diff --git "a/trainer_state.json" "b/trainer_state.json" new file mode 100644--- /dev/null +++ "b/trainer_state.json" @@ -0,0 +1,9018 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 15.04, + "eval_steps": 500000000, + "global_step": 1000, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "crossentropy": 2.7819188833236694, + "epoch": 0.001, + "grad_norm": 2.296875, + "learning_rate": 2e-05, + "loss": 55.4633, + "step": 1 + }, + { + "crossentropy": 2.886364698410034, + "epoch": 0.002, + "grad_norm": 2.4375, + "learning_rate": 4e-05, + "loss": 57.6593, + "step": 2 + }, + { + "crossentropy": 2.610915184020996, + "epoch": 0.003, + "grad_norm": 2.265625, + "learning_rate": 6e-05, + "loss": 54.4112, + "step": 3 + }, + { + "crossentropy": 2.8315508365631104, + "epoch": 0.004, + "grad_norm": 2.3125, + "learning_rate": 8e-05, + "loss": 57.7924, + "step": 4 + }, + { + "crossentropy": 2.8231977224349976, + "epoch": 0.005, + "grad_norm": 2.3125, + "learning_rate": 0.0001, + "loss": 57.4897, + "step": 5 + }, + { + "crossentropy": 2.8636255264282227, + "epoch": 0.006, + "grad_norm": 2.078125, + "learning_rate": 0.00012, + "loss": 57.0583, + "step": 6 + }, + { + "crossentropy": 2.8325681686401367, + "epoch": 0.007, + "grad_norm": 1.8671875, + "learning_rate": 0.00014000000000000001, + "loss": 56.1569, + "step": 7 + }, + { + "crossentropy": 2.788058638572693, + "epoch": 0.008, + "grad_norm": 1.734375, + "learning_rate": 0.00016, + "loss": 56.0723, + "step": 8 + }, + { + "crossentropy": 2.860862612724304, + "epoch": 0.009, + "grad_norm": 1.5703125, + "learning_rate": 0.00017999999999999998, + "loss": 56.7063, + "step": 9 + }, + { + "crossentropy": 2.876722812652588, + "epoch": 0.01, + "grad_norm": 1.2734375, + "learning_rate": 0.0002, + "loss": 56.7833, + "step": 10 + }, + { + "crossentropy": 2.8933022022247314, + "epoch": 0.011, + "grad_norm": 1.25, + "learning_rate": 0.00022, + "loss": 57.416, + "step": 11 + }, + { + "crossentropy": 2.9026139974594116, + "epoch": 0.012, + "grad_norm": 1.109375, + "learning_rate": 0.00024, + "loss": 57.1726, + "step": 12 + }, + { + "crossentropy": 2.8697686195373535, + "epoch": 0.013, + "grad_norm": 1.015625, + "learning_rate": 0.00026000000000000003, + "loss": 57.0761, + "step": 13 + }, + { + "crossentropy": 2.823047637939453, + "epoch": 0.014, + "grad_norm": 0.91015625, + "learning_rate": 0.00028000000000000003, + "loss": 57.1636, + "step": 14 + }, + { + "crossentropy": 2.81307590007782, + "epoch": 0.015, + "grad_norm": 0.92578125, + "learning_rate": 0.0003, + "loss": 56.68, + "step": 15 + }, + { + "crossentropy": 2.893505334854126, + "epoch": 0.016, + "grad_norm": 0.953125, + "grad_norm_var": 0.33952433268229165, + "learning_rate": 0.00032, + "loss": 56.6504, + "step": 16 + }, + { + "crossentropy": 2.7856497764587402, + "epoch": 0.017, + "grad_norm": 0.9375, + "grad_norm_var": 0.33678080240885416, + "learning_rate": 0.00034, + "loss": 56.4876, + "step": 17 + }, + { + "crossentropy": 2.87225878238678, + "epoch": 0.018, + "grad_norm": 0.86328125, + "grad_norm_var": 0.3073923110961914, + "learning_rate": 0.00035999999999999997, + "loss": 57.2457, + "step": 18 + }, + { + "crossentropy": 2.8507845401763916, + "epoch": 0.019, + "grad_norm": 0.87890625, + "grad_norm_var": 0.27884089152018227, + "learning_rate": 0.00038, + "loss": 56.671, + "step": 19 + }, + { + "crossentropy": 2.923235774040222, + "epoch": 0.02, + "grad_norm": 0.85546875, + "grad_norm_var": 0.2293008804321289, + "learning_rate": 0.0004, + "loss": 57.6122, + "step": 20 + }, + { + "crossentropy": 2.7433438301086426, + "epoch": 0.021, + "grad_norm": 0.7734375, + "grad_norm_var": 0.1661752700805664, + "learning_rate": 0.00042, + "loss": 55.3607, + "step": 21 + }, + { + "crossentropy": 2.8193527460098267, + "epoch": 0.022, + "grad_norm": 0.79296875, + "grad_norm_var": 0.11674779256184896, + "learning_rate": 0.00044, + "loss": 55.6994, + "step": 22 + }, + { + "crossentropy": 2.7718470096588135, + "epoch": 0.023, + "grad_norm": 0.8125, + "grad_norm_var": 0.07935994466145833, + "learning_rate": 0.00046, + "loss": 56.1888, + "step": 23 + }, + { + "crossentropy": 2.887826681137085, + "epoch": 0.024, + "grad_norm": 0.7890625, + "grad_norm_var": 0.047818756103515624, + "learning_rate": 0.00048, + "loss": 58.3357, + "step": 24 + }, + { + "crossentropy": 2.8159505128860474, + "epoch": 0.025, + "grad_norm": 0.7890625, + "grad_norm_var": 0.02467625935872396, + "learning_rate": 0.0005, + "loss": 56.4528, + "step": 25 + }, + { + "crossentropy": 2.786083936691284, + "epoch": 0.026, + "grad_norm": 0.79296875, + "grad_norm_var": 0.01730187733968099, + "learning_rate": 0.0005200000000000001, + "loss": 55.865, + "step": 26 + }, + { + "crossentropy": 2.878562092781067, + "epoch": 0.027, + "grad_norm": 0.80078125, + "grad_norm_var": 0.009134928385416666, + "learning_rate": 0.00054, + "loss": 57.3279, + "step": 27 + }, + { + "crossentropy": 2.8583030700683594, + "epoch": 0.028, + "grad_norm": 0.78515625, + "grad_norm_var": 0.005572954813639323, + "learning_rate": 0.0005600000000000001, + "loss": 56.4947, + "step": 28 + }, + { + "crossentropy": 2.867052912712097, + "epoch": 0.029, + "grad_norm": 0.828125, + "grad_norm_var": 0.003748003641764323, + "learning_rate": 0.00058, + "loss": 58.2363, + "step": 29 + }, + { + "crossentropy": 2.880504012107849, + "epoch": 0.03, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0036615371704101563, + "learning_rate": 0.0006, + "loss": 57.2681, + "step": 30 + }, + { + "crossentropy": 2.8287140130996704, + "epoch": 0.031, + "grad_norm": 0.76953125, + "grad_norm_var": 0.003290239969889323, + "learning_rate": 0.00062, + "loss": 56.6969, + "step": 31 + }, + { + "crossentropy": 2.8504087924957275, + "epoch": 0.032, + "grad_norm": 0.75, + "grad_norm_var": 0.002397600809733073, + "learning_rate": 0.00064, + "loss": 57.0567, + "step": 32 + }, + { + "crossentropy": 2.830446481704712, + "epoch": 0.033, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0013933817545572916, + "learning_rate": 0.00066, + "loss": 55.9364, + "step": 33 + }, + { + "crossentropy": 2.805998682975769, + "epoch": 0.034, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0011288960774739583, + "learning_rate": 0.00068, + "loss": 57.0045, + "step": 34 + }, + { + "crossentropy": 2.8322499990463257, + "epoch": 0.035, + "grad_norm": 0.765625, + "grad_norm_var": 0.0006845474243164062, + "learning_rate": 0.0007, + "loss": 56.6746, + "step": 35 + }, + { + "crossentropy": 2.978684902191162, + "epoch": 0.036, + "grad_norm": 0.83203125, + "grad_norm_var": 0.0005121231079101562, + "learning_rate": 0.0007199999999999999, + "loss": 58.4334, + "step": 36 + }, + { + "crossentropy": 2.847362518310547, + "epoch": 0.037, + "grad_norm": 0.78515625, + "grad_norm_var": 0.000498199462890625, + "learning_rate": 0.00074, + "loss": 56.7639, + "step": 37 + }, + { + "crossentropy": 2.8229883909225464, + "epoch": 0.038, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0005136489868164063, + "learning_rate": 0.00076, + "loss": 55.6415, + "step": 38 + }, + { + "crossentropy": 2.813721776008606, + "epoch": 0.039, + "grad_norm": 0.75, + "grad_norm_var": 0.0005645116170247395, + "learning_rate": 0.0007800000000000001, + "loss": 58.0355, + "step": 39 + }, + { + "crossentropy": 2.755218267440796, + "epoch": 0.04, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0006589253743489583, + "learning_rate": 0.0008, + "loss": 54.858, + "step": 40 + }, + { + "crossentropy": 2.842182993888855, + "epoch": 0.041, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0006825129191080729, + "learning_rate": 0.00082, + "loss": 56.0784, + "step": 41 + }, + { + "crossentropy": 2.9310812950134277, + "epoch": 0.042, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0006772359212239583, + "learning_rate": 0.00084, + "loss": 58.2136, + "step": 42 + }, + { + "crossentropy": 2.890253186225891, + "epoch": 0.043, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0006548563639322916, + "learning_rate": 0.00086, + "loss": 56.9909, + "step": 43 + }, + { + "crossentropy": 2.967428684234619, + "epoch": 0.044, + "grad_norm": 0.75, + "grad_norm_var": 0.0007023493448893229, + "learning_rate": 0.00088, + "loss": 56.9546, + "step": 44 + }, + { + "crossentropy": 2.779818534851074, + "epoch": 0.045, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0005294164021809896, + "learning_rate": 0.0009000000000000001, + "loss": 56.4747, + "step": 45 + }, + { + "crossentropy": 2.9322011470794678, + "epoch": 0.046, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0005736668904622396, + "learning_rate": 0.00092, + "loss": 58.0048, + "step": 46 + }, + { + "crossentropy": 2.796338438987732, + "epoch": 0.047, + "grad_norm": 0.765625, + "grad_norm_var": 0.0005777994791666667, + "learning_rate": 0.00094, + "loss": 56.074, + "step": 47 + }, + { + "crossentropy": 2.8237509727478027, + "epoch": 0.048, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0005355199178059896, + "learning_rate": 0.00096, + "loss": 56.0959, + "step": 48 + }, + { + "crossentropy": 2.9482001066207886, + "epoch": 0.049, + "grad_norm": 0.75, + "grad_norm_var": 0.0005673726399739583, + "learning_rate": 0.00098, + "loss": 57.4375, + "step": 49 + }, + { + "crossentropy": 2.8411340713500977, + "epoch": 0.05, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0005731582641601562, + "learning_rate": 0.001, + "loss": 56.8031, + "step": 50 + }, + { + "crossentropy": 2.8085217475891113, + "epoch": 0.051, + "grad_norm": 0.80859375, + "grad_norm_var": 0.0006284077962239583, + "learning_rate": 