File size: 37,281 Bytes
1f5470c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
"""Commonly used math operations not included in NumPy."""

from keras.src import backend
from keras.src.api_export import keras_export
from keras.src.backend import KerasTensor
from keras.src.backend import any_symbolic_tensors
from keras.src.ops.operation import Operation
from keras.src.ops.operation_utils import reduce_shape


def _segment_reduce_validation(data, segment_ids):
    data_shape = data.shape
    segment_ids_shape = segment_ids.shape
    if len(segment_ids_shape) > 1:
        raise ValueError(
            "Argument `segment_ids` should be an 1-D vector, got shape: "
            f"{len(segment_ids_shape)}. Consider either flatten input with "
            "segment_ids.reshape((-1)) and "
            "data.reshape((-1, ) + data.shape[len(segment_ids.shape):]) or "
            "vectorize with vmap."
        )
    if (
        segment_ids_shape[0] is not None
        and data_shape[0] is not None
        and segment_ids_shape[0] != data_shape[0]
    ):
        raise ValueError(
            "Argument `segment_ids` and `data` should have same leading "
            f"dimension. Got {segment_ids_shape} v.s. "
            f"{data_shape}."
        )


class SegmentReduction(Operation):
    def __init__(self, num_segments=None, sorted=False):
        super().__init__()
        self.num_segments = num_segments
        self.sorted = sorted

    def compute_output_spec(self, data, _):
        output_shape = (self.num_segments,) + tuple(data.shape[1:])
        return KerasTensor(shape=output_shape, dtype=data.dtype)


class SegmentSum(SegmentReduction):
    def call(self, data, segment_ids):
        _segment_reduce_validation(data, segment_ids)
        return backend.math.segment_sum(
            data,
            segment_ids,
            num_segments=self.num_segments,
            sorted=self.sorted,
        )


@keras_export("keras.ops.segment_sum")
def segment_sum(data, segment_ids, num_segments=None, sorted=False):
    """Computes the sum of segments in a tensor.

    Args:
        data: Input tensor.
        segment_ids: A N-D tensor containing segment indices for each
            element in `data`. Num dims for segment ids should be strictly
            smaller or equal to number of dims in data.
        num_segments: An integer representing the total number of
            segments. If not specified, it is inferred from the maximum
            value in `segment_ids`.
        sorted: A boolean indicating whether `segment_ids` is sorted.
            Defaults to `False`.

    Returns:
        A tensor containing the sum of segments, where each element
        represents the sum of the corresponding segment in `data`.

    Example:

    >>> data = keras.ops.convert_to_tensor([1, 2, 10, 20, 100, 200])
    >>> segment_ids = keras.ops.convert_to_tensor([0, 0, 1, 1, 2, 2])
    >>> num_segments = 3
    >>> keras.ops.segment_sum(data, segment_ids,num_segments)
    array([3, 30, 300], dtype=int32)
    """
    _segment_reduce_validation(data, segment_ids)
    if any_symbolic_tensors((data,)):
        return SegmentSum(num_segments, sorted).symbolic_call(data, segment_ids)
    return backend.math.segment_sum(
        data, segment_ids, num_segments=num_segments, sorted=sorted
    )


class SegmentMax(SegmentReduction):
    def call(self, data, segment_ids):
        _segment_reduce_validation(data, segment_ids)
        return backend.math.segment_max(
            data,
            segment_ids,
            num_segments=self.num_segments,
            sorted=self.sorted,
        )


@keras_export("keras.ops.segment_max")
def segment_max(data, segment_ids, num_segments=None, sorted=False):
    """Computes the max of segments in a tensor.

    Args:
        data: Input tensor.
        segment_ids: A N-D tensor containing segment indices for each
            element in `data`. data.shape[:len(segment_ids.shape)] should match.
        num_segments: An integer representing the total number of
            segments. If not specified, it is inferred from the maximum
            value in `segment_ids`.
        sorted: A boolean indicating whether `segment_ids` is sorted.
            Defaults to `False`.

    Returns:
        A tensor containing the max of segments, where each element
        represents the max of the corresponding segment in `data`.

