File size: 15,612 Bytes
8938d1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import numpy as np
import util
# Character to replace with sub-problem letter in plot_path/save_path
WILDCARD = 'X'
def main_LogReg(train_path, valid_path, save_path):
"""Problem (1b): Logistic regression with Newton's Method.
Args:
train_path: Path to CSV file containing dataset for training.
valid_path: Path to CSV file containing dataset for validation.
save_path: Path to save predicted probabilities using np.savetxt().
"""
# Load dataset
x_train, y_train = util.load_dataset(train_path, add_intercept=True)
# Train a logistic regression classifier
clf = LogisticRegression()
clf.fit(x_train, y_train)
# Plot decision boundary on top of validation set set
x_eval, y_eval = util.load_dataset(valid_path, add_intercept=True)
plot_path = save_path.replace('.txt', '.png')
util.plot(x_eval, y_eval, clf.theta, plot_path)
# Use np.savetxt to save predictions on eval set to save_path
p_eval = clf.predict(x_eval)
yhat = p_eval > 0.5
print('LR Accuracy: %.2f' % np.mean( (yhat == 1) == (y_eval == 1)))
np.savetxt(save_path, p_eval)
class LogisticRegression:
"""Logistic regression with Newton's Method as the solver.
Example usage:
> clf = LogisticRegression()
> clf.fit(x_train, y_train)
> clf.predict(x_eval)
"""
def __init__(self, step_size=0.01, max_iter=1000000, eps=1e-5,
theta_0=None, verbose=True):
"""
Args:
step_size: Step size for iterative solvers only.
max_iter: Maximum number of iterations for the solver.
eps: Threshold for determining convergence.
theta_0: Initial guess for theta. If None, use the zero vector.
verbose: Print loss values during training.
"""
self.theta = theta_0
self.step_size = step_size
self.max_iter = max_iter
self.eps = eps
self.verbose = verbose
def gradient(self,x, y):
n_examples, dim = x.shape
logits = self.sigmoid(x)
# grad of logit function
gradient = 1 / n_examples * x.T @ (logits - y)
return gradient
def hessian(self, x, y):
n_examples, dim = x.shape
# sigmoid = lambda x: 1 / 1 + np.exp(- x @ self.theta)
logits = self.sigmoid(x)
# probs = self._sigmoid(x.dot(self.theta))
# diag = np.diag(logits * (1. - logits))
# hess = 1 / n_examples * x.T.dot(diag).dot(x)
# return hess
# main diag is just second derivative wrt to itself. e.g. f_xx and f_yy
main_diagonal = np.diag(logits * (1 - logits))
hessian = 1 / n_examples * x.T @ main_diagonal @ x
return hessian
def loss(self, x, y):
# https://developers.google.com/machine-learning/crash-course/logistic-regression/model-training
# also in p.16 in Supervised Learning notes
n_examples, dim = x.shape
# sigmoid = lambda x: 1 / 1 + np.exp(- x @ self.theta)
logits = self.sigmoid(x)
loss = -np.mean(y * np.log(logits) + (1 + y) * np.log(1 - logits))
return loss
def sigmoid(self, x):
# return 1 / (1 + np.exp(-x.dot(self.theta)))
return 1 / (1 + np.exp(- x @ self.theta))
def fit(self, x, y):
"""Run Newton's Method to minimize J(theta) for logistic regression.
Args:
x: Training example inputs. Shape (n_examples, dim).
y: Training example labels. Shape (n_examples,).
"""
# *** START CODE HERE ***
# NOTE: look at p.18 in notes
# we need to calculate theta with Newton and then maximize the
# logistic regression log likelihood function l(theta)
# prev_theta = theta # store for comparison
# m = rows = number of examples
# n = columns = number of features
# breakpoint()
# NOTE: it looks like they prepend the '1' at the beginning of the x array!
n_examples, dim = x.shape
if self.theta is None:
self.theta = np.zeros(dim)
# just need to init for first time.
# theta_prev = np.ones(dim)
# # print(np.sum(np.abs(theta_prev - self.theta)) < self.eps)
# current_iteration = 0
# theta_difference = np.sum(np.abs(theta_prev - self.theta))
# while theta_difference > self.eps and current_iteration < self.max_iter:
for i in range(self.max_iter):
# current_iteration += 1
gradient = self.gradient(x, y)
hessian = self.hessian(x, y)
# theta_prev = self.step(gradient, hessian)
theta_prev = np.copy(self.theta)
# theta_prev = self.step()
# theta_prev = self.theta
# self.theta = self.theta - self.step_size * np.linalg.inv(hessian) @ gradient
self.theta -= self.step_size * np.linalg.inv(hessian).dot(gradient)
if np.sum(np.abs(theta_prev - self.theta)) < self.eps:
break
# *** END CODE HERE ***
def predict(self, x):
"""Return predicted probabilities given new inputs x.
Args:
x: Inputs of shape (n_examples, dim).