0.0009989473684210526, + "loss": 56.6429, + "step": 51 + }, + { + "crossentropy": 2.884308099746704, + "epoch": 0.052, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0004330952962239583, + "learning_rate": 0.0009978947368421054, + "loss": 57.8023, + "step": 52 + }, + { + "crossentropy": 2.89777672290802, + "epoch": 0.053, + "grad_norm": 0.765625, + "grad_norm_var": 0.00043277740478515626, + "learning_rate": 0.000996842105263158, + "loss": 58.1485, + "step": 53 + }, + { + "crossentropy": 2.833405017852783, + "epoch": 0.054, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00036869049072265627, + "learning_rate": 0.0009957894736842105, + "loss": 56.4035, + "step": 54 + }, + { + "crossentropy": 2.898597002029419, + "epoch": 0.055, + "grad_norm": 0.8125, + "grad_norm_var": 0.00042362213134765624, + "learning_rate": 0.000994736842105263, + "loss": 58.3541, + "step": 55 + }, + { + "crossentropy": 2.83421790599823, + "epoch": 0.056, + "grad_norm": 0.765625, + "grad_norm_var": 0.0003679911295572917, + "learning_rate": 0.0009936842105263159, + "loss": 56.4192, + "step": 56 + }, + { + "crossentropy": 2.8999528884887695, + "epoch": 0.057, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0003794352213541667, + "learning_rate": 0.0009926315789473685, + "loss": 58.0858, + "step": 57 + }, + { + "crossentropy": 2.992220401763916, + "epoch": 0.058, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00040384928385416664, + "learning_rate": 0.000991578947368421, + "loss": 59.5004, + "step": 58 + }, + { + "crossentropy": 2.8451712131500244, + "epoch": 0.059, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00046564737955729165, + "learning_rate": 0.0009905263157894738, + "loss": 56.6674, + "step": 59 + }, + { + "crossentropy": 2.8718665838241577, + "epoch": 0.06, + "grad_norm": 0.78125, + "grad_norm_var": 0.00041478474934895834, + "learning_rate": 0.0009894736842105264, + "loss": 56.9806, + "step": 60 + }, + { + "crossentropy": 2.9184417724609375, + "epoch": 0.061, + "grad_norm": 0.765625, + "grad_norm_var": 0.0004170735677083333, + "learning_rate": 0.000988421052631579, + "loss": 57.6043, + "step": 61 + }, + { + "crossentropy": 2.834872841835022, + "epoch": 0.062, + "grad_norm": 0.7421875, + "grad_norm_var": 0.00044854482014973957, + "learning_rate": 0.0009873684210526315, + "loss": 55.8379, + "step": 62 + }, + { + "crossentropy": 2.9252291917800903, + "epoch": 0.063, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0004607518513997396, + "learning_rate": 0.0009863157894736843, + "loss": 57.7051, + "step": 63 + }, + { + "crossentropy": 2.7089247703552246, + "epoch": 0.064, + "grad_norm": 0.78125, + "grad_norm_var": 0.0004636128743489583, + "learning_rate": 0.000985263157894737, + "loss": 55.8377, + "step": 64 + }, + { + "crossentropy": 2.8316437005996704, + "epoch": 1.001, + "grad_norm": 0.75390625, + "grad_norm_var": 0.00044040679931640626, + "learning_rate": 0.0009842105263157895, + "loss": 56.5235, + "step": 65 + }, + { + "crossentropy": 2.881982922554016, + "epoch": 1.002, + "grad_norm": 0.7890625, + "grad_norm_var": 0.00037333170572916664, + "learning_rate": 0.000983157894736842, + "loss": 56.9903, + "step": 66 + }, + { + "crossentropy": 2.8200029134750366, + "epoch": 1.003, + "grad_norm": 0.796875, + "grad_norm_var": 0.0004017512003580729, + "learning_rate": 0.0009821052631578948, + "loss": 56.6703, + "step": 67 + }, + { + "crossentropy": 2.7705549001693726, + "epoch": 1.004, + "grad_norm": 0.78125, + "grad_norm_var": 0.0004012425740559896, + "learning_rate": 0.0009810526315789474, + "loss": 55.9015, + "step": 68 + }, + { + "crossentropy": 2.8487346172332764, + "epoch": 1.005, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005208333333333333, + "learning_rate": 0.00098, + "loss": 56.4856, + "step": 69 + }, + { + "crossentropy": 2.809660792350769, + "epoch": 1.006, + "grad_norm": 0.78515625, + "grad_norm_var": 0.00041802724202473957, + "learning_rate": 0.0009789473684210528, + "loss": 57.3916, + "step": 70 + }, + { + "crossentropy": 2.8564740419387817, + "epoch": 1.007, + "grad_norm": 0.76953125, + "grad_norm_var": 0.00041681925455729166, + "learning_rate": 0.0009778947368421053, + "loss": 55.8133, + "step": 71 + }, + { + "crossentropy": 2.8648808002471924, + "epoch": 1.008, + "grad_norm": 0.79296875, + "grad_norm_var": 0.00038859049479166664, + "learning_rate": 0.000976842105263158, + "loss": 57.4218, + "step": 72 + }, + { + "crossentropy": 2.7834339141845703, + "epoch": 1.009, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0003794352213541667, + "learning_rate": 0.0009757894736842106, + "loss": 56.7101, + "step": 73 + }, + { + "crossentropy": 2.9197006225585938, + "epoch": 1.01, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0003371556599934896, + "learning_rate": 0.0009747368421052632, + "loss": 58.2303, + "step": 74 + }, + { + "crossentropy": 2.8555904626846313, + "epoch": 1.011, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0003509521484375, + "learning_rate": 0.0009736842105263158, + "loss": 56.6662, + "step": 75 + }, + { + "crossentropy": 2.833241581916809, + "epoch": 1.012, + "grad_norm": 0.76171875, + "grad_norm_var": 0.00035444895426432293, + "learning_rate": 0.0009726315789473684, + "loss": 56.8305, + "step": 76 + }, + { + "crossentropy": 2.913132429122925, + "epoch": 1.013, + "grad_norm": 0.80859375, + "grad_norm_var": 0.0003814697265625, + "learning_rate": 0.0009715789473684211, + "loss": 57.7847, + "step": 77 + }, + { + "crossentropy": 2.794333338737488, + "epoch": 1.014, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00044854482014973957, + "learning_rate": 0.0009705263157894737, + "loss": 55.5186, + "step": 78 + }, + { + "crossentropy": 2.7918150424957275, + "epoch": 1.015, + "grad_norm": 0.77734375, + "grad_norm_var": 0.00044530232747395834, + "learning_rate": 0.0009694736842105263, + "loss": 54.9685, + "step": 79 + }, + { + "crossentropy": 2.9973483085632324, + "epoch": 1.016, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0004668553670247396, + "learning_rate": 0.000968421052631579, + "loss": 57.5043, + "step": 80 + }, + { + "crossentropy": 2.6424334049224854, + "epoch": 1.017, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0004668553670247396, + "learning_rate": 0.0009673684210526316, + "loss": 53.7855, + "step": 81 + }, + { + "crossentropy": 2.901629686355591, + "epoch": 1.018, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0005828221638997396, + "learning_rate": 0.0009663157894736843, + "loss": 56.3773, + "step": 82 + }, + { + "crossentropy": 2.9043585062026978, + "epoch": 1.019, + "grad_norm": 0.78125, + "grad_norm_var": 0.0005416234334309895, + "learning_rate": 0.0009652631578947368, + "loss": 56.4689, + "step": 83 + }, + { + "crossentropy": 2.89982807636261, + "epoch": 1.02, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0005360921223958333, + "learning_rate": 0.0009642105263157895, + "loss": 55.5952, + "step": 84 + }, + { + "crossentropy": 2.795522093772888, + "epoch": 1.021, + "grad_norm": 0.78515625, + "grad_norm_var": 0.00044530232747395834, + "learning_rate": 0.0009631578947368421, + "loss": 55.937, + "step": 85 + }, + { + "crossentropy": 2.879517436027527, + "epoch": 1.022, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0004439671834309896, + "learning_rate": 0.0009621052631578947, + "loss": 57.3097, + "step": 86 + }, + { + "crossentropy": 2.977717161178589, + "epoch": 1.023, + "grad_norm": 0.765625, + "grad_norm_var": 0.00044530232747395834, + "learning_rate": 0.0009610526315789475, + "loss": 58.7542, + "step": 87 + }, + { + "crossentropy": 2.6625332832336426, + "epoch": 1.024, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00043919881184895836, + "learning_rate": 0.00096, + "loss": 55.1611, + "step": 88 + }, + { + "crossentropy": 2.8213740587234497, + "epoch": 1.025, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0004577000935872396, + "learning_rate": 0.0009589473684210527, + "loss": 56.8185, + "step": 89 + }, + { + "crossentropy": 2.746438980102539, + "epoch": 1.026, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0004750569661458333, + "learning_rate": 0.0009578947368421053, + "loss": 56.6947, + "step": 90 + }, + { + "crossentropy": 2.6565908193588257, + "epoch": 1.027, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0004607518513997396, + "learning_rate": 0.000956842105263158, + "loss": 54.1427, + "step": 91 + }, + { + "crossentropy": 2.88510262966156, + "epoch": 1.028, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0005299886067708333, + "learning_rate": 0.0009557894736842105, + "loss": 57.024, + "step": 92 + }, + { + "crossentropy": 2.8993020057678223, + "epoch": 1.029, + "grad_norm": 0.78125, + "grad_norm_var": 0.00044498443603515627, + "learning_rate": 0.0009547368421052631, + "loss": 57.8516, + "step": 93 + }, + { + "crossentropy": 2.856235146522522, + "epoch": 1.03, + "grad_norm": 0.8203125, + "grad_norm_var": 0.000510406494140625, + "learning_rate": 0.0009536842105263158, + "loss": 57.8481, + "step": 94 + }, + { + "crossentropy": 2.766387939453125, + "epoch": 1.031, + "grad_norm": 0.8359375, + "grad_norm_var": 0.0007364273071289063, + "learning_rate": 0.0009526315789473684, + "loss": 57.7393, + "step": 95 + }, + { + "crossentropy": 2.7507987022399902, + "epoch": 1.032, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0007262547810872396, + "learning_rate": 0.0009515789473684211, + "loss": 55.9701, + "step": 96 + }, + { + "crossentropy": 2.862091898918152, + "epoch": 1.033, + "grad_norm": 0.765625, + "grad_norm_var": 