    Example:

    >>> data = keras.ops.convert_to_tensor([1, 2, 10, 20, 100, 200])
    >>> segment_ids = keras.ops.convert_to_tensor([0, 0, 1, 1, 2, 2])
    >>> num_segments = 3
    >>> keras.ops.segment_max(data, segment_ids, num_segments)
    array([2, 20, 200], dtype=int32)
    """
    _segment_reduce_validation(data, segment_ids)
    if any_symbolic_tensors((data,)):
        return SegmentMax(num_segments, sorted).symbolic_call(data, segment_ids)
    return backend.math.segment_max(
        data, segment_ids, num_segments=num_segments, sorted=sorted
    )


class TopK(Operation):
    def __init__(self, k, sorted=False):
        super().__init__()
        self.k = k
        self.sorted = sorted

    def compute_output_spec(self, x):
        output_shape = list(x.shape)
        output_shape[-1] = self.k
        # Return a tuple (values, indices).
        return (
            KerasTensor(shape=output_shape, dtype=x.dtype),
            KerasTensor(shape=output_shape, dtype="int32"),
        )

    def call(self, x):
        return backend.math.top_k(x, self.k, self.sorted)


@keras_export("keras.ops.top_k")
def top_k(x, k, sorted=True):
    """Finds the top-k values and their indices in a tensor.

    Args:
        x: Input tensor.
        k: An integer representing the number of top elements to retrieve.
        sorted: A boolean indicating whether to sort the output in
        descending order. Defaults to `True`.

    Returns:
        A tuple containing two tensors. The first tensor contains the
        top-k values, and the second tensor contains the indices of the
        top-k values in the input tensor.

    Example:

    >>> x = keras.ops.convert_to_tensor([5, 2, 7, 1, 9, 3])
    >>> values, indices = top_k(x, k=3)
    >>> print(values)
    array([9 7 5], shape=(3,), dtype=int32)
    >>> print(indices)
    array([4 2 0], shape=(3,), dtype=int32)

    """
    if any_symbolic_tensors((x,)):
        return TopK(k, sorted).symbolic_call(x)
    return backend.math.top_k(x, k, sorted)


class InTopK(Operation):
    def __init__(self, k):
        super().__init__()
        self.k = k

    def compute_output_spec(self, targets, predictions):
        return KerasTensor(shape=targets.shape, dtype="bool")

    def call(self, targets, predictions):
        return backend.math.in_top_k(targets, predictions, self.k)


@keras_export("keras.ops.in_top_k")
def in_top_k(targets, predictions, k):
    """Checks if the targets are in the top-k predictions.

    Args:
        targets: A tensor of true labels.
        predictions: A tensor of predicted labels.
        k: An integer representing the number of predictions to consider.

    Returns:
        A boolean tensor of the same shape as `targets`, where each element
        indicates whether the corresponding target is in the top-k predictions.

    Example:

    >>> targets = keras.ops.convert_to_tensor([2, 5, 3])
    >>> predictions = keras.ops.convert_to_tensor(
    ... [[0.1, 0.4, 0.6, 0.9, 0.5],
    ...  [0.1, 0.7, 0.9, 0.8, 0.3],
    ...  [0.1, 0.6, 0.9, 0.9, 0.5]])
    >>> in_top_k(targets, predictions, k=3)
    array([ True False  True], shape=(3,), dtype=bool)
    """
    if any_symbolic_tensors((targets, predictions)):
        return InTopK(k).symbolic_call(targets, predictions)
    return backend.math.in_top_k(targets, predictions, k)


class Logsumexp(Operation):
    def __init__(self, axis=None, keepdims=False):
        super().__init__()
        self.axis = axis
        self.keepdims = keepdims

    def compute_output_spec(self, x):
        output_shape = reduce_shape(x.shape, self.axis, self.keepdims)
        return KerasTensor(shape=output_shape)

    def call(self, x):
        return backend.math.logsumexp(x, axis=self.axis, keepdims=self.keepdims)


@keras_export("keras.ops.logsumexp")
def logsumexp(x, axis=None, keepdims=False):
    """Computes the logarithm of sum of exponentials of elements in a tensor.

    Args:
        x: Input tensor.
        axis: An integer or a tuple of integers specifying the axis/axes
            along which to compute the sum. If `None`, the sum is computed
            over all elements. Defaults to `None`.
        keepdims: A boolean indicating whether to keep the dimensions of
            the input tensor when computing the sum. Defaults to `False`.

    Returns:
        A tensor containing the logarithm of the sum of exponentials of
        elements in `x`.