Returns:
Outputs of shape (n_examples,).
"""
# *** START CODE HERE ***
# breakpoint()
# sigmoid = lambda x: 1 / 1 + np.exp(- x @ self.theta)
prediction = self.sigmoid(x)
return prediction
# *** END CODE HERE ***
def main_GDA(train_path, valid_path, save_path):
"""Problem (1e): Gaussian discriminant analysis (GDA)
Args:
train_path: Path to CSV file containing dataset for training.
valid_path: Path to CSV file containing dataset for validation.
save_path: Path to save predicted probabilities using np.savetxt().
"""
# Load dataset
x_train, y_train = util.load_dataset(train_path, add_intercept=False)
# Train a GDA classifier
clf = GDA()
clf.fit(x_train, y_train)
# Plot decision boundary on validation set
x_eval, y_eval = util.load_dataset(valid_path, add_intercept=False)
plot_path = save_path.replace('.txt', '.png')
util.plot(x_eval, y_eval, clf.theta, plot_path)
x_eval = util.add_intercept(x_eval)
# Use np.savetxt to save outputs from validation set to save_path
p_eval = clf.predict(x_eval)
yhat = p_eval > 0.5
print('GDA Accuracy: %.2f' % np.mean( (yhat == 1) == (y_eval == 1)))
np.savetxt(save_path, p_eval)
class GDA:
"""Gaussian Discriminant Analysis.
Example usage:
> clf = GDA()
> clf.fit(x_train, y_train)
> clf.predict(x_eval)
"""
def __init__(self, step_size=0.01, max_iter=10000, eps=1e-5,
theta_0=None, verbose=True):
"""
Args:
step_size: Step size for iterative solvers only.
max_iter: Maximum number of iterations for the solver.
eps: Threshold for determining convergence.
theta_0: Initial guess for theta. If None, use the zero vector.
verbose: Print loss values during training.
"""
self.theta = theta_0
self.step_size = step_size
self.max_iter = max_iter
self.eps = eps
self.verbose = verbose
def sigmoid(self, x):
# return 1 / (1 + np.exp(-x.dot(self.theta)))
return 1 / (1 + np.exp(- x @ self.theta))
def fit(self, x, y):
"""Fit a GDA model to training set given by x and y by updating
self.theta.
Args:
x: Training example inputs. Shape (n_examples, dim).
y: Training example labels. Shape (n_examples,).
"""
# *** START CODE HERE ***
n_examples, dim = x.shape
# Find phi, mu_0, mu_1, and sigma
phi = 1 / n_examples * np.sum(y == 1)
mu_0 = (y == 0).dot(x) / np.sum(y == 0)
mu_1 = (y == 1).dot(x) / np.sum(y == 1)
mu_yi = np.where(np.expand_dims(y == 0, -1),
np.expand_dims(mu_0, 0),
np.expand_dims(mu_1, 0))
sigma = 1 / n_examples * (x - mu_yi).T.dot(x - mu_yi)
# Write theta in terms of the parameters
self.theta = np.zeros(dim + 1)
sigma_inv = np.linalg.inv(sigma)
mu_diff = mu_0.T.dot(sigma_inv).dot(mu_0) - mu_1.T.dot(sigma_inv).dot(mu_1)
self.theta[0] = 1 / 2 * mu_diff - np.log((1 - phi) / phi)
self.theta[1:] = -sigma_inv.dot(mu_0 - mu_1)
# *** END CODE HERE ***
def predict(self, x):
"""Make a prediction given new inputs x.
Args:
x: Inputs of shape (n_examples, dim).
Returns:
Outputs of shape (n_examples,).
"""
# *** START CODE HERE ***
prediction = self.sigmoid(x)
return prediction
# *** END CODE HERE
def main_posonly(train_path, valid_path, test_path, save_path):
"""Problem 2: Logistic regression for incomplete, positive-only labels.
Run under the following conditions:
1. on t-labels,
2. on y-labels,
3. on y-labels with correction factor alpha.
Args:
train_path: Path to CSV file containing training set.
valid_path: Path to CSV file containing validation set.
test_path: Path to CSV file containing test set.
save_path: Path to save predictions.
NOTE: You need to complete logreg implementation first (see class above)!!!
"""
output_path_true = save_path.replace(WILDCARD, 'true')
output_path_naive = save_path.replace(WILDCARD, 'naive')
output_path_adjusted = save_path.replace(WILDCARD, 'adjusted')
plot_path = save_path.replace('.txt', '.png')
plot_path_true = plot_path.replace(WILDCARD, 'true')
plot_path_naive = plot_path.replace(WILDCARD, 'naive')
plot_path_adjusted = plot_path.replace(WILDCARD, 'adjusted')
# Problem (2a): Train and test on true labels (t)
full_predictions = fully_observed_predictions(train_path, test_path, output_path_true, plot_path_true)
# Problem (2b): Train on y-labels and test on true labels
naive_predictions, clf = naive_partial_labels_predictions(train_path, test_path, output_path_naive, plot_path_naive)
# Problem (2f): Apply correction factor using validation set and test on true labels
alpha = find_alpha_and_plot_correction(clf, valid_path, test_path, output_path_adjusted, plot_path_adjusted, naive_predictions)
return
def fully_observed_predictions(train_path, test_path, output_path_true, plot_path_true):
"""
Problem (2a): Fully Observable Binary Classification Helper Function
Args:
train_path: Path to CSV file containing dataset for training.