0.0006955464680989584, + "learning_rate": 0.0009505263157894737, + "loss": 57.3552, + "step": 97 + }, + { + "crossentropy": 2.942552924156189, + "epoch": 1.034, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0004943211873372396, + "learning_rate": 0.0009494736842105264, + "loss": 56.6328, + "step": 98 + }, + { + "crossentropy": 2.8581180572509766, + "epoch": 1.035, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0005063374837239583, + "learning_rate": 0.000948421052631579, + "loss": 57.5714, + "step": 99 + }, + { + "crossentropy": 2.811803102493286, + "epoch": 1.036, + "grad_norm": 0.765625, + "grad_norm_var": 0.0005233128865559896, + "learning_rate": 0.0009473684210526315, + "loss": 56.7149, + "step": 100 + }, + { + "crossentropy": 2.8827518224716187, + "epoch": 1.037, + "grad_norm": 0.796875, + "grad_norm_var": 0.0005368550618489583, + "learning_rate": 0.0009463157894736842, + "loss": 56.9192, + "step": 101 + }, + { + "crossentropy": 2.907082676887512, + "epoch": 1.038, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0004973729451497396, + "learning_rate": 0.0009452631578947368, + "loss": 57.5872, + "step": 102 + }, + { + "crossentropy": 2.859190344810486, + "epoch": 1.039, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0005360921223958333, + "learning_rate": 0.0009442105263157895, + "loss": 55.8119, + "step": 103 + }, + { + "crossentropy": 2.740812063217163, + "epoch": 1.04, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0004851659138997396, + "learning_rate": 0.0009431578947368421, + "loss": 55.4499, + "step": 104 + }, + { + "crossentropy": 2.786709427833557, + "epoch": 1.041, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0005792617797851562, + "learning_rate": 0.0009421052631578948, + "loss": 55.1188, + "step": 105 + }, + { + "crossentropy": 2.8872324228286743, + "epoch": 1.042, + "grad_norm": 0.828125, + "grad_norm_var": 0.0007100423177083333, + "learning_rate": 0.0009410526315789474, + "loss": 58.2194, + "step": 106 + }, + { + "crossentropy": 2.7634663581848145, + "epoch": 1.043, + "grad_norm": 0.734375, + "grad_norm_var": 0.0008664449055989583, + "learning_rate": 0.00094, + "loss": 55.4621, + "step": 107 + }, + { + "crossentropy": 2.874852418899536, + "epoch": 1.044, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0008664449055989583, + "learning_rate": 0.0009389473684210527, + "loss": 57.0353, + "step": 108 + }, + { + "crossentropy": 2.775438666343689, + "epoch": 1.045, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0008864720662434896, + "learning_rate": 0.0009378947368421052, + "loss": 56.4358, + "step": 109 + }, + { + "crossentropy": 2.8654950857162476, + "epoch": 1.046, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0008015950520833333, + "learning_rate": 0.0009368421052631579, + "loss": 57.3299, + "step": 110 + }, + { + "crossentropy": 2.761886715888977, + "epoch": 1.047, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0005812962849934896, + "learning_rate": 0.0009357894736842105, + "loss": 57.1592, + "step": 111 + }, + { + "crossentropy": 2.8443450927734375, + "epoch": 1.048, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0005812962849934896, + "learning_rate": 0.0009347368421052633, + "loss": 56.3252, + "step": 112 + }, + { + "crossentropy": 2.7667864561080933, + "epoch": 1.049, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0005856831868489583, + "learning_rate": 0.0009336842105263158, + "loss": 56.8155, + "step": 113 + }, + { + "crossentropy": 2.8398473262786865, + "epoch": 1.05, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0005757649739583333, + "learning_rate": 0.0009326315789473684, + "loss": 56.5225, + "step": 114 + }, + { + "crossentropy": 2.79670786857605, + "epoch": 1.051, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0005757013956705729, + "learning_rate": 0.0009315789473684211, + "loss": 57.254, + "step": 115 + }, + { + "crossentropy": 2.774913787841797, + "epoch": 1.052, + "grad_norm": 0.796875, + "grad_norm_var": 0.0006113052368164062, + "learning_rate": 0.0009305263157894737, + "loss": 57.1821, + "step": 116 + }, + { + "crossentropy": 2.73682963848114, + "epoch": 1.053, + "grad_norm": 0.765625, + "grad_norm_var": 0.0005757013956705729, + "learning_rate": 0.0009294736842105263, + "loss": 56.0187, + "step": 117 + }, + { + "crossentropy": 2.802118182182312, + "epoch": 1.054, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0005655924479166667, + "learning_rate": 0.0009284210526315789, + "loss": 57.0246, + "step": 118 + }, + { + "crossentropy": 2.833091616630554, + "epoch": 1.055, + "grad_norm": 0.71875, + "grad_norm_var": 0.0007252375284830729, + "learning_rate": 0.0009273684210526316, + "loss": 56.1985, + "step": 119 + }, + { + "crossentropy": 2.892102599143982, + "epoch": 1.056, + "grad_norm": 0.76171875, + "grad_norm_var": 0.00072021484375, + "learning_rate": 0.0009263157894736843, + "loss": 58.5873, + "step": 120 + }, + { + "crossentropy": 2.8181869983673096, + "epoch": 1.057, + "grad_norm": 0.73828125, + "grad_norm_var": 0.000748443603515625, + "learning_rate": 0.0009252631578947368, + "loss": 55.6273, + "step": 121 + }, + { + "crossentropy": 2.8839467763900757, + "epoch": 1.058, + "grad_norm": 0.796875, + "grad_norm_var": 0.0005633036295572916, + "learning_rate": 0.0009242105263157895, + "loss": 57.4793, + "step": 122 + }, + { + "crossentropy": 2.82876455783844, + "epoch": 1.059, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0004954020182291667, + "learning_rate": 0.0009231578947368421, + "loss": 56.5058, + "step": 123 + }, + { + "crossentropy": 2.8746414184570312, + "epoch": 1.06, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0005222956339518229, + "learning_rate": 0.0009221052631578948, + "loss": 56.7531, + "step": 124 + }, + { + "crossentropy": 2.8503822088241577, + "epoch": 1.061, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0005222956339518229, + "learning_rate": 0.0009210526315789473, + "loss": 56.2036, + "step": 125 + }, + { + "crossentropy": 2.736844062805176, + "epoch": 1.062, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005497614542643229, + "learning_rate": 0.00092, + "loss": 56.6791, + "step": 126 + }, + { + "crossentropy": 2.8095351457595825, + "epoch": 1.063, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0005406061808268229, + "learning_rate": 0.0009189473684210526, + "loss": 57.0038, + "step": 127 + }, + { + "crossentropy": 2.8585771322250366, + "epoch": 1.064, + "grad_norm": 0.82421875, + "grad_norm_var": 0.0007313410441080729, + "learning_rate": 0.0009178947368421053, + "loss": 57.2698, + "step": 128 + }, + { + "crossentropy": 2.827934741973877, + "epoch": 2.001, + "grad_norm": 0.7578125, + "grad_norm_var": 0.000925445556640625, + "learning_rate": 0.000916842105263158, + "loss": 55.3524, + "step": 129 + }, + { + "crossentropy": 2.834007978439331, + "epoch": 2.002, + "grad_norm": 0.796875, + "grad_norm_var": 0.00096435546875, + "learning_rate": 0.0009157894736842105, + "loss": 55.6883, + "step": 130 + }, + { + "crossentropy": 2.752839684486389, + "epoch": 2.003, + "grad_norm": 0.7578125, + "grad_norm_var": 0.000937652587890625, + "learning_rate": 0.0009147368421052632, + "loss": 56.9396, + "step": 131 + }, + { + "crossentropy": 2.780048131942749, + "epoch": 2.004, + "grad_norm": 0.765625, + "grad_norm_var": 0.000937652587890625, + "learning_rate": 0.0009136842105263158, + "loss": 55.8962, + "step": 132 + }, + { + "crossentropy": 2.7902239561080933, + "epoch": 2.005, + "grad_norm": 0.7890625, + "grad_norm_var": 0.000937652587890625, + "learning_rate": 0.0009126315789473685, + "loss": 56.2156, + "step": 133 + }, + { + "crossentropy": 2.856339693069458, + "epoch": 2.006, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0007939020792643229, + "learning_rate": 0.000911578947368421, + "loss": 57.4976, + "step": 134 + }, + { + "crossentropy": 2.8085330724716187, + "epoch": 2.007, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0007862726847330729, + "learning_rate": 0.0009105263157894737, + "loss": 56.5116, + "step": 135 + }, + { + "crossentropy": 2.7982712984085083, + "epoch": 2.008, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0006998062133789062, + "learning_rate": 0.0009094736842105264, + "loss": 56.9157, + "step": 136 + }, + { + "crossentropy": 2.8740073442459106, + "epoch": 2.009, + "grad_norm": 0.73828125, + "grad_norm_var": 0.000748443603515625, + "learning_rate": 0.000908421052631579, + "loss": 56.9175, + "step": 137 + }, + { + "crossentropy": 2.849576234817505, + "epoch": 2.01, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0007593154907226563, + "learning_rate": 0.0009073684210526316, + "loss": 56.2422, + "step": 138 + }, + { + "crossentropy": 2.764275550842285, + "epoch": 2.011, + "grad_norm": 0.76171875, + "grad_norm_var": 0.000742022196451823, + "learning_rate": 0.0009063157894736842, + "loss": 55.6254, + "step": 139 + }, + { + "crossentropy": 2.868152141571045, + "epoch": 2.012, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0007593154907226563, + "learning_rate": 0.0009052631578947369, + "loss": 55.5984, + "step": 140 + }, + { + "crossentropy": 2.7295836210250854, + "epoch": 2.013, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0006392796834309896, + "learning_rate": 0.0009042105263157895, + "loss": 55.8961, + "step": 141 + }, + { + "crossentropy": 2.8953765630722046, + "epoch": 2.014, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0007932027180989583, + "learning_rate": 0.0009031578947368422, + "loss": 57.4738, + "step": 142 + }, + { + "crossentropy": 2.8890058994293213, + "epoch": 2.015, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0006528218587239583, + "learning_rate": 0.0009021052631578947, + "loss": 56.5425, + "step": 143 + }, + { + "crossentropy": 2.7584519386291504, + "epoch": 2.016, + "grad_norm": 0.74609375, + "grad_norm_var": 0.000510406494140625, + "learning_rate": 0.0009010526315789473, + "loss": 55.3745, + "step": 144 + }, + { + "crossentropy": 2.9137370586395264, + "epoch": 2.017, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0005365371704101563, + "learning_rate": 0.0009000000000000001, + "loss": 57.0554, + "step": 145 + }, + { + "crossentropy": 2.836198091506958, + "epoch": 2.018, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00048160552978515625, + "learning_rate": 0.0008989473684210527, + "loss": 55.6138, + "step": 146 + }, + { + "crossentropy": 2.8125778436660767, + "epoch": 2.019, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00048160552978515625, + "learning_rate": 0.0008978947368421053, + "loss": 56.4268, + "step": 147 + }, + { + "crossentropy": 2.9599599838256836, + "epoch": 2.02, + "grad_norm": 0.78125, + "grad_norm_var": 0.0004943211873372396, + "learning_rate": 0.0008968421052631579, + "loss": 57.8099, + "step": 148 + }, + { + "crossentropy": 2.9571365118026733, + "epoch": 2.021, + "grad_norm": 0.77734375, + "grad_norm_var": 0.00046971638997395836, + "learning_rate": 0.0008957894736842106, + "loss": 58.1597, + "step": 149 + }, + { + "crossentropy": 2.8628395795822144, + "epoch": 2.022, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0005035400390625, + "learning_rate": 0.0008947368421052632, + "loss": 58.4094, + "step": 150 + }, + { + "crossentropy": 2.8677598237991333, + "epoch": 2.023, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0005136489868164063, + "learning_rate": 0.0008936842105263157, + "loss": 57.5826, + "step": 151 + }, + { + "crossentropy": 2.8962247371673584, + "epoch": 2.024, + "grad_norm": 0.78125, + "grad_norm_var": 0.0005185445149739583, + "learning_rate": 0.0008926315789473684, + "loss": 57.425, + "step": 152 + }, + { + "crossentropy": 2.8157013654708862, + "epoch": 2.025, + "grad_norm": 0.765625, + "grad_norm_var": 0.00044956207275390623, + "learning_rate": 0.0008915789473684211, + "loss": 54.5755, + "step": 153 + }, + { + "crossentropy": 2.874367117881775, + "epoch": 2.026, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00045413970947265624, + "learning_rate": 0.0008905263157894738, + "loss": 55.1411, + "step": 154 + }, + { + "crossentropy": 2.78195583820343, + "epoch": 2.027, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00045166015625, + "learning_rate": 0.0008894736842105263, + "loss": 55.6419, + "step": 155 + }, + { + "crossentropy": 2.7602696418762207, + "epoch": 2.028, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0004150390625, + "learning_rate": 0.000888421052631579, + "loss": 55.7835, + "step": 156 + }, + { + "crossentropy": 2.785650372505188, + "epoch": 2.029, + "grad_norm": 0.77734375, + "grad_norm_var": 0.00037740071614583335, + "learning_rate": 0.0008873684210526316, + "loss": 56.6855, + "step": 157 + }, + { + "crossentropy": 2.9064029455184937, + "epoch": 2.03, + "grad_norm": 0.8671875, + "grad_norm_var": 0.0008626302083333333, + "learning_rate": 0.0008863157894736842, + "loss": 57.8286, + "step": 158 + }, + { + "crossentropy": 2.751049518585205, + "epoch": 2.031, + "grad_norm": 0.75, + "grad_norm_var": 0.0008773167928059895, + "learning_rate": 0.0008852631578947368, + "loss": 55.0993, + "step": 159 + }, + { + "crossentropy": 2.914052367210388, + "epoch": 2.032, + "grad_norm": 0.78125, + "grad_norm_var": 0.0008298238118489583, + "learning_rate": 0.0008842105263157894, + "loss": 57.5343, + "step": 160 + }, + { + "crossentropy": 2.799962878227234, + "epoch": 2.033, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0009286880493164062, + "learning_rate": 0.0008831578947368422, + "loss": 55.8085, + "step": 161 + }, + { + "crossentropy": 2.844335198402405, + "epoch": 2.034, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0009297688802083333, + "learning_rate": 0.0008821052631578948, + "loss": 57.7179, + "step": 162 + }, + { + "crossentropy": 2.914214015007019, + "epoch": 2.035, + "grad_norm": 0.8125, + "grad_norm_var": 0.0010027567545572917, + "learning_rate": 0.0008810526315789475, + "loss": 56.2728, + "step": 163 + }, + { + "crossentropy": 2.8970110416412354, + "epoch": 2.036, + "grad_norm": 0.80859375, + "grad_norm_var": 0.001065508524576823, + "learning_rate": 0.00088, + "loss": 57.5116, + "step": 164 + }, + { + "crossentropy": 2.953248143196106, + "epoch": 2.037, + "grad_norm": 0.765625, + "grad_norm_var": 0.0010759989420572917, + "learning_rate": 0.0008789473684210526, + "loss": 59.0574, + "step": 165 + }, + { + "crossentropy": 2.8602688312530518, + "epoch": 2.038, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0010390599568684896, + "learning_rate": 0.0008778947368421053, + "loss": 56.9093, + "step": 166 + }, + { + "crossentropy": 2.8289544582366943, + "epoch": 2.039, + "grad_norm": 0.765625, + "grad_norm_var": 0.0010238011678059896, + "learning_rate": 0.0008768421052631579, + "loss": 55.8569, + "step": 167 + }, + { + "crossentropy": 2.809374690055847, + "epoch": 2.04, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0010355631510416666, + "learning_rate": 0.0008757894736842105, + "loss": 57.3663, + "step": 168 + }, + { + "crossentropy": 2.753124713897705, + "epoch": 2.041, + "grad_norm": 0.82421875, + "grad_norm_var": 0.0011738459269205728, + "learning_rate": 0.0008747368421052632, + "loss": 55.8763, + "step": 169 + }, + { + "crossentropy": 2.842271566390991, + "epoch": 2.042, + "grad_norm": 0.78125, + "grad_norm_var": 0.0010965983072916666, + "learning_rate": 0.0008736842105263159, + "loss": 56.9834, + "step": 170 + }, + { + "crossentropy": 2.672803044319153, + "epoch": 2.043, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0011281331380208334, + "learning_rate": 0.0008726315789473685, + "loss": 54.2653, + "step": 171 + }, + { + "crossentropy": 2.887640357017517, + "epoch": 2.044, + "grad_norm": 0.83984375, + "grad_norm_var": 0.0013163248697916667, + "learning_rate": 0.000871578947368421, + "loss": 57.3367, + "step": 172 + }, + { + "crossentropy": 2.95772647857666, + "epoch": 2.045, + "grad_norm": 0.78125, + "grad_norm_var": 0.0013132095336914062, + "learning_rate": 0.0008705263157894737, + "loss": 58.1996, + "step": 173 + }, + { + "crossentropy": 2.9062867164611816, + "epoch": 2.046, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0008646647135416666, + "learning_rate": 0.0008694736842105263, + "loss": 56.2754, + "step": 174 + }, + { + "crossentropy": 2.816689133644104, + "epoch": 2.047, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0008359273274739583, + "learning_rate": 0.000868421052631579, + "loss": 56.8248, + "step": 175 + }, + { + "crossentropy": 2.7304184436798096, + "epoch": 2.048, + "grad_norm": 0.75, + "grad_norm_var": 0.0008989969889322916, + "learning_rate": 0.0008673684210526315, + "loss": 56.0621, + "step": 176 + }, + { + "crossentropy": 2.8292678594589233, + "epoch": 2.049, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0006998062133789062, + "learning_rate": 0.0008663157894736843, + "loss": 57.5406, + "step": 177 + }, + { + "crossentropy": 2.7578535079956055, + "epoch": 2.05, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0007293701171875, + "learning_rate": 0.0008652631578947369, + "loss": 55.5626, + "step": 178 + }, + { + "crossentropy": 2.8397985696792603, + "epoch": 2.051, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0006955464680989584, + "learning_rate": 0.0008642105263157895, + "loss": 56.7329, + "step": 179 + }, + { + "crossentropy": 2.8631927967071533, + "epoch": 2.052, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0006467183430989583, + "learning_rate": 0.0008631578947368422, + "loss": 56.4729, + "step": 180 + }, + { + "crossentropy": 2.829651117324829, + "epoch": 2.053, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0006398518880208333, + "learning_rate": 0.0008621052631578947, + "loss": 55.3689, + "step": 181 + }, + { + "crossentropy": 2.866907000541687, + "epoch": 2.054, + "grad_norm": 0.796875, + "grad_norm_var": 0.0006650288899739584, + "learning_rate": 0.0008610526315789474, + "loss": 57.1882, + "step": 182 + }, + { + "crossentropy": 2.833262324333191, + "epoch": 2.055, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0007375081380208334, + "learning_rate": 0.00086, + "loss": 57.2365, + "step": 183 + }, + { + "crossentropy": 2.846835970878601, + "epoch": 2.056, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0007222493489583334, + "learning_rate": 0.0008589473684210527, + "loss": 57.233, + "step": 184 + }, + { + "crossentropy": 2.7716782093048096, + "epoch": 2.057, + "grad_norm": 0.78125, + "grad_norm_var": 0.0005690892537434896, + "learning_rate": 0.0008578947368421052, + "loss": 55.5457, + "step": 185 + }, + { + "crossentropy": 2.8875041007995605, + "epoch": 2.058, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0005666097005208333, + "learning_rate": 0.0008568421052631579, + "loss": 57.5646, + "step": 186 + }, + { + "crossentropy": 2.9292314052581787, + "epoch": 2.059, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0005492528279622395, + "learning_rate": 0.0008557894736842106, + "loss": 58.1659, + "step": 187 + }, + { + "crossentropy": 2.877217411994934, + "epoch": 2.06, + "grad_norm": 0.77734375, + "grad_norm_var": 0.00025424957275390627, + "learning_rate": 0.0008547368421052632, + "loss": 