    Example:

    >>> x = keras.ops.convert_to_tensor([1., 2., 3.])
    >>> logsumexp(x)
    3.407606
    """
    if any_symbolic_tensors((x,)):
        return Logsumexp(axis, keepdims).symbolic_call(x)
    return backend.math.logsumexp(x, axis=axis, keepdims=keepdims)


class ExtractSequences(Operation):
    def __init__(self, sequence_length, sequence_stride):
        super().__init__()
        self.sequence_length = sequence_length
        self.sequence_stride = sequence_stride

    def compute_output_spec(self, x):
        if len(x.shape) < 1:
            raise ValueError(
                f"Input should have rank >= 1. "
                f"Received: input.shape = {x.shape}"
            )
        if x.shape[-1] is not None:
            num_sequences = (
                1 + (x.shape[-1] - self.sequence_length) // self.sequence_stride
            )
        else:
            num_sequences = None
        new_shape = x.shape[:-1] + (num_sequences, self.sequence_length)
        return KerasTensor(shape=new_shape, dtype=x.dtype)

    def call(self, x):
        return backend.math.extract_sequences(
            x,
            sequence_length=self.sequence_length,
            sequence_stride=self.sequence_stride,
        )


@keras_export("keras.ops.extract_sequences")
def extract_sequences(x, sequence_length, sequence_stride):
    """Expands the dimension of last axis into sequences of `sequence_length`.

    Slides a window of size `sequence_length` over the last axis of the input
    with a stride of `sequence_stride`, replacing the last axis with
    `[num_sequences, sequence_length]` sequences.

    If the dimension along the last axis is N, the number of sequences can be
    computed by:

    `num_sequences = 1 + (N - sequence_length) // sequence_stride`

    Args:
        x: Input tensor.
        sequence_length: An integer representing the sequences length.
        sequence_stride: An integer representing the sequences hop size.

    Returns:
        A tensor of sequences with shape [..., num_sequences, sequence_length].

    Example:

    >>> x = keras.ops.convert_to_tensor([1, 2, 3, 4, 5, 6])
    >>> extract_sequences(x, 3, 2)
    array([[1, 2, 3],
       [3, 4, 5]])
    """
    if any_symbolic_tensors((x,)):
        return ExtractSequences(sequence_length, sequence_stride).symbolic_call(
            x
        )
    return backend.math.extract_sequences(x, sequence_length, sequence_stride)


class FFT(Operation):
    def __init__(self, axis=-1):
        super().__init__()
        self.axis = axis

    def compute_output_spec(self, x):
        if not isinstance(x, (tuple, list)) or len(x) != 2:
            raise ValueError(
                "Input `x` should be a tuple of two tensors - real and "
                f"imaginary. Received: x={x}"
            )

        real, imag = x
        # Both real and imaginary parts should have the same shape.
        if real.shape != imag.shape:
            raise ValueError(
                "Input `x` should be a tuple of two tensors - real and "
                "imaginary. Both the real and imaginary parts should have the "
                f"same shape. Received: x[0].shape = {real.shape}, "
                f"x[1].shape = {imag.shape}"
            )

        # We are calculating 1D FFT. Hence, rank >= 1.
        if len(real.shape) < 1:
            raise ValueError(
                f"Input should have rank >= 1. "
                f"Received: input.shape = {real.shape}"
            )

        # The axis along which we are calculating FFT should be fully-defined.
        m = real.shape[-1]
        if m is None:
            raise ValueError(
                f"Input should have its {self.axis}th axis fully-defined. "
                f"Received: input.shape = {real.shape}"
            )

        return (
            KerasTensor(shape=real.shape, dtype=real.dtype),
            KerasTensor(shape=imag.shape, dtype=imag.dtype),
        )

    def call(self, x):
        return backend.math.fft(x)


@keras_export("keras.ops.fft")
def fft(x):
    """Computes the Fast Fourier Transform along last axis of input.

    Args:
        x: Tuple of the real and imaginary parts of the input tensor. Both
            tensors in the tuple should be of floating type.

    Returns:
        A tuple containing two tensors - the real and imaginary parts of the
        output tensor.

    Example:

    >>> x = (
    ...     keras.ops.convert_to_tensor([1., 2.]),
    ...     keras.ops.convert_to_tensor([0., 1.]),
    ... )
    >>> fft(x)
    (array([ 3., -1.], dtype=float32), array([ 1., -1.], dtype=float32))
    """
    if any_symbolic_tensors(x):
        return FFT().symbolic_call(x)
    return backend.math.fft(x)


class FFT2(Operation):
    def __init__(self):
        super().__init__()
        self.axes = (-2, -1)

    def compute_output_spec(self, x):
        if not isinstance(x, (tuple, list)) or len(x) != 2:
            raise ValueError(
                "Input `x` should be a tuple of two tensors - real and "
                f"imaginary. Received: x={x}"
            )

        real, imag = x
        # Both real and imaginary parts should have the same shape.
        if real.shape != imag.shape:
            raise ValueError(
                "Input `x` should be a tuple of two tensors - real and "
                "imaginary. Both the real and imaginary parts should have the "
                f"same shape. Received: x[0].shape = {real.shape}, "
                f"x[1].shape = {imag.shape}"
            )
        # We are calculating 2D FFT. Hence, rank >= 2.
        if len(real.shape) < 2:
            raise ValueError(
                f"Input should have rank >= 2. "
                f"Received: input.shape = {real.shape}"
            )