test_path: Path to CSV file containing dataset for testing.
output_path_true: Path to save observed predictions
plot_path_true: Path to save the plot using plot_posonly util function
Return:
full_predictions: tensor of predictions returned from applied LogReg classifier prediction
"""
full_predictions = None
# Problem (2a): Train and test on true labels (t)
# Make sure to save predicted probabilities to output_path_true using np.savetxt()
# *** START CODE HERE ***
x_train, t_train = util.load_dataset(train_path, label_col='t',
add_intercept=True)
clf = LogisticRegression()
clf.fit(x_train, t_train)
x_test, t_test = util.load_dataset(test_path, label_col='t',
add_intercept=True)
full_predictions = clf.predict(x_test)
np.savetxt(output_path_true, full_predictions)
util.plot(x_test, t_test, clf.theta, plot_path_true)
# *** END CODE HERE ***
return full_predictions
def naive_partial_labels_predictions(train_path, test_path, output_path_naive, plot_path_naive):
"""
Problem (2b): Naive Partial Labels Binary Classification Helper Function
Args:
train_path: Path to CSV file containing dataset for training.
test_path: Path to CSV file containing dataset for testing.
output_path_naive: Path to save observed predictions
plot_path_naive: Path to save the plot using plot_posonly util function
Return:
naive_predictions: tensor of predictions returned from applied LogReg prediction
clf: Logistic Regression classifier (will be reused for 2f)
"""
naive_predictions = None
clf = None
# Problem (2b): Train on y-labels and test on true labels
# Make sure to save predicted probabilities to output_path_naive using np.savetxt()
# *** START CODE HERE ***
x_train, y_train = util.load_dataset(train_path, label_col='y',
add_intercept=True)
clf = LogisticRegression()
clf.fit(x_train, y_train)
x_test, t_test = util.load_dataset(test_path, label_col='t',
add_intercept=True)
naive_predictions = clf.predict(x_test)
np.savetxt(output_path_naive, naive_predictions)
util.plot(x_test, t_test, clf.theta, plot_path_naive)
# *** END CODE HERE ***
return naive_predictions, clf
def find_alpha_and_plot_correction(clf, valid_path, test_path, output_path_adjusted, plot_path_adjusted, naive_predictions):
"""
Problem (2f): Alpha Correction Binary Classification Helper Function
Args:
clf: Logistic regression classifier from part 2b
valid_path: Path to CSV file containing dataset for validation.
test_path: Path to CSV file containing dataset for testing.
output_path_adjusted: Path to save observed predictions
plot_path_adjusted: Path to save the plot using plot_posonly util function
naive_predictions: tensor of predictions returned from applied LogReg prediction from 2b
Return:
alpha: corrected alpha value
"""
alpha = None
# Problem (2f): Apply correction factor using validation set and test on true labels
# Plot and use np.savetxt to save outputs to output_path_adjusted
# *** START CODE HERE ***
x_valid, y_valid = util.load_dataset(valid_path, label_col='y')
x_valid = x_valid[y_valid == 1, :] # Restrict to just the labeled examples
x_valid = util.add_intercept(x_valid)
y_pred = clf.predict(x_valid)
alpha = np.mean(y_pred)
print('Found alpha = {}'.format(alpha))
x_test, t_test = util.load_dataset(test_path, label_col='t',
add_intercept=True)
# Plot and use np.savetxt to save outputs to output_path_adjusted
np.savetxt(output_path_adjusted, naive_predictions / alpha)
util.plot(x_test, t_test, clf.theta, plot_path_adjusted, correction=alpha)
# *** END CODE HERE ***
return alpha
if __name__ == '__main__':
'''
Start of Problem 1: Linear Classifiers
'''
# 1b
main_LogReg(train_path='ds1_train.csv',
valid_path='ds1_valid.csv',
save_path='logreg_pred_1.txt')
main_LogReg(train_path='ds2_train.csv',
valid_path='ds2_valid.csv',
save_path='logreg_pred_2.txt')
# 1e
main_GDA(train_path='ds1_train.csv',
valid_path='ds1_valid.csv',
save_path='gda_pred_1.txt')
main_GDA(train_path='ds2_train.csv',
valid_path='ds2_valid.csv',
save_path='gda_pred_2.txt')
'''
Start of Problem 2: Incomplete, Positive-Only Labels
'''
main_posonly(train_path='train.csv',
valid_path='valid.csv',
test_path='test.csv',
save_path='posonly_X_pred.txt')
|