57.4952, + "step": 188 + }, + { + "crossentropy": 2.9632803201675415, + "epoch": 2.061, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0002684911092122396, + "learning_rate": 0.0008536842105263158, + "loss": 56.5015, + "step": 189 + }, + { + "crossentropy": 2.754631280899048, + "epoch": 2.062, + "grad_norm": 0.734375, + "grad_norm_var": 0.000286865234375, + "learning_rate": 0.0008526315789473684, + "loss": 56.8266, + "step": 190 + }, + { + "crossentropy": 2.7981419563293457, + "epoch": 2.063, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0003631591796875, + "learning_rate": 0.0008515789473684211, + "loss": 55.2874, + "step": 191 + }, + { + "crossentropy": 2.779536008834839, + "epoch": 2.064, + "grad_norm": 0.77734375, + "grad_norm_var": 0.00033512115478515623, + "learning_rate": 0.0008505263157894737, + "loss": 56.5862, + "step": 192 + }, + { + "crossentropy": 2.8000186681747437, + "epoch": 3.001, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0003203709920247396, + "learning_rate": 0.0008494736842105262, + "loss": 55.9334, + "step": 193 + }, + { + "crossentropy": 2.8197896480560303, + "epoch": 3.002, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0003615697224934896, + "learning_rate": 0.000848421052631579, + "loss": 56.534, + "step": 194 + }, + { + "crossentropy": 2.788080930709839, + "epoch": 3.003, + "grad_norm": 0.75, + "grad_norm_var": 0.00039265950520833335, + "learning_rate": 0.0008473684210526316, + "loss": 55.8295, + "step": 195 + }, + { + "crossentropy": 2.658084750175476, + "epoch": 3.004, + "grad_norm": 0.7421875, + "grad_norm_var": 0.00046183268229166665, + "learning_rate": 0.0008463157894736843, + "loss": 54.5686, + "step": 196 + }, + { + "crossentropy": 2.9385114908218384, + "epoch": 3.005, + "grad_norm": 0.828125, + "grad_norm_var": 0.0006205240885416666, + "learning_rate": 0.0008452631578947369, + "loss": 59.5615, + "step": 197 + }, + { + "crossentropy": 2.836456775665283, + "epoch": 3.006, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0005666097005208333, + "learning_rate": 0.0008442105263157895, + "loss": 55.7351, + "step": 198 + }, + { + "crossentropy": 2.8391683101654053, + "epoch": 3.007, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0005879084269205729, + "learning_rate": 0.0008431578947368421, + "loss": 56.6525, + "step": 199 + }, + { + "crossentropy": 2.840343952178955, + "epoch": 3.008, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0007548014322916667, + "learning_rate": 0.0008421052631578947, + "loss": 56.1, + "step": 200 + }, + { + "crossentropy": 2.7855753898620605, + "epoch": 3.009, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0007525126139322917, + "learning_rate": 0.0008410526315789474, + "loss": 55.2499, + "step": 201 + }, + { + "crossentropy": 2.915839195251465, + "epoch": 3.01, + "grad_norm": 0.8359375, + "grad_norm_var": 0.001015154520670573, + "learning_rate": 0.00084, + "loss": 58.2427, + "step": 202 + }, + { + "crossentropy": 2.785078763961792, + "epoch": 3.011, + "grad_norm": 0.77734375, + "grad_norm_var": 0.001015154520670573, + "learning_rate": 0.0008389473684210527, + "loss": 57.127, + "step": 203 + }, + { + "crossentropy": 2.7886747121810913, + "epoch": 3.012, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0010027567545572917, + "learning_rate": 0.0008378947368421053, + "loss": 55.473, + "step": 204 + }, + { + "crossentropy": 2.8934919834136963, + "epoch": 3.013, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0009052912394205729, + "learning_rate": 0.000836842105263158, + "loss": 56.9954, + "step": 205 + }, + { + "crossentropy": 2.8888269662857056, + "epoch": 3.014, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0008697509765625, + "learning_rate": 0.0008357894736842105, + "loss": 56.4975, + "step": 206 + }, + { + "crossentropy": 2.8736512660980225, + "epoch": 3.015, + "grad_norm": 0.75390625, + "grad_norm_var": 0.000888824462890625, + "learning_rate": 0.0008347368421052631, + "loss": 57.8767, + "step": 207 + }, + { + "crossentropy": 2.808267593383789, + "epoch": 3.016, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0008992513020833333, + "learning_rate": 0.0008336842105263158, + "loss": 55.929, + "step": 208 + }, + { + "crossentropy": 2.927086591720581, + "epoch": 3.017, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0009684244791666667, + "learning_rate": 0.0008326315789473684, + "loss": 57.214, + "step": 209 + }, + { + "crossentropy": 2.742948889732361, + "epoch": 3.018, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0009012222290039062, + "learning_rate": 0.0008315789473684212, + "loss": 55.9185, + "step": 210 + }, + { + "crossentropy": 2.879304528236389, + "epoch": 3.019, + "grad_norm": 0.80859375, + "grad_norm_var": 0.000946044921875, + "learning_rate": 0.0008305263157894737, + "loss": 57.5414, + "step": 211 + }, + { + "crossentropy": 2.866540312767029, + "epoch": 3.02, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0009027481079101563, + "learning_rate": 0.0008294736842105264, + "loss": 55.6362, + "step": 212 + }, + { + "crossentropy": 2.8433879613876343, + "epoch": 3.021, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0007104873657226562, + "learning_rate": 0.000828421052631579, + "loss": 56.9735, + "step": 213 + }, + { + "crossentropy": 2.8319772481918335, + "epoch": 3.022, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0007104873657226562, + "learning_rate": 0.0008273684210526315, + "loss": 56.2473, + "step": 214 + }, + { + "crossentropy": 2.781643509864807, + "epoch": 3.023, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0006955464680989584, + "learning_rate": 0.0008263157894736842, + "loss": 55.011, + "step": 215 + }, + { + "crossentropy": 2.8087105751037598, + "epoch": 3.024, + "grad_norm": 0.80859375, + "grad_norm_var": 0.0005696614583333334, + "learning_rate": 0.0008252631578947368, + "loss": 56.3954, + "step": 216 + }, + { + "crossentropy": 3.0052173137664795, + "epoch": 3.025, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0005900065104166666, + "learning_rate": 0.0008242105263157895, + "loss": 58.9994, + "step": 217 + }, + { + "crossentropy": 2.844808340072632, + "epoch": 3.026, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0004018147786458333, + "learning_rate": 0.0008231578947368422, + "loss": 56.4327, + "step": 218 + }, + { + "crossentropy": 2.7618932723999023, + "epoch": 3.027, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005330403645833333, + "learning_rate": 0.0008221052631578948, + "loss": 55.3659, + "step": 219 + }, + { + "crossentropy": 2.800921320915222, + "epoch": 3.028, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0006103515625, + "learning_rate": 0.0008210526315789474, + "loss": 55.6769, + "step": 220 + }, + { + "crossentropy": 2.724760413169861, + "epoch": 3.029, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0006243387858072916, + "learning_rate": 0.00082, + "loss": 54.9201, + "step": 221 + }, + { + "crossentropy": 2.781510591506958, + "epoch": 3.03, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0006039937337239584, + "learning_rate": 0.0008189473684210527, + "loss": 55.7819, + "step": 222 + }, + { + "crossentropy": 2.776448607444763, + "epoch": 3.031, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0006408055623372395, + "learning_rate": 0.0008178947368421052, + "loss": 55.0119, + "step": 223 + }, + { + "crossentropy": 2.7627722024917603, + "epoch": 3.032, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0006276448567708333, + "learning_rate": 0.0008168421052631579, + "loss": 55.1523, + "step": 224 + }, + { + "crossentropy": 2.800988793373108, + "epoch": 3.033, + "grad_norm": 0.796875, + "grad_norm_var": 0.000595855712890625, + "learning_rate": 0.0008157894736842105, + "loss": 56.915, + "step": 225 + }, + { + "crossentropy": 2.8703144788742065, + "epoch": 3.034, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0006692886352539062, + "learning_rate": 0.0008147368421052633, + "loss": 56.9158, + "step": 226 + }, + { + "crossentropy": 2.82321560382843, + "epoch": 3.035, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0005971272786458333, + "learning_rate": 0.0008136842105263158, + "loss": 56.0276, + "step": 227 + }, + { + "crossentropy": 2.7239447832107544, + "epoch": 3.036, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0005777994791666667, + "learning_rate": 0.0008126315789473684, + "loss": 55.3433, + "step": 228 + }, + { + "crossentropy": 2.8542327880859375, + "epoch": 3.037, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0005971272786458333, + "learning_rate": 0.0008115789473684211, + "loss": 56.0984, + "step": 229 + }, + { + "crossentropy": 2.6775788068771362, + "epoch": 3.038, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0005818684895833333, + "learning_rate": 0.0008105263157894737, + "loss": 56.2637, + "step": 230 + }, + { + "crossentropy": 2.818870425224304, + "epoch": 3.039, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0006266276041666667, + "learning_rate": 0.0008094736842105264, + "loss": 56.7463, + "step": 231 + }, + { + "crossentropy": 2.831796646118164, + "epoch": 3.04, + "grad_norm": 0.796875, + "grad_norm_var": 0.0005772272745768229, + "learning_rate": 0.0008084210526315789, + "loss": 57.8099, + "step": 232 + }, + { + "crossentropy": 2.789393901824951, + "epoch": 3.041, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0005451838175455729, + "learning_rate": 0.0008073684210526316, + "loss": 55.6014, + "step": 233 + }, + { + "crossentropy": 2.873471736907959, + "epoch": 