        # The axes along which we are calculating FFT should be fully-defined.
        m = real.shape[self.axes[0]]
        n = real.shape[self.axes[1]]
        if m is None or n is None:
            raise ValueError(
                f"Input should have its {self.axes} axes fully-defined. "
                f"Received: input.shape = {real.shape}"
            )

        return (
            KerasTensor(shape=real.shape, dtype=real.dtype),
            KerasTensor(shape=imag.shape, dtype=imag.dtype),
        )

    def call(self, x):
        return backend.math.fft2(x)


@keras_export("keras.ops.fft2")
def fft2(x):
    """Computes the 2D Fast Fourier Transform along the last two axes of input.

    Args:
        x: Tuple of the real and imaginary parts of the input tensor. Both
            tensors in the tuple should be of floating type.

    Returns:
        A tuple containing two tensors - the real and imaginary parts of the
        output.

    Example:

    >>> x = (
    ...     keras.ops.convert_to_tensor([[1., 2.], [2., 1.]]),
    ...     keras.ops.convert_to_tensor([[0., 1.], [1., 0.]]),
    ... )
    >>> fft2(x)
    (array([[ 6.,  0.],
        [ 0., -2.]], dtype=float32), array([[ 2.,  0.],
        [ 0., -2.]], dtype=float32))
    """
    if any_symbolic_tensors(x):
        return FFT2().symbolic_call(x)
    return backend.math.fft2(x)


class IFFT2(Operation):
    def __init__(self):
        super().__init__()
        self.axes = (-2, -1)

    def compute_output_spec(self, x):
        if not isinstance(x, (tuple, list)) or len(x) != 2:
            raise ValueError(
                "Input `x` should be a tuple of two tensors - real and "
                f"imaginary. Received: x={x}"
            )

        real, imag = x
        # Both real and imaginary parts should have the same shape.
        if real.shape != imag.shape:
            raise ValueError(
                "Input `x` should be a tuple of two tensors - real and "
                "imaginary. Both the real and imaginary parts should have the "
                f"same shape. Received: x[0].shape = {real.shape}, "
                f"x[1].shape = {imag.shape}"
            )
        # We are calculating 2D IFFT. Hence, rank >= 2.
        if len(real.shape) < 2:
            raise ValueError(
                f"Input should have rank >= 2. "
                f"Received: input.shape = {real.shape}"
            )

        # The axes along which we are calculating IFFT should be fully-defined.
        m = real.shape[self.axes[0]]
        n = real.shape[self.axes[1]]
        if m is None or n is None:
            raise ValueError(
                f"Input should have its {self.axes} axes fully-defined. "
                f"Received: input.shape = {real.shape}"
            )

        return (
            KerasTensor(shape=real.shape, dtype=real.dtype),
            KerasTensor(shape=imag.shape, dtype=imag.dtype),
        )

    def call(self, x):
        return backend.math.ifft2(x)


@keras_export("keras.ops.ifft2")
def ifft2(x):
    """Computes the 2D Inverse Fast Fourier Transform along the last two axes of
        input.

    Args:
        x: Tuple of the real and imaginary parts of the input tensor. Both
            tensors in the tuple should be of floating type.

    Returns:
        A tuple containing two tensors - the real and imaginary parts of the
        output.

    Example:

    >>> x = (
    ...     keras.ops.convert_to_tensor([[1., 2.], [2., 1.]]),
    ...     keras.ops.convert_to_tensor([[0., 1.], [1., 0.]]),
    ... )
    >>> ifft2(x)
    (array([[ 6.,  0.],
        [ 0., -2.]], dtype=float32), array([[ 2.,  0.],
        [ 0., -2.]], dtype=float32))
    """
    if any_symbolic_tensors(x):
        return IFFT2().symbolic_call(x)
    return backend.math.ifft2(x)


class RFFT(Operation):
    def __init__(self, fft_length=None):
        super().__init__()
        self.fft_length = fft_length

    def compute_output_spec(self, x):
        # We are calculating 1D RFFT. Hence, rank >= 1.
        if len(x.shape) < 1:
            raise ValueError(
                f"Input should have rank >= 1. "
                f"Received: input.shape = {x.shape}"
            )

        if self.fft_length is not None:
            new_last_dimension = self.fft_length // 2 + 1
        else:
            if x.shape[-1] is not None:
                new_last_dimension = x.shape[-1] // 2 + 1
            else:
                new_last_dimension = None
        new_shape = x.shape[:-1] + (new_last_dimension,)

        return (
            KerasTensor(shape=new_shape, dtype=x.dtype),
            KerasTensor(shape=new_shape, dtype=x.dtype),
        )

    def call(self, x):
        return backend.math.rfft(x, fft_length=self.fft_length)


@keras_export("keras.ops.rfft")
def rfft(x, fft_length=None):
    """Real-valued Fast Fourier Transform along the last axis of the input.

    Computes the 1D Discrete Fourier Transform of a real-valued signal over the
    inner-most dimension of input.

    Since the Discrete Fourier Transform of a real-valued signal is
    Hermitian-symmetric, RFFT only returns the `fft_length / 2 + 1` unique
    components of the FFT: the zero-frequency term, followed by the
    `fft_length / 2` positive-frequency terms.

    Along the axis RFFT is computed on, if `fft_length` is smaller than the
    corresponding dimension of the input, the dimension is cropped. If it is
    larger, the dimension is padded with zeros.

    Args:
        x: Input tensor.
        fft_length: An integer representing the number of the fft length. If not
            specified, it is inferred from the length of the last axis of `x`.
            Defaults to `None`.

    Returns:
        A tuple containing two tensors - the real and imaginary parts of the
        output.

    Examples:

    >>> x = keras.ops.convert_to_tensor([0.0, 1.0, 2.0, 3.0, 4.0])
    >>> rfft(x)
    (array([10.0, -2.5, -2.5]), array([0.0, 3.4409548, 0.81229924]))

    >>> rfft(x, 3)
    (array([3.0, -1.5]), array([0.0, 0.8660254]))
    """
    if any_symbolic_tensors((x,)):
        return RFFT(fft_length).symbolic_call(x)
    return backend.math.rfft(x, fft_length)


class IRFFT(Operation):
    def __init__(self, fft_length=None):
        super().__init__()
        self.fft_length = fft_length

    def compute_output_spec(self, x):
        if not isinstance(x, (tuple, list)) or len(x) != 2:
            raise ValueError(
                "Input `x` should be a tuple of two tensors - real and "
                f"imaginary. Received: x={x}"
            )
        real, imag = x
        # Both real and imaginary parts should have the same shape.
        if real.shape != imag.shape:
            raise ValueError(
                "Input `x` should be a tuple of two tensors - real and "
                "imaginary. Both the real and imaginary parts should have the "
                f"same shape. Received: x[0].shape = {real.shape}, "
                f"x[1].shape = {imag.shape}"
            )
        # We are calculating 1D IRFFT. Hence, rank >= 1.
        if len(real.shape) < 1:
            raise ValueError(
                f"Input should have rank >= 1. "
                f"Received: input.shape = {real.shape}"
            )

        if self.fft_length is not None:
            new_last_dimension = self.fft_length
        else:
            if real.shape[-1] is not None:
                new_last_dimension = 2 * (real.shape[-1] - 1)
            else:
                new_last_dimension = None
        new_shape = real.shape[:-1] + (new_last_dimension,)
        return KerasTensor(shape=new_shape, dtype=real.dtype)

    def call(self, x):
        return backend.math.irfft(x, fft_length=self.fft_length)


@keras_export("keras.ops.irfft")
def irfft(x, fft_length=None):
    """Inverse real-valued Fast Fourier transform along the last axis.

    Computes the inverse 1D Discrete Fourier Transform of a real-valued signal
    over the inner-most dimension of input.

    The inner-most dimension of the input is assumed to be the result of RFFT:
    the `fft_length / 2 + 1` unique components of the DFT of a real-valued
    signal. If `fft_length` is not provided, it is computed from the size of the
    inner-most dimension of the input `(fft_length = 2 * (inner - 1))`. If the
    FFT length used to compute is odd, it should be provided since it cannot
    be inferred properly.

    Along the axis IRFFT is computed on, if `fft_length / 2 + 1` is smaller than
    the corresponding dimension of the input, the dimension is cropped. If it is
    larger, the dimension is padded with zeros.

    Args:
        x: Tuple of the real and imaginary parts of the input tensor. Both
            tensors in the tuple should be of floating type.
        fft_length: An integer representing the number of the fft length. If not
            specified, it is inferred from the length of the last axis of `x`.
            Defaults to `None`.

    Returns:
        A tensor containing the inverse real-valued Fast Fourier Transform
        along the last axis of `x`.

    Examples:

    >>> real = keras.ops.convert_to_tensor([0.0, 1.0, 2.0, 3.0, 4.0])
    >>> imag = keras.ops.convert_to_tensor([0.0, 1.0, 2.0, 3.0, 4.0])
    >>> irfft((real, imag))
    array([0.66666667, -0.9106836, 0.24401694])

    >>> irfft(rfft(real, 5), 5)
    array([0.0, 1.0, 2.0, 3.0, 4.0])
    """
    if any_symbolic_tensors(x):
        return IRFFT(fft_length).symbolic_call(x)
    return backend.math.irfft(x, fft_length)


class STFT(Operation):
    def __init__(
        self,
        sequence_length,
        sequence_stride,
        fft_length,
        window="hann",
        center=True,
    ):
        super().__init__()
        self.sequence_length = sequence_length
        self.sequence_stride = sequence_stride
        self.fft_length = fft_length
        self.window = window
        self.center = center

    def compute_output_spec(self, x):
        if x.shape[-1] is not None:
            padded = 0 if self.center is False else (self.fft_length // 2) * 2
            num_sequences = (
                1
                + (x.shape[-1] + padded - self.fft_length)
                // self.sequence_stride
            )
        else:
            num_sequences = None
        new_shape = x.shape[:-1] + (num_sequences, self.fft_length // 2 + 1)
        return (
            KerasTensor(shape=new_shape, dtype=x.dtype),
            KerasTensor(shape=new_shape, dtype=x.dtype),
        )

    def call(self, x):
        return backend.math.stft(
            x,
            sequence_length=self.sequence_length,
            sequence_stride=self.sequence_stride,
            fft_length=self.fft_length,
            window=self.window,
            center=self.center,
        )


@keras_export("keras.ops.stft")
def stft(
    x, sequence_length, sequence_stride, fft_length, window="hann", center=True
):
    """Short-Time Fourier Transform along the last axis of the input.

    The STFT computes the Fourier transform of short overlapping windows of the
    input. This giving frequency components of the signal as they change over
    time.

    Args:
        x: Input tensor.
        sequence_length: An integer representing the sequence length.
        sequence_stride: An integer representing the sequence hop size.
        fft_length: An integer representing the size of the FFT to apply. If not
            specified, uses the smallest power of 2 enclosing `sequence_length`.
        window: A string, a tensor of the window or `None`. If `window` is a
            string, available values are `"hann"` and `"hamming"`. If `window`
            is a tensor, it will be used directly as the window and its length
            must be `sequence_length`. If `window` is `None`, no windowing is
            used. Defaults to `"hann"`.
        center: Whether to pad `x` on both sides so that the t-th sequence is
            centered at time `t * sequence_stride`. Otherwise, the t-th sequence
            begins at time `t * sequence_stride`. Defaults to `True`.

    Returns:
        A tuple containing two tensors - the real and imaginary parts of the
        STFT output.

    Example:

    >>> x = keras.ops.convert_to_tensor([0.0, 1.0, 2.0, 3.0, 4.0])
    >>> stft(x, 3, 2, 3)
    (array([[0.75, -0.375],
       [3.75, -1.875],
       [5.25, -2.625]]), array([[0.0, 0.64951905],
       [0.0, 0.64951905],
       [0.0, -0.64951905]]))
    """
    if any_symbolic_tensors((x,)):
        return STFT(
            sequence_length=sequence_length,
            sequence_stride=sequence_stride,
            fft_length=fft_length,
            window=window,
            center=center,
        ).symbolic_call(x)
    return backend.math.stft(
        x,
        sequence_length=sequence_length,
        sequence_stride=sequence_stride,
        fft_length=fft_length,
        window=window,
        center=center,
    )


class ISTFT(Operation):
    def __init__(
        self,
        sequence_length,
        sequence_stride,
        fft_length,
        length=None,
        window="hann",
        center=True,
    ):
        super().__init__()
        self.sequence_length = sequence_length
        self.sequence_stride = sequence_stride
        self.fft_length = fft_length
        self.length = length
        self.window = window
        self.center = center

    def compute_output_spec(self, x):
        if not isinstance(x, (tuple, list)) or len(x) != 2:
            raise ValueError(
                "Input `x` should be a tuple of two tensors - real and "
                f"imaginary. Received: x={x}"
            )
        real, imag = x
        # Both real and imaginary parts should have the same shape.
        if real.shape != imag.shape:
            raise ValueError(
                "Input `x` should be a tuple of two tensors - real and "
                "imaginary. Both the real and imaginary parts should have the "
                f"same shape. Received: x[0].shape = {real.shape}, "
                f"x[1].shape = {imag.shape}"
            )
        if len(real.shape) < 2:
            raise ValueError(
                f"Input should have rank >= 2. "
                f"Received: input.shape = {real.shape}"
            )
        if real.shape[-2] is not None:
            output_size = (
                real.shape[-2] - 1
            ) * self.sequence_stride + self.fft_length
            if self.length is not None:
                output_size = self.length
            elif self.center:
                output_size = output_size - (self.fft_length // 2) * 2
        else:
            output_size = None
        new_shape = real.shape[:-2] + (output_size,)
        return KerasTensor(shape=new_shape, dtype=real.dtype)

    def call(self, x):
        return backend.math.istft(
            x,
            sequence_length=self.sequence_length,
            sequence_stride=self.sequence_stride,
            fft_length=self.fft_length,
            length=self.length,
            window=self.window,
            center=self.center,
        )


@keras_export("keras.ops.istft")
def istft(
    x,
    sequence_length,
    sequence_stride,
    fft_length,
    length=None,
    window="hann",
    center=True,
):
    """Inverse Short-Time Fourier Transform along the last axis of the input.

    To reconstruct an original waveform, the parameters should be the same in
    `stft`.

    Args:
        x: Tuple of the real and imaginary parts of the input tensor. Both
            tensors in the tuple should be of floating type.
        sequence_length: An integer representing the sequence length.
        sequence_stride: An integer representing the sequence hop size.
        fft_length: An integer representing the size of the FFT that produced
            `stft`. Should be of type `int32`.
        length: An integer representing the output is clipped to exactly length.
            If not specified, no padding or clipping take place. Defaults to
            `None`.
        window: A string, a tensor of the window or `None`. If `window` is a
            string, available values are `"hann"` and `"hamming"`. If `window`
            is a tensor, it will be used directly as the window and its length
            must be `sequence_length`. If `window` is `None`, no windowing is
            used. Defaults to `"hann"`.
        center: Whether `x` was padded on both sides so that the t-th sequence
            is centered at time `t * sequence_stride`. Defaults to `True`.

    Returns:
        A tensor containing the inverse Short-Time Fourier Transform along the
        last axis of `x`.

    Example:

    >>> x = keras.ops.convert_to_tensor([0.0, 1.0, 2.0, 3.0, 4.0])
    >>> istft(stft(x, 1, 1, 1), 1, 1, 1)
    array([0.0, 1.0, 2.0, 3.0, 4.0])
    """
    if any_symbolic_tensors(x):
        return ISTFT(
            sequence_length=sequence_length,
            sequence_stride=sequence_stride,
            fft_length=fft_length,
            window=window,
            center=center,
        ).symbolic_call(x)
    return backend.math.istft(
        x,
        sequence_length=sequence_length,
        sequence_stride=sequence_stride,
        fft_length=fft_length,
        length=length,
        window=window,
        center=center,
    )


class Rsqrt(Operation):
    def call(self, x):
        x = backend.convert_to_tensor(x)
        return backend.math.rsqrt(x)

    def compute_output_spec(self, x):
        return KerasTensor(x.shape, dtype=x.dtype)


@keras_export("keras.ops.rsqrt")
def rsqrt(x):
    """Computes reciprocal of square root of x element-wise.

    Args:
        x: input tensor

    Returns:
        A tensor with the same dtype as `x`.

    Example:

    >>> x = keras.ops.convert_to_tensor([1.0, 10.0, 100.0])
    >>> keras.ops.rsqrt(x)
    array([1.0, 0.31622776, 0.1], dtype=float32)
    """
    if any_symbolic_tensors((x,)):
        return Rsqrt().symbolic_call(x)
    x = backend.convert_to_tensor(x)
    return backend.math.rsqrt(x)


class Erf(Operation):
    def compute_output_spec(self, x):
        return KerasTensor(shape=x.shape, dtype=x.dtype)

    def call(self, x):
        return backend.math.erf(x)


@keras_export("keras.ops.erf")
def erf(x):
    """Computes the error function of `x`, element-wise.

    Args:
        x: Input tensor.

    Returns:
        A tensor with the same dtype as `x`.

    Example:

    >>> x = np.array([-3.0, -2.0, -1.0, 0.0, 1.0])
    >>> keras.ops.erf(x)
    array([-0.99998 , -0.99532, -0.842701,  0.,  0.842701], dtype=float32)
    """
    if any_symbolic_tensors((x,)):
        return Erf().symbolic_call(x)
    x = backend.convert_to_tensor(x)
    return backend.math.erf(x)


class Erfinv(Operation):
    def compute_output_spec(self, x):
        return KerasTensor(shape=x.shape, dtype=x.dtype)

    def call(self, x):
        return backend.math.erfinv(x)


@keras_export("keras.ops.erfinv")
def erfinv(x):
    """Computes the inverse error function of `x`, element-wise.

    Args:
        x: Input tensor.

    Returns:
        A tensor with the same dtype as `x`.

    Example:

    >>> x = np.array([-0.5, -0.2, -0.1, 0.0, 0.3])
    >>> keras.ops.erfinv(x)
    array([-0.47694, -0.17914, -0.08886,  0. ,  0.27246], dtype=float32)
    """
    if any_symbolic_tensors((x,)):
        return Erfinv().symbolic_call(x)
    x = backend.convert_to_tensor(x)
    return backend.math.erfinv(x)


class Logdet(Operation):
    def __init__(self):
        super().__init__()

    def call(self, x):
        return backend.math.logdet(x)

    def compute_output_spec(self, x):
        return KerasTensor(x.shape[:-2], dtype=x.dtype)


@keras_export(["keras.ops.logdet"])
def logdet(x):
    """Computes log of the determinant of a hermitian positive definite matrix.

    Args:
        x: Input matrix. It must 2D and square.

    Returns:
        The natural log of the determinant of matrix.
    """
    if any_symbolic_tensors((x,)):
        return Logdet().symbolic_call(x)
    return backend.math.logdet(x)


class ViewAsComplex(Operation):
    def call(self, x):
        x = backend.convert_to_tensor(x)
        if len(x.shape) < 1 or x.shape[-1] != 2:
            raise ValueError(
                "Input tensor's last dimension must be 2 (real and imaginary)."
            )
        return x[..., 0] + 1j * x[..., 1]

    def compute_output_spec(self, x):
        return KerasTensor(shape=x.shape[:-1], dtype="complex64")


class ViewAsReal(Operation):
    def call(self, x):
        x = backend.convert_to_tensor(x)
        real_part = backend.numpy.real(x)
        imag_part = backend.numpy.imag(x)
        return backend.numpy.stack((real_part, imag_part), axis=-1)

    def compute_output_spec(self, x):
        return KerasTensor(shape=x.shape + (2,), dtype="float32")


@keras_export("keras.ops.view_as_complex")
def view_as_complex(x):
    """Converts a real tensor with shape `(..., 2)` to a complex tensor,
    where the last dimension represents the real and imaginary components
    of a complex tensor.

    Args:
        x: A real tensor with last dimension of size 2.

    Returns:
        A complex tensor with shape `x.shape[:-1]`.

    Example:

    ```
    >>> import numpy as np
    >>> from keras import ops

    >>> real_imag = np.array([[1.0, 2.0], [3.0, 4.0]])
    >>> complex_tensor = ops.view_as_complex(real_imag)
    >>> complex_tensor
    array([1.+2.j, 3.+4.j])
    ```
    """
    if any_symbolic_tensors((x,)):
        return ViewAsComplex().symbolic_call(x)

    x = backend.convert_to_tensor(x)
    if len(x.shape) < 1 or x.shape[-1] != 2:
        raise ValueError(
            "Last dimension of input must be size 2 (real and imaginary). "
            f"Received shape: {x.shape}"
        )
    real_part = x[..., 0]
    imag_part = x[..., 1]

    return backend.cast(real_part, dtype="complex64") + 1j * backend.cast(
        imag_part, dtype="complex64"
    )


@keras_export("keras.ops.view_as_real")
def view_as_real(x):
    """Converts a complex tensor to a real tensor with shape `(..., 2)`,
    where the last dimension represents the real and imaginary components.

    Args:
        x: A complex tensor.

    Returns:
        A real tensor where the last dimension contains the
        real and imaginary parts.

    Example:
    ```
    >>> import numpy as np
    >>> from keras import ops

    >>> complex_tensor = np.array([1 + 2j, 3 + 4j])
    >>> real = ops.view_as_real(complex_tensor)
    >>> real
    array([[1., 2.],
           [3., 4.]])
    ```
    """
    if any_symbolic_tensors((x,)):
        return ViewAsReal().symbolic_call(x)

    x = backend.convert_to_tensor(x)
    real_part = backend.numpy.real(x)
    imag_part = backend.numpy.imag(x)
    return backend.numpy.stack((real_part, imag_part), axis=-1)