Note we sample more # generously here than for cluster features, because we need to # capture fine-grained adjacency idx_samples, ptr_samples = nag.get_sampling( high=i_level, low=0, n_max=n_max_edge, n_min=n_min, mask=mask, return_pointers=True) # To debug sampling if src.is_debug_enabled(): data.edge_idx_samples = idx_samples end = ptr_samples[1:] start = ptr_samples[:-1] super_index_samples = torch.arange( num_nodes, device=device).repeat_interleave(end - start) print('\n* Sampling for superedge features') print_tensor_info(idx_samples, name='idx_samples') print_tensor_info(ptr_samples, name='ptr_samples') print(f'all clusters have a ptr: ' f'{ptr_samples.shape[0] - 1 == num_nodes}') print(f'all clusters received n_min+ samples: ' f'{(end - start).ge(n_min).all()}') print(f'clusters which received no sample: ' f'{torch.where(end == start)[0].shape[0]}/{num_nodes}') print(f'all points belong to the correct clusters: ' f'{torch.equal(super_index[idx_samples], super_index_samples)}') # Delaunay triangulation on the sampled points. The tetrahedra edges # are voronoi graph edges. This is the bottleneck of this function, # may be worth investigating alternatives if speedups are needed pos = nag[0].pos[idx_samples] tri = Delaunay(pos.cpu().numpy()) # Concatenate all edges of the triangulation pairs = torch.tensor( list(itertools.combinations(range(4), 2)), device=device, dtype=torch.long) edges_point = torch.from_numpy(np.hstack([ np.vstack((tri.simplices[:, i], tri.simplices[:, j])) for i, j in pairs])).long().to(device) edges_point = idx_samples[edges_point] # Remove duplicate edges. For now, (i,j) and (j,i) are considered # to be duplicates. We remove duplicate point-wise graph edges at # this point to mitigate memory use. The symmetric edges and edge # features will be created at the very end edges_point = to_trimmed(edges_point) # Now we are only interested in the edges connecting two different # clusters and not in the intra-cluster connections. Select only # inter-cluster edges and compute the corresponding source and # target point and cluster indices se, se_id, edges_point, _ = edge_to_superedge(edges_point, super_index) # Remove edges whose distance is too large. We pay articular # attention here to avoid isolating nodes by distance filtering. If # a node was isolated by max_dist filtering, we preserve its # shortest edge to avoid it, even if it is larger than max_dist if max_dist > 0: # Identify the edges that are too long dist = (nag[0].pos[edges_point[1]] - nag[0].pos[edges_point[0]]).norm(dim=1) too_far = dist > max_dist # Recover the corresponding cluster indices for each edge edges_super = super_index[edges_point] # Identify the clusters which would be isolated if all edges # beyond max_dist were removed potential_isolated = isolated_nodes( edges_super[:, ~too_far], num_nodes=num_nodes) # For those clusters, we will tolerate 1 edge larger than # max_dist and that connects to another cluster source_isolated = potential_isolated[edges_super[0]] target_isolated = potential_isolated[edges_super[1]] tricky_edge = too_far & (source_isolated | target_isolated) \ & (edges_super[0] != edges_super[1]) # Sort tricky edges by distance in descending order and sort the # edge indices and cluster indices consequently. By populating a # 'shortest edge index' tensor for the clusters using the sorted # edge indices, we can ensure the last edge is the shortest. order = dist[tricky_edge].sort(descending=True).indices idx = edges_super[:, tricky_edge][:, order] val = torch.where(tricky_edge)[0][order] cluster_shortest_edge = -torch.ones( num_nodes, dtype=torch.long, device=device) cluster_shortest_edge[idx[0]] = val cluster_shortest_edge[idx[1]] = val idx_edge_to_keep = cluster_shortest_edge[potential_isolated] # Update the too-far mask so as to preserve at least one edge # for each cluster too_far[idx_edge_to_keep] = False edges_point = edges_point[:, ~too_far] # Since this filtering might have affected edges_point, we # recompute the super edges indices and ids se, se_id, edges_point, _ = edge_to_superedge(edges_point, super_index) del dist # Prepare data attributes before computing edge features data.edge_index = se data.is_artificial = is_isolated # Edge feature computation. NB: operates on trimmed graphs only. # Features for all undirected edges can be computed later using # `_on_the_fly_horizontal_edge_features()` data = _minimalistic_horizontal_edge_features( data, nag[0].pos, edges_point, se_id, keys=keys) # Restore the i_level Data object, if need be nag._list[i_level] = data return nag class RadiusHorizontalGraph(Transform): """Compute horizontal edges for all NAG levels except its first (i.e. the 0-level). These are the edges connecting the segments at each level, equipped with handcrafted edge features. This approach relies on a fast heuristics to search neighboring segments as well as to identify level-0 points making up the 'subedges' between the segments. By default, a series of handcrafted edge attributes are computed and stored in the corresponding `Data.edge_attr`. The supported feature keys are the following: - mean_off - std_off - mean_dist :param k_max: int, List(int) Maximum number of neighbors per segment :param gap: float, List(float) Two segments A and B are considered neighbors if there is a in A and b in B such that dist(a, b) < gap :param se_ratio: float Maximum ratio of a segment's points than can be used in a superedge's subedges :param se_min: int Minimum of subedges per superedge :param cycles: int Number of iterations for nearest neighbor search between segments :param margin: float Tolerance margin used for selecting subedges points and excluding segment points from potential subedge candidates :param chunk_size: int, float Allows mitigating memory use. If `chunk_size > 1`, `edge_index` will be processed into chunks of `chunk_size`. If `0 < chunk_size < 1`, then `edge_index` will be divided into parts of `edge_index.shape[1] * chunk_size` or less :param halfspace_filter: bool Whether the halfspace filtering should be applied :param bbox_filter: bool Whether the bounding box filtering should be applied :param target_pc_flip: bool Whether the subedge point pairs should be carefully ordered :param source_pc_sort: bool Whether the source and target subedge point pairs should be ordered along the same vector :param keys: List(str) Features to be computed. Attributes will be saved under `` """ _IN_TYPE = NAG _OUT_TYPE = NAG _NO_REPR = ['chunk_size'] def __init__( self, k_min=1, k_max=100, gap=0, se_ratio=0.2, se_min=20, cycles=3, margin=0.2, chunk_size=100000, halfspace_filter=True, bbox_filter=True, target_pc_flip=True, source_pc_sort=False, keys=None): if isinstance(k_min, list): assert all([k > 0 for k in k_min]), \ "k_min must be 1 or more, to avoid any unpleasant downstream " \ "issues where nodes have no edge" else: assert k_min > 0, \ "k_min must be 1 or more, to avoid any unpleasant downstream " \ "issues where nodes have no edge" self.k_max = k_max self.k_min = k_min self.gap = gap self.se_ratio = se_ratio self.se_min = se_min self.cycles = cycles self.margin = margin self.chunk_size = chunk_size self.halfspace_filter = halfspace_filter self.bbox_filter = bbox_filter self.target_pc_flip = target_pc_flip self.source_pc_sort = source_pc_sort self.keys = sanitize_keys(keys, default=SUBEDGE_FEATURES) def _process(self, nag): # Convert parameters to list for each NAG level, if need be se_ratio = self.se_ratio if isinstance(self.se_ratio, list) \ else [self.se_ratio] * (nag.num_levels - 1) se_min = self.se_min if isinstance(self.se_min, list) \ else [self.se_min] * (nag.num_levels - 1) cycles = self.cycles if isinstance(self.cycles, list) \ else [self.cycles] * (nag.num_levels - 1) margin = self.margin if isinstance(self.margin, list) \ else [self.margin] * (nag.num_levels - 1) chunk_size = self.chunk_size if isinstance(self.chunk_size, list) \ else [self.chunk_size] * (nag.num_levels - 1) # Compute the horizontal graph, without edge features nag = _horizontal_graph_by_radius( nag, k_min=self.k_min, k_max=self.k_max, gap=self.gap, trim=True, cycles=cycles, chunk_size=chunk_size) # Compute the edge features, level by level for i_level, ser, sem, cy, mg, cs in zip( range(1, nag.num_levels), se_ratio, se_min, cycles, margin, chunk_size): nag = self._process_edge_features_for_single_level( nag, i_level, ser, sem, cy, mg, cs) return nag def _process_edge_features_for_single_level( self, nag, i_level, se_ratio, se_min, cycles, margin, chunk_size): # Compute 'subedges', i.e. edges between level-0 points making up # the edges between the segments. These will be used for edge # features computation. NB: this operation simplifies the # edge_index graph into a trimmed graph. To restore # the bidirectional edges, we will need to reconstruct the j 1`, `edge_index` will be processed into chunks of `chunk_size`. If `0 < chunk_size < 1`, then `edge_index` will be divided into parts of `edge_index.shape[1] * chunk_size` or less :return: """ assert isinstance(nag, NAG) if not isinstance(k_max, list): k_max = [k_max] * (nag.num_levels - 1) if not isinstance(k_min, list): k_min = [k_min] * (nag.num_levels - 1) if not isinstance(gap, list): gap = [gap] * (nag.num_levels - 1) if not isinstance(cycles, list): cycles = [cycles] * (nag.num_levels - 1) if not isinstance(chunk_size, list): chunk_size = [chunk_size] * (nag.num_levels - 1) for i_level, k_lo, k_hi, g, cy, cs in zip( range(1, nag.num_levels), k_min, k_max, gap, cycles, chunk_size): nag = _horizontal_graph_by_radius_for_single_level( nag, i_level, k_min=k_lo, k_max=k_hi, gap=g, trim=trim, cycles=cy, chunk_size=cs) return nag def _horizontal_graph_by_radius_for_single_level( nag, i_level, k_min=1, k_max=100, gap=0, trim=True, cycles=3, chunk_size=100000): """ :param nag: :param i_level: :param k_min: :param k_max: :param gap: :param trim: :param cycles: :param chunk_size: :return: """ assert isinstance(nag, NAG) assert i_level > 0, "Cannot compute cluster graph on level 0" assert nag[0].num_nodes < np.iinfo(np.uint32).max, \ "Too many nodes for `uint32` indices" assert nag[0].num_edges < np.iinfo(np.uint32).max, \ "Too many edges for `uint32` indices" # Recover the i_level Data object we will be working on data = nag[i_level] num_nodes = data.num_nodes # Remove any already-existing horizontal graph data.edge_index = None data.edge_attr = None # Exit in case the i_level graph contains only one node if num_nodes < 2: raise ValueError( f"Input NAG only has 1 node at level={i_level}. Cannot compute " f"radius-based horizontal graph.") # Compute the super_index for level-0 points wrt the target level super_index = nag.get_super_index(i_level) # Search neighboring clusters data.raise_if_edge_keys() edge_index, distances = cluster_radius_nn_graph( nag[0].pos, super_index, k_max=k_max, gap=gap, batch=nag[i_level].batch, trim=trim, cycles=cycles, chunk_size=chunk_size) # Save the graph in the Data object data.edge_index = edge_index data.edge_attr = None # Search for nodes which received no edges and connect them to their # k_min nearest neighbor data.connect_isolated(k=k_min) # Trim the graph. This is temporary, to alleviate edge features # computation if trim: data.to_trimmed(reduce='min') # Store the updated Data object in the NAG nag._list[i_level] = data return nag def _minimalistic_horizontal_edge_features( data, points, se_point_index, se_id, keys=None): """Compute the features for horizontal edges, given the edge graph and the level-0 'subedges' making up each edge. The features computed here are partly based on: https://github.com/loicland/superpoint_graph :param data: :param points: :param se_point_index: :param se_id: :param keys: """ # TODO: other superedge ideas to better describe how 2 clusters # relate and the geometry of their border (S=source, T=target): # - matrix that transforms unary_vector_source into # unary_vector_target ? Should express, differences in pose, size # and shape as it requires rotation, translation and scaling. Poses # questions regarding the canonical base, PCA orientation ±π # - current SE direction is not the axis/plane of the edge but # rather its normal... build it with PCA and for points sampled in # each side ? careful with single-point edges... # - avg distance S/T points in border to centroid S/T (how far # is the border from the cluster center) # - angle of mean S->T direction wrt S/T principal components (is # the border along the long of short side of objects ?) # - PCA of points in S/T cloud (is it linear border or surfacic # border ?) # - mean dist of S->T along S/T normal (offset along the objects # normals, e.g. offsets between steps) keys = sanitize_keys(keys, default=SUBEDGE_FEATURES) # Recover the edges between the segments se = data.edge_index assert is_trimmed(se), \ "Expects the graph to be trimmed, consider using " \ "`src.utils.to_trimmed()` before computing the features" if not all(['mean_off' in keys, 'std_off' in keys, 'mean_dist' in keys]): raise NotImplementedError( "For now, 'mean_off', 'std_off' and 'mean_dist' must all be " "computed, since we must store them all into 'edge_attr'. Things" "will be different once we support custom 'edge_' everywhere," "but not for now.") # Direction are the pointwise source->target vectors, based on which # we will compute superedge descriptors offset = points[se_point_index[1]] - points[se_point_index[0]] # To stabilize the distance-based features' distribution, we use the # sqrt of the metric distance. This assumes coordinates are in meter # and that we are mostly interested in the range [1, 100]. Might # want to change this if your dataset is different dist = offset.norm(dim=1) # Compute mean subedge direction se_mean_off = scatter_mean(offset, se_id, dim=0) # Compute std of the offset, in a base built around the mean offset base = base_vectors_3d(se_mean_off)[se_id] u = (offset * base[:, 0]).sum(dim=1).view(-1, 1) v = (offset * base[:, 1]).sum(dim=1).view(-1, 1) w = (offset * base[:, 2]).sum(dim=1).view(-1, 1) se_std_off = scatter_std(torch.cat((u, v, w), dim=1), se_id, dim=0) se_std_off = se_std_off.clip(-2, 2) # Compute mean subedge distance se_mean_dist = scatter_mean(dist, se_id, dim=0).sqrt() # Save superedges and superedge features in the Data object f = [] if 'mean_off' in keys: f.append(se_mean_off) if 'std_off' in keys: f.append(se_std_off) if 'mean_dist' in keys: f.append(se_mean_dist.view(-1, 1)) data.edge_index = se data.edge_attr = torch.cat(f, dim=1) return data class OnTheFlyHorizontalEdgeFeatures(Transform): """Compute edge features "on-the-fly" for all i->j and j->i horizontal edges of the NAG levels except its first (i.e. the 0-level). Expects only trimmed edges as input, along with some edge-specific attributes that cannot be recovered from the corresponding source and target node attributes (see `src.utils.to_trimmed`). Accepts input edge_attr to be float16, to alleviate memory use and accelerate data loading and transforms. Output edge_ will, however, be in float32. Optionally adds some edge features that can be recovered from the source and target node attributes. Builds the j->i edges and corresponding features based on their i->j counterparts in the trimmed graph. Equips the output NAG with all i->j and j->i nodes and corresponding features. Note: this transform is intended to be called after all sampling transforms, to mitigate compute and memory impact of horizontal edges. The supported feature keys are the following: - mean_off: mean offset (subedges) - std_off: std offset (subedges) - mean_dist: mean offset (subedges) distance - angle_source: cosine of the angle between the mean offset (subedges) and the source normal - angle_target: cosine of the angle between the mean offset (subedges) and the target normal - centroid_dir: unit-normalized direction between the i and j centroids - centroid_dist: distance between the i and j centroids - normal_angle: cosine of the angle between the i and j normals - log_length: i/j log length ratio - log_surface: i/j log surface ratio - log_volume: i/j log volume ratio - log_size: i/j log size ratio :param keys: List(str) Features to be computed. Attributes will be saved under `` :param use_mean_normal: bool Whether the 'normal' or the 'mean_normal' segment attribute should be used for computing normal-related edge features """ _IN_TYPE = NAG _OUT_TYPE = NAG def __init__( self, keys=None, use_mean_normal=False): self.keys = sanitize_keys(keys, default=ON_THE_FLY_HORIZONTAL_FEATURES) self.use_mean_normal = use_mean_normal def _process(self, nag): for i_level in range(1, nag.num_levels): nag._list[i_level] = _on_the_fly_horizontal_edge_features( nag[i_level], keys=self.keys, use_mean_normal=self.use_mean_normal) return nag def _on_the_fly_horizontal_edge_features( data, keys=None, use_mean_normal=False): """Compute all edges and edge features for a horizontal graph, given a trimmed graph and some precomputed edge attributes. """ keys = sanitize_keys(keys, default=ON_THE_FLY_HORIZONTAL_FEATURES) # Recover the edges between the segments se = data.edge_index data.raise_if_edge_keys() normal_key = 'mean_normal' if use_mean_normal else 'normal' assert is_trimmed(se), \ "Expects the graph to be trimmed, consider using " \ "`src.utils.to_trimmed()` before computing the features" if 'mean_off' in keys: assert getattr(data, 'edge_attr', None) is not None, \ "Expected input Data to have a 'edge_attr' attribute precomputed " \ "using `_minimalistic_horizontal_edge_features`" if 'std_off' in keys: assert getattr(data, 'edge_attr', None) is not None, \ "Expected input Data to have a 'edge_attr' attribute precomputed " \ "using `_minimalistic_horizontal_edge_features`" if 'mean_dist' in keys: assert getattr(data, 'edge_attr', None) is not None, \ "Expected input Data to have a 'edge_attr' attribute precomputed " \ "using `_minimalistic_horizontal_edge_features`" if 'angle_source' in keys or 'angle_target' in keys: assert getattr(data, normal_key, None) is not None and \ getattr(data, 'edge_attr', None) is not None, \ f"Expected input Data to have a '{normal_key}' " \ "attribute and an 'edge_attr' attribute precomputed using " \ "`_minimalistic_horizontal_edge_features`" if 'normal_angle' in keys: assert getattr(data, normal_key, None) is not None, \ f"Expected input Data to have a '{normal_key}'" if 'log_length' in keys: assert getattr(data, 'log_length', None) is not None, \ "Expected input Data to have a 'log_length' attribute" if 'log_surface' in keys: assert getattr(data, 'log_surface', None) is not None, \ "Expected input Data to have a 'log_surface' attribute" if 'log_volume' in keys: assert getattr(data, 'log_volume', None) is not None, \ "Expected input Data to have a 'log_volume' attribute" if 'log_size' in keys: assert getattr(data, 'log_size', None) is not None, \ "Expected input Data to have a 'log_size' attribute" f_list = [] if 'std_off' in keys: # Precomputed edge features might be expressed in float16, so we # convert them to float32 here f = data.edge_attr[:, 3:6].float() f_list.append(torch.cat((f, f), dim=0)) if 'mean_dist' in keys: # Precomputed edge features might be expressed in float16, so we # convert them to float32 here f = data.edge_attr[:, 6].float().view(-1, 1) f_list.append(torch.cat((f, f), dim=0)) if 'mean_off' in keys or 'angle_source' in keys or 'angle_target' in keys: # Precomputed edge features might be expressed in float16, so we # convert them to float32 here se_mean_off = data.edge_attr[:, :3].float() # Compute the mean subedge (normalized) direction se_direction = se_mean_off / se_mean_off.norm(dim=1).view(-1, 1) # Sanity checks on normalized directions se_direction[se_direction.isnan()] = 0 se_direction = se_direction.clip(-1, 1) if 'mean_off' in keys: # We place mean_off in the first 3 edge_attr columns, for # homogeneity with input edge_attr from # _minimalistic_horizontal_edge_features f_list = [torch.cat((se_mean_off, -se_mean_off), dim=0)] + f_list if 'angle_source' in keys: normal = getattr(data, normal_key, None) f = (se_direction * normal[se[0]]).sum(dim=1).abs() f_list.append(torch.cat((f, f), dim=0).view(-1, 1)) if 'angle_target' in keys: normal = getattr(data, normal_key, None) f = (se_direction * normal[se[1]]).sum(dim=1).abs() f_list.append(torch.cat((f, f), dim=0).view(-1, 1)) if 'normal_angle' in keys: normal = getattr(data, normal_key, None) f = (normal[se[0]] * normal[se[1]]).sum(dim=1).abs() f_list.append(torch.cat((f, f), dim=0).view(-1, 1)) if 'log_length' in keys: f = data.log_length[se[0]] - data.log_length[se[1]] f_list.append(torch.cat((f, -f), dim=0).view(-1, 1)) if 'log_surface' in keys: f = data.log_surface[se[0]] - data.log_surface[se[1]] f_list.append(torch.cat((f, -f), dim=0).view(-1, 1)) if 'log_volume' in keys: f = data.log_volume[se[0]] - data.log_volume[se[1]] f_list.append(torch.cat((f, -f), dim=0).view(-1, 1)) if 'log_size' in keys: f = data.log_size[se[0]] - data.log_size[se[1]] f_list.append(torch.cat((f, -f), dim=0).view(-1, 1)) if 'centroid_dir' in keys or 'centroid_dist' in keys: # Compute the distance and direction between the segments' # centroids se_centroid_dir = data.pos[se[1]] - data.pos[se[0]] se_centroid_dist = se_centroid_dir.norm(dim=1).view(-1, 1) se_centroid_dir /= se_centroid_dist.view(-1, 1) se_centroid_dist = se_centroid_dist.sqrt() # Sanity checks on normalized directions se_centroid_dir[se_centroid_dir.isnan()] = 0 se_centroid_dir = se_centroid_dir.clip(-1, 1) if 'centroid_dir' in keys: f_list.append(torch.cat((se_centroid_dir, -se_centroid_dir), dim=0)) if 'centroid_dist' in keys: f_list.append(torch.cat((se_centroid_dist, se_centroid_dist), dim=0)) # Update the edge_index with j->i edges data.edge_index = torch.cat((se, se.flip(0)), dim=1) # Update all edge features into edge_attr and remove all other # edge_ to save memory for k in ['edge_attr'] + data.edge_keys: data[k] = None if len(f_list) > 0: data.edge_attr = torch.cat(f_list, dim=1) return data class OnTheFlyVerticalEdgeFeatures(Transform): """Compute edge features "on-the-fly" for all vertical edges of the NAG levels. Optionally build some edge features that can be recovered from the source and target node attributes. Note: this transform is intended to be called after all sampling transforms, to mitigate compute and memory impact of vertical edges. The supported feature keys are the following: - centroid_dir: unit-normalized direction between the child centroid and the parent centroid - centroid_dist: distance between the child and parent centroids - normal_angle: cosine of the angle between the child and parent normals - log_length: parent/child log length ratio - log_surface: parent/child log surface ratio - log_volume: parent/child log volume ratio - log_size: parent/child log size ratio :param keys: List(str) Features to be computed. Attributes will be saved under `` :param use_mean_normal: bool Whether the 'normal' or the 'mean_normal' segment attribute should be used for computing normal-related edge features """ _IN_TYPE = NAG _OUT_TYPE = NAG def __init__(self, keys=None, use_mean_normal=False): self.keys = sanitize_keys(keys, default=ON_THE_FLY_VERTICAL_FEATURES) self.use_mean_normal = use_mean_normal def _process(self, nag): for i_level in range(1, nag.num_levels): data_child = nag[i_level - 1] data_parent = nag[i_level] # For level-0 points, we artificially set 'mean_normal' from # 'normal', if need be if self.use_mean_normal and i_level == 1: if getattr(data_child, 'mean_normal', None): data_child.mean_normal = getattr(data_child, 'normal', None) nag._list[i_level - 1] = _on_the_fly_vertical_edge_features( data_child, data_parent, keys=self.keys, use_mean_normal=self.use_mean_normal) return nag def _on_the_fly_vertical_edge_features( data_child, data_parent, keys=None, use_mean_normal=False): """Compute edge features for a vertical graph, given child and parent nodes. """ keys = sanitize_keys(keys, default=ON_THE_FLY_VERTICAL_FEATURES) if len(keys) == 0: return data_child normal_key = 'mean_normal' if use_mean_normal else 'normal' # Recover the parent index of each child node idx = data_child.super_index assert idx is not None, \ "Expected input child Data to have a 'super_index' attribute" for d in [data_child, data_parent]: if 'normal_angle' in keys: assert getattr(d, normal_key, None) is not None, \ f"Expected input Data to have a '{normal_key}' attribute" if 'log_length' in keys: assert getattr(d, 'log_length', None) is not None, \ "Expected input Data to have a 'log_length' attribute" if 'log_surface' in keys: assert getattr(d, 'log_surface', None) is not None, \ "Expected input Data to have a 'log_surface' attribute" if 'log_volume' in keys: assert getattr(d, 'log_volume', None) is not None, \ "Expected input Data to have a 'log_volume' attribute" if 'log_size' in keys: assert getattr(d, 'log_size', None) is not None, \ "Expected input Data to have a 'log_size' attribute" f_list = [] if 'centroid_dir' in keys or 'centroid_dist' in keys: # Compute the distance and direction between the child and # parent segments' centroids ve_centroid_dir = data_parent.pos[idx] - data_child.pos ve_centroid_dist = ve_centroid_dir.norm(dim=1) ve_centroid_dir /= ve_centroid_dist.view(-1, 1) ve_centroid_dist = ve_centroid_dist.sqrt() # Sanity checks on normalized directions ve_centroid_dir[ve_centroid_dir.isnan()] = 0 ve_centroid_dir = ve_centroid_dir.clip(-1, 1) if 'centroid_dir' in keys: f_list.append(ve_centroid_dir) if 'centroid_dist' in keys: f_list.append(ve_centroid_dist.view(-1, 1)) if 'normal_angle' in keys: child_normal = getattr(data_child, normal_key, None) parent_normal = getattr(data_parent, normal_key, None) f = (child_normal * parent_normal[idx]).sum(dim=1).abs() f_list.append(f.view(-1, 1)) if 'log_length' in keys: f = data_parent.log_length[idx] - data_child.log_length f_list.append(f.view(-1, 1)) if 'log_surface' in keys: f = data_parent.log_surface[idx] - data_child.log_surface f_list.append(f.view(-1, 1)) if 'log_volume' in keys: f = data_parent.log_volume[idx] - data_child.log_volume f_list.append(f.view(-1, 1)) if 'log_size' in keys: f = data_parent.log_size[idx] - data_child.log_size f_list.append(f.view(-1, 1)) # Stack all the vertical edge features into the child 'v_edge_attr' data_child.v_edge_attr = None if len(f_list) > 0: data_child.v_edge_attr = torch.cat(f_list, dim=1) return data_child class NAGAddSelfLoops(Transform): """Add self-loops to all NAG levels having a horizontal graph. If the edges have attributes, the self-loops will receive 0-features. """ _IN_TYPE = NAG _OUT_TYPE = NAG def _process(self, nag): for i_level in range(1, nag.num_levels): # Skip if the level has no horizontal graph if not nag[i_level].has_edges: continue # Recover edges and attributes num_nodes = nag[i_level].num_nodes edge_index = nag[i_level].edge_index edge_attr = nag[i_level].edge_attr nag[i_level].raise_if_edge_keys() # Add self-loops edge_index, edge_attr = add_self_loops( edge_index, edge_attr=edge_attr, num_nodes=num_nodes, fill_value=0) # Update the edges and attributes nag[i_level].edge_index = edge_index nag[i_level].edge_attr = edge_attr return nag class ConnectIsolated(Transform): """Creates edges for isolated nodes. Each isolated node is connected to the `k` nearest nodes. If the Data graph contains edge features in `Data.edge_attr`, the new edges will receive features based on their length and a linear regression of the relation between existing edge features and their corresponding edge length. NB: this is an inplace operation that will modify the input data. :param k: int Number of neighbors the isolated nodes should be connected to """ def __init__(self, k=1): self.k = k def _process(self, data): return data.connect_isolated(k=self.k) class NodeSize(Transform): """Compute the number of `low`-level elements are contained in each segment, at each above-level. Results are save in the `node_size` attribute of the corresponding Data objects. Note: `low=-1` is accepted when level-0 has a `sub` attribute (i.e. level-0 points are themselves segments of `-1` level absent from the NAG object). :param low: int Level whose elements we want to count """ _IN_TYPE = NAG _OUT_TYPE = NAG def __init__(self, low=0): assert isinstance(low, int) and low >= -1 self.low = low def _process(self, nag): for i_level in range(self.low + 1, nag.num_levels): nag[i_level].node_size = nag.get_sub_size(i_level, low=self.low) return nag