3.042, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0005388895670572917, + "learning_rate": 0.0008063157894736842, + "loss": 55.5173, + "step": 234 + }, + { + "crossentropy": 2.758022665977478, + "epoch": 3.043, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0004557291666666667, + "learning_rate": 0.0008052631578947369, + "loss": 55.6085, + "step": 235 + }, + { + "crossentropy": 2.940276026725769, + "epoch": 3.044, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0003865559895833333, + "learning_rate": 0.0008042105263157895, + "loss": 57.4984, + "step": 236 + }, + { + "crossentropy": 2.8459670543670654, + "epoch": 3.045, + "grad_norm": 0.8203125, + "grad_norm_var": 0.0005065282185872396, + "learning_rate": 0.0008031578947368421, + "loss": 57.8657, + "step": 237 + }, + { + "crossentropy": 2.82193660736084, + "epoch": 3.046, + "grad_norm": 0.7734375, + "grad_norm_var": 0.000504302978515625, + "learning_rate": 0.0008021052631578948, + "loss": 57.3414, + "step": 238 + }, + { + "crossentropy": 2.692602515220642, + "epoch": 3.047, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00048770904541015623, + "learning_rate": 0.0008010526315789474, + "loss": 54.8326, + "step": 239 + }, + { + "crossentropy": 2.7393832206726074, + "epoch": 3.048, + "grad_norm": 0.796875, + "grad_norm_var": 0.0005136489868164063, + "learning_rate": 0.0008, + "loss": 55.2464, + "step": 240 + }, + { + "crossentropy": 2.8725425004959106, + "epoch": 3.049, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0006184895833333333, + "learning_rate": 0.0007989473684210526, + "loss": 56.4413, + "step": 241 + }, + { + "crossentropy": 3.001668334007263, + "epoch": 3.05, + "grad_norm": 0.78125, + "grad_norm_var": 0.0005551656087239583, + "learning_rate": 0.0007978947368421052, + "loss": 57.9582, + "step": 242 + }, + { + "crossentropy": 2.92042338848114, + "epoch": 3.051, + "grad_norm": 0.78125, + "grad_norm_var": 0.0005411783854166667, + "learning_rate": 0.000796842105263158, + "loss": 58.8934, + "step": 243 + }, + { + "crossentropy": 2.869771957397461, + "epoch": 3.052, + "grad_norm": 0.76171875, + "grad_norm_var": 0.000547027587890625, + "learning_rate": 0.0007957894736842105, + "loss": 56.5323, + "step": 244 + }, + { + "crossentropy": 3.0153883695602417, + "epoch": 3.053, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0005278905232747396, + "learning_rate": 0.0007947368421052632, + "loss": 57.5091, + "step": 245 + }, + { + "crossentropy": 2.887974262237549, + "epoch": 3.054, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0005429585774739584, + "learning_rate": 0.0007936842105263158, + "loss": 57.8712, + "step": 246 + }, + { + "crossentropy": 2.864806890487671, + "epoch": 3.055, + "grad_norm": 0.765625, + "grad_norm_var": 0.0005044937133789062, + "learning_rate": 0.0007926315789473685, + "loss": 56.7738, + "step": 247 + }, + { + "crossentropy": 2.8489774465560913, + "epoch": 3.056, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00045871734619140625, + "learning_rate": 0.000791578947368421, + "loss": 57.5012, + "step": 248 + }, + { + "crossentropy": 2.867731213569641, + "epoch": 3.057, + "grad_norm": 0.78515625, + "grad_norm_var": 0.00043074289957682293, + "learning_rate": 0.0007905263157894736, + "loss": 57.2708, + "step": 249 + }, + { + "crossentropy": 2.8339585065841675, + "epoch": 3.058, + "grad_norm": 0.81640625, + "grad_norm_var": 0.000551287333170573, + "learning_rate": 0.0007894736842105263, + "loss": 56.8616, + "step": 250 + }, + { + "crossentropy": 2.9042646884918213, + "epoch": 3.059, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0005238215128580729, + "learning_rate": 0.000788421052631579, + "loss": 57.7641, + "step": 251 + }, + { + "crossentropy": 2.86965274810791, + "epoch": 3.06, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0005197525024414062, + "learning_rate": 0.0007873684210526317, + "loss": 56.565, + "step": 252 + }, + { + "crossentropy": 2.9171911478042603, + "epoch": 3.061, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0003916422526041667, + "learning_rate": 0.0007863157894736842, + "loss": 59.3709, + "step": 253 + }, + { + "crossentropy": 2.7907087802886963, + "epoch": 3.062, + "grad_norm": 0.82421875, + "grad_norm_var": 0.0005462010701497396, + "learning_rate": 0.0007852631578947369, + "loss": 56.1077, + "step": 254 + }, + { + "crossentropy": 2.810297727584839, + "epoch": 3.063, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0004821141560872396, + "learning_rate": 0.0007842105263157895, + "loss": 57.7457, + "step": 255 + }, + { + "crossentropy": 2.8475112915039062, + "epoch": 3.064, + "grad_norm": 0.82421875, + "grad_norm_var": 0.0005938212076822916, + "learning_rate": 0.000783157894736842, + "loss": 55.2254, + "step": 256 + }, + { + "crossentropy": 2.777912735939026, + "epoch": 4.001, + "grad_norm": 0.78125, + "grad_norm_var": 0.0005144755045572917, + "learning_rate": 0.0007821052631578947, + "loss": 56.0005, + "step": 257 + }, + { + "crossentropy": 2.8968677520751953, + "epoch": 4.002, + "grad_norm": 0.765625, + "grad_norm_var": 0.000540924072265625, + "learning_rate": 0.0007810526315789473, + "loss": 55.7583, + "step": 258 + }, + { + "crossentropy": 2.9626487493515015, + "epoch": 4.003, + "grad_norm": 0.78515625, + "grad_norm_var": 0.00050048828125, + "learning_rate": 0.0007800000000000001, + "loss": 57.9443, + "step": 259 + }, + { + "crossentropy": 2.8472225666046143, + "epoch": 4.004, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0004628499348958333, + "learning_rate": 0.0007789473684210527, + "loss": 56.6347, + "step": 260 + }, + { + "crossentropy": 2.9540131092071533, + "epoch": 4.005, + "grad_norm": 0.75, + "grad_norm_var": 0.0005538304646809896, + "learning_rate": 0.0007778947368421053, + "loss": 57.5122, + "step": 261 + }, + { + "crossentropy": 2.801051616668701, + "epoch": 4.006, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0005787531534830729, + "learning_rate": 0.0007768421052631579, + "loss": 56.3798, + "step": 262 + }, + { + "crossentropy": 2.816064238548279, + "epoch": 4.007, + "grad_norm": 0.765625, + "grad_norm_var": 0.0005950291951497395, + "learning_rate": 0.0007757894736842105, + "loss": 55.7209, + "step": 263 + }, + { + "crossentropy": 2.7781593799591064, + "epoch": 4.008, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0006285985310872396, + "learning_rate": 0.0007747368421052632, + "loss": 56.1839, + "step": 264 + }, + { + "crossentropy": 2.8623517751693726, + "epoch": 4.009, + "grad_norm": 0.75, + "grad_norm_var": 0.0006123860677083333, + "learning_rate": 0.0007736842105263157, + "loss": 57.0193, + "step": 265 + }, + { + "crossentropy": 2.950491189956665, + "epoch": 4.01, + "grad_norm": 0.765625, + "grad_norm_var": 0.0006209691365559896, + "learning_rate": 0.0007726315789473684, + "loss": 58.5925, + "step": 266 + }, + { + "crossentropy": 2.855417013168335, + "epoch": 4.011, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0006650288899739584, + "learning_rate": 0.000771578947368421, + "loss": 56.9977, + "step": 267 + }, + { + "crossentropy": 2.7262661457061768, + "epoch": 4.012, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0006621678670247396, + "learning_rate": 0.0007705263157894738, + "loss": 55.8765, + "step": 268 + }, + { + "crossentropy": 2.7855740785598755, + "epoch": 4.013, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0005935033162434896, + "learning_rate": 0.0007694736842105264, + "loss": 55.4868, + "step": 269 + }, + { + "crossentropy": 2.743911862373352, + "epoch": 4.014, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0006820042928059896, + "learning_rate": 0.0007684210526315789, + "loss": 56.2341, + "step": 270 + }, + { + "crossentropy": 2.7292779684066772, + "epoch": 4.015, + "grad_norm": 0.765625, + "grad_norm_var": 0.0005055745442708333, + "learning_rate": 0.0007673684210526316, + "loss": 54.8426, + "step": 271 + }, + { + "crossentropy": 2.8533518314361572, + "epoch": 4.016, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00030307769775390626, + "learning_rate": 0.0007663157894736842, + "loss": 56.84, + "step": 272 + }, + { + "crossentropy": 2.7164812088012695, + "epoch": 4.017, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0003387451171875, + "learning_rate": 0.0007652631578947369, + "loss": 54.748, + "step": 273 + }, + { + "crossentropy": 2.742064118385315, + "epoch": 4.018, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0003819147745768229, + "learning_rate": 0.0007642105263157894, + "loss": 57.1381, + "step": 274 + }, + { + "crossentropy": 2.8081696033477783, + "epoch": 4.019, + "grad_norm": 0.734375, + "grad_norm_var": 0.00039265950520833335, + "learning_rate": 0.0007631578947368421, + "loss": 54.7163, + "step": 275 + }, + { + "crossentropy": 2.995293974876404, + "epoch": 4.02, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0005034764607747395, + "learning_rate": 0.0007621052631578948, + "loss": 58.3995, + "step": 276 + }, + { + "crossentropy": 2.789522409439087, + "epoch": 4.021, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0004984537760416666, + "learning_rate": 0.0007610526315789474, + "loss": 56.2995, + "step": 277 + }, + { + "crossentropy": 2.9243152141571045, + "epoch": 4.022, + "grad_norm": 0.75, + "grad_norm_var": 0.0005063374837239583, + "learning_rate": 0.00076, + "loss": 56.1988, + "step": 278 + }, + { + "crossentropy": 2.75484561920166, + "epoch": 4.023, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0005269368489583333, + "learning_rate": 0.0007589473684210526, + "loss": 55.6807, + "step": 279 + }, + { + "crossentropy": 2.753888249397278, + "epoch": 4.024, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0005456924438476563, + "learning_rate": 0.0007578947368421053, + "loss": 55.653, + "step": 280 + }, + { + "crossentropy": 2.889884352684021, + "epoch": 4.025, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0005533218383789063, + "learning_rate": 0.0007568421052631579, + "loss": 56.7904, + "step": 281 + }, + { + "crossentropy": 2.790767788887024, + "epoch": 4.026, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0006194432576497396, + "learning_rate": 0.0007557894736842105, + "loss": 54.6775, + "step": 282 + }, + { + "crossentropy": 2.7210811376571655, + "epoch": 4.027, + "grad_norm": 0.7421875, + "grad_norm_var": 0.00047092437744140626, + "learning_rate": 0.0007547368421052631, + "loss": 54.3834, + "step": 283 + }, + { + "crossentropy": 2.862104892730713, + "epoch": 4.028, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0004124323527018229, + "learning_rate": 0.0007536842105263158, + "loss": 56.5897, + "step": 284 + }, + { + "crossentropy": 2.861825942993164, + "epoch": 4.029, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0004261652628580729, + "learning_rate": 0.0007526315789473685, + "loss": 57.199, + "step": 285 + }, + { + "crossentropy": 2.738445281982422, + "epoch": 4.03, + "grad_norm": 0.828125, + "grad_norm_var": 0.0007405598958333333, + "learning_rate": 0.000751578947368421, + "loss": 56.5317, + "step": 286 + }, + { + "crossentropy": 2.8645286560058594, + "epoch": 4.031, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0007445653279622396, + "learning_rate": 0.0007505263157894737, + "loss": 56.3045, + "step": 287 + }, + { + "crossentropy": 2.903935194015503, + "epoch": 4.032, + "grad_norm": 0.75, + "grad_norm_var": 0.0007369359334309896, + "learning_rate": 0.0007494736842105263, + "loss": 56.0398, + "step": 288 + }, + { + "crossentropy": 2.8562066555023193, + "epoch": 4.033, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0007196426391601563, + "learning_rate": 0.000748421052631579, + "loss": 55.6453, + "step": 289 + }, + { + "crossentropy": 2.7645561695098877, + "epoch": 4.034, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0006916681925455729, + "learning_rate": 0.0007473684210526316, + "loss": 55.2077, + "step": 290 + }, + { + "crossentropy": 2.8362536430358887, + "epoch": 4.035, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0006792704264322917, + "learning_rate": 0.0007463157894736842, + "loss": 56.4424, + "step": 291 + }, + { + "crossentropy": 2.9669147729873657, + "epoch": 4.036, + "grad_norm": 0.796875, + "grad_norm_var": 0.0006368001302083333, + "learning_rate": 0.0007452631578947369, + "loss": 58.4369, + "step": 292 + }, + { + "crossentropy": 2.751739501953125, + "epoch": 4.037, + "grad_norm": 0.75, + "grad_norm_var": 0.0006408055623372395, + "learning_rate": 0.0007442105263157895, + "loss": 55.4938, + "step": 293 + }, + { + "crossentropy": 2.7845678329467773, + "epoch": 4.038, + "grad_norm": 0.78125, + "grad_norm_var": 0.0006621678670247396, + "learning_rate": 0.0007431578947368422, + "loss": 57.6227, + "step": 294 + }, + { + "crossentropy": 2.894593834877014, + "epoch": 4.039, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0006357828776041666, + "learning_rate": 0.0007421052631578947, + "loss": 56.1408, + "step": 295 + }, + { + "crossentropy": 2.8750534057617188, + "epoch": 4.04, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0006260553995768229, + "learning_rate": 0.0007410526315789474, + "loss": 57.3143, + "step": 296 + }, + { + "crossentropy": 2.828782796859741, + "epoch": 4.041, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0006260553995768229, + "learning_rate": 0.00074, + "loss": 56.8303, + "step": 297 + }, + { + "crossentropy": 2.830629348754883, + "epoch": 4.042, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0005670547485351563, + "learning_rate": 0.0007389473684210527, + "loss": 57.1108, + "step": 298 + }, + { + "crossentropy": 2.8372979164123535, + "epoch": 4.043, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0005551656087239583, + "learning_rate": 0.0007378947368421052, + "loss": 56.3579, + "step": 299 + }, + { + "crossentropy": 2.7618184089660645, + "epoch": 4.044, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0005538304646809896, + "learning_rate": 0.0007368421052631579, + "loss": 56.3516, + "step": 300 + }, + { + "crossentropy": 2.8434700965881348, + "epoch": 4.045, + "grad_norm": 0.75, + "grad_norm_var": 0.0005694071451822917, + "learning_rate": 0.0007357894736842106, + "loss": 57.8224, + "step": 301 + }, + { + "crossentropy": 2.845301866531372, + "epoch": 4.046, + "grad_norm": 0.765625, + "grad_norm_var": 0.0002886454264322917, + "learning_rate": 0.0007347368421052632, + "loss": 56.0516, + "step": 302 + }, + { + "crossentropy": 2.902227759361267, + "epoch": 4.047, + "grad_norm": 0.80078125, + "grad_norm_var": 0.00038426717122395834, + "learning_rate": 0.0007336842105263159, + "loss": 57.105, + "step": 303 + }, + { + "crossentropy": 2.8356798887252808, + "epoch": 4.048, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00037740071614583335, + "learning_rate": 0.0007326315789473684, + "loss": 57.0535, + "step": 304 + }, + { + "crossentropy": 2.9245163202285767, + "epoch": 4.049, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0004470189412434896, + "learning_rate": 0.0007315789473684211, + "loss": 58.2829, + "step": 305 + }, + { + "crossentropy": 2.773668646812439, + "epoch": 4.05, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0005462646484375, + "learning_rate": 0.0007305263157894737, + "loss": 56.9855, + "step": 306 + }, + { + "crossentropy": 2.974271535873413, + "epoch": 4.051, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0005711237589518229, + "learning_rate": 0.0007294736842105262, + "loss": 58.2544, + "step": 307 + }, + { + "crossentropy": 2.7676045894622803, + "epoch": 4.052, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0005304336547851563, + "learning_rate": 0.000728421052631579, + "loss": 55.4997, + "step": 308 + }, + { + "crossentropy": 2.8458242416381836, + "epoch": 4.053, + "grad_norm": 0.74609375, + "grad_norm_var": 0.000540924072265625, + "learning_rate": 0.0007273684210526316, + "loss": 56.7489, + "step": 309 + }, + { + "crossentropy": 2.9176676273345947, + "epoch": 4.054, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0005395889282226562, + "learning_rate": 0.0007263157894736843, + "loss": 57.7019, + "step": 310 + }, + { + "crossentropy": 2.7517309188842773, + "epoch": 4.055, + "grad_norm": 0.765625, + "grad_norm_var": 0.0005381266276041667, + "learning_rate": 0.0007252631578947369, + "loss": 56.0364, + "step": 311 + }, + { + "crossentropy": 2.8117847442626953, + "epoch": 4.056, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0005755106608072917, + "learning_rate": 0.0007242105263157895, + "loss": 57.0578, + "step": 312 + }, + { + "crossentropy": 2.7207109928131104, + "epoch": 4.057, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0005904515584309896, + "learning_rate": 0.0007231578947368421, + "loss": 55.5513, + "step": 313 + }, + { + "crossentropy": 2.798499345779419, + "epoch": 4.058, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0006144205729166667, + "learning_rate": 0.0007221052631578947, + "loss": 56.0931, + "step": 314 + }, + { + "crossentropy": 2.8496850728988647, + "epoch": 4.059, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0005877176920572917, + "learning_rate": 0.0007210526315789474, + "loss": 56.5729, + "step": 315 + }, + { + "crossentropy": 2.739889979362488, + "epoch": 4.06, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0005879084269205729, + "learning_rate": 0.0007199999999999999, + "loss": 57.048, + "step": 316 + }, + { + "crossentropy": 2.8727529048919678, + "epoch": 4.061, + "grad_norm": 0.8203125, + "grad_norm_var": 0.0007298151652018229, + "learning_rate": 0.0007189473684210527, + "loss": 57.4175, + "step": 317 + }, + { + "crossentropy": 2.9316142797470093, + "epoch": 4.062, + "grad_norm": 0.83203125, + "grad_norm_var": 0.0009470621744791667, + "learning_rate": 0.0007178947368421053, + "loss": 57.4141, + "step": 318 + }, + { + "crossentropy": 2.8334540128707886, + "epoch": 4.063, + "grad_norm": 0.765625, + "grad_norm_var": 0.000909868876139323, + "learning_rate": 0.000716842105263158, + "loss": 56.4528, + "step": 319 + }, + { + "crossentropy": 2.8760459423065186, + "epoch": 4.064, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0009195963541666667, + "learning_rate": 0.0007157894736842105, + "loss": 57.3916, + "step": 320 + }, + { + "crossentropy": 2.7978386878967285, + "epoch": 5.001, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0007181803385416667, + "learning_rate": 0.0007147368421052631, + "loss": 56.2145, + "step": 321 + }, + { + "crossentropy": 2.744502544403076, + "epoch": 5.002, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0006683349609375, + "learning_rate": 0.0007136842105263158, + "loss": 56.6854, + "step": 322 + }, + { + "crossentropy": 2.8497555255889893, + "epoch": 5.003, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0006540298461914062, + "learning_rate": 0.0007126315789473684, + "loss": 55.9165, + "step": 323 + }, + { + "crossentropy": 2.7810473442077637, + "epoch": 5.004, + "grad_norm": 0.8515625, + "grad_norm_var": 0.000968170166015625, + "learning_rate": 0.000711578947368421, + "loss": 56.7632, + "step": 324 + }, + { + "crossentropy": 2.9091150760650635, + "epoch": 5.005, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0010171890258789062, + "learning_rate": 0.0007105263157894737, + "loss": 57.0648, + "step": 325 + }, + { + "crossentropy": 2.9585464000701904, + "epoch": 5.006, + "grad_norm": 0.7578125, + "grad_norm_var": 0.001034990946451823, + "learning_rate": 0.0007094736842105264, + "loss": 57.6818, + "step": 326 + }, + { + "crossentropy": 2.7995084524154663, + "epoch": 5.007, + "grad_norm": 0.75, + "grad_norm_var": 0.0010457356770833333, + "learning_rate": 0.000708421052631579, + "loss": 55.2677, + "step": 327 + }, + { + "crossentropy": 2.8381704092025757, + "epoch": 5.008, + "grad_norm": 0.765625, + "grad_norm_var": 0.0010207494099934895, + "learning_rate": 0.0007073684210526316, + "loss": 56.1405, + "step": 328 + }, + { + "crossentropy": 2.8964773416519165, + "epoch": 5.009, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0009571711222330729, + "learning_rate": 0.0007063157894736842, + "loss": 57.4197, + "step": 329 + }, + { + "crossentropy": 2.8280014991760254, + "epoch": 5.01, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0009571711222330729, + "learning_rate": 0.0007052631578947368, + "loss": 56.3693, + "step": 330 + }, + { + "crossentropy": 2.792478084564209, + "epoch": 5.011, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0009600321451822916, + "learning_rate": 0.0007042105263157895, + "loss": 56.2133, + "step": 331 + }, + { + "crossentropy": 2.8384552001953125, + "epoch": 5.012, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0009052912394205729, + "learning_rate": 0.0007031578947368421, + "loss": 57.0165, + "step": 332 + }, + { + "crossentropy": 2.888237237930298, + "epoch": 5.013, + "grad_norm": 0.796875, + "grad_norm_var": 0.0006998697916666667, + "learning_rate": 0.0007021052631578948, + "loss": 58.966, + "step": 333 + }, + { + "crossentropy": 2.834162950515747, + "epoch": 5.014, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0007338841756184896, + "learning_rate": 0.0007010526315789474, + "loss": 55.0934, + "step": 334 + }, + { + "crossentropy": 2.7016130685806274, + "epoch": 5.015, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0007382710774739583, + "learning_rate": 0.0007, + "loss": 55.4662, + "step": 335 + }, + { + "crossentropy": 2.894522786140442, + "epoch": 5.016, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0007369359334309896, + "learning_rate": 0.0006989473684210527, + "loss": 55.544, + "step": 336 + }, + { + "crossentropy": 2.891346573829651, + "epoch": 5.017, + "grad_norm": 0.765625, + "grad_norm_var": 0.0007375081380208334, + "learning_rate": 0.0006978947368421052, + "loss": 57.4768, + "step": 337 + }, + { + "crossentropy": 2.8023122549057007, + "epoch": 5.018, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0007491429646809896, + "learning_rate": 0.0006968421052631579, + "loss": 56.9822, + "step": 338 + }, + { + "crossentropy": 2.893723964691162, + "epoch": 5.019, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0007659276326497396, + "learning_rate": 0.0006957894736842105, + "loss": 56.84, + "step": 339 + }, + { + "crossentropy": 2.8015278577804565, + "epoch": 5.02, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0003326416015625, + "learning_rate": 0.0006947368421052632, + "loss": 55.3613, + "step": 340 + }, + { + "crossentropy": 2.868039131164551, + "epoch": 5.021, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00030517578125, + "learning_rate": 0.0006936842105263159, + "loss": 57.3593, + "step": 341 + }, + { + "crossentropy": 2.800724148750305, + "epoch": 5.022, + "grad_norm": 0.7265625, + "grad_norm_var": 0.000390625, + "learning_rate": 0.0006926315789473684, + "loss": 55.3344, + "step": 342 + }, + { + "crossentropy": 2.791234016418457, + "epoch": 5.023, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00039768218994140625, + "learning_rate": 0.0006915789473684211, + "loss": 55.2978, + "step": 343 + }, + { + "crossentropy": 2.718875527381897, + "epoch": 5.024, + "grad_norm": 0.75, + "grad_norm_var": 0.0004042943318684896, + "learning_rate": 0.0006905263157894737, + "loss": 54.9774, + "step": 344 + }, + { + "crossentropy": 2.888947367668152, + "epoch": 5.025, + "grad_norm": 0.765625, + "grad_norm_var": 0.0004025777180989583, + "learning_rate": 0.0006894736842105264, + "loss": 56.9891, + "step": 345 + }, + { + "crossentropy": 2.7386454343795776, + "epoch": 5.026, + "grad_norm": 0.78125, + "grad_norm_var": 0.0004241307576497396, + "learning_rate": 0.0006884210526315789, + "loss": 55.8273, + "step": 346 + }, + { + "crossentropy": 2.703773021697998, + "epoch": 5.027, + "grad_norm": 0.765625, + "grad_norm_var": 0.000421142578125, + "learning_rate": 0.0006873684210526316, + "loss": 55.5817, + "step": 347 + }, + { + "crossentropy": 2.821714162826538, + "epoch": 5.028, + "grad_norm": 0.76953125, + "grad_norm_var": 0.000384521484375, + "learning_rate": 0.0006863157894736842, + "loss": 55.9298, + "step": 348 + }, + { + "crossentropy": 2.8079909086227417, + "epoch": 5.029, + "grad_norm": 0.71875, + "grad_norm_var": 0.00042012532552083336, + "learning_rate": 0.0006852631578947368, + "loss": 55.0177, + "step": 349 + }, + { + "crossentropy": 2.694362759590149, + "epoch": 5.03, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00042057037353515625, + "learning_rate": 0.0006842105263157895, + "loss": 54.1136, + "step": 350 + }, + { + "crossentropy": 2.8693727254867554, + "epoch": 5.031, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0004302342732747396, + "learning_rate": 0.0006831578947368421, + "loss": 57.0075, + "step": 351 + }, + { + "crossentropy": 2.8346846103668213, + "epoch": 5.032, + "grad_norm": 0.74609375, + "grad_norm_var": 0.000433349609375, + "learning_rate": 0.0006821052631578948, + "loss": 56.9684, + "step": 352 + }, + { + "crossentropy": 2.9195793867111206, + "epoch": 5.033, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00044193267822265623, + "learning_rate": 0.0006810526315789474, + "loss": 57.0331, + "step": 353 + }, + { + "crossentropy": 2.8132762908935547, + "epoch": 5.034, + "grad_norm": 0.77734375, + "grad_norm_var": 0.00038547515869140624, + "learning_rate": 0.00068, + "loss": 55.508, + "step": 354 + }, + { + "crossentropy": 2.7499265670776367, + "epoch": 5.035, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00035037994384765623, + "learning_rate": 0.0006789473684210526, + "loss": 56.0205, + "step": 355 + }, + { + "crossentropy": 2.800133466720581, + "epoch": 5.036, + "grad_norm": 0.78125, + "grad_norm_var": 0.0003720601399739583, + "learning_rate": 0.0006778947368421052, + "loss": 55.9033, + "step": 356 + }, + { + "crossentropy": 2.820741653442383, + "epoch": 5.037, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0003720601399739583, + "learning_rate": 0.0006768421052631579, + "loss": 55.9092, + "step": 357 + }, + { + "crossentropy": 2.781237006187439, + "epoch": 5.038, + "grad_norm": 0.75, + "grad_norm_var": 0.0003102620442708333, + "learning_rate": 0.0006757894736842106, + "loss": 56.8959, + "step": 358 + }, + { + "crossentropy": 2.8900152444839478, + "epoch": 5.039, + "grad_norm": 0.78125, + "grad_norm_var": 0.0003280003865559896, + "learning_rate": 0.0006747368421052632, + "loss": 56.5975, + "step": 359 + }, + { + "crossentropy": 2.6693739891052246, + "epoch": 5.04, + "grad_norm": 0.75, + "grad_norm_var": 0.0003280003865559896, + "learning_rate": 0.0006736842105263158, + "loss": 55.8081, + "step": 360 + }, + { + "crossentropy": 2.8285491466522217, + "epoch": 5.041, + "grad_norm": 0.765625, + "grad_norm_var": 0.0003280003865559896, + "learning_rate": 0.0006726315789473685, + "loss": 55.7024, + "step": 361 + }, + { + "crossentropy": 2.970876455307007, + "epoch": 5.042, + "grad_norm": 0.76171875, + "grad_norm_var": 0.000299072265625, + "learning_rate": 0.0006715789473684211, + "loss": 57.7093, + "step": 362 + }, + { + "crossentropy": 2.902941942214966, + "epoch": 5.043, + "grad_norm": 0.78125, + "grad_norm_var": 0.0003265380859375, + "learning_rate": 0.0006705263157894736, + "loss": 58.8785, + "step": 363 + }, + { + "crossentropy": 2.888626217842102, + "epoch": 5.044, + "grad_norm": 0.76171875, + "grad_norm_var": 0.000321197509765625, + "learning_rate": 0.0006694736842105263, + "loss": 56.7212, + "step": 364 + }, + { + "crossentropy": 2.9147382974624634, + "epoch": 5.045, + "grad_norm": 0.765625, + "grad_norm_var": 0.000199127197265625, + "learning_rate": 0.0006684210526315789, + "loss": 57.0614, + "step": 365 + }, + { + "crossentropy": 2.816585063934326, + "epoch": 5.046, + "grad_norm": 0.76953125, + "grad_norm_var": 0.00019474029541015624, + "learning_rate": 0.0006673684210526317, + "loss": 57.5533, + "step": 366 + }, + { + "crossentropy": 2.801294684410095, + "epoch": 5.047, + "grad_norm": 0.765625, + "grad_norm_var": 0.00018761952718098957, + "learning_rate": 0.0006663157894736842, + "loss": 56.8426, + "step": 367 + }, + { + "crossentropy": 2.8105653524398804, + "epoch": 5.048, + "grad_norm": 0.75390625, + "grad_norm_var": 0.00017439524332682292, + "learning_rate": 0.0006652631578947369, + "loss": 56.7316, + "step": 368 + }, + { + "crossentropy": 2.8542263507843018, + "epoch": 5.049, + "grad_norm": 0.78515625, + "grad_norm_var": 0.00018202463785807292, + "learning_rate": 0.0006642105263157895, + "loss": 57.1404, + "step": 369 + }, + { + "crossentropy": 2.75753116607666, + "epoch": 5.05, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00019321441650390624, + "learning_rate": 0.0006631578947368421, + "loss": 56.3615, + "step": 370 + }, + { + "crossentropy": 2.7114880084991455, + "epoch": 5.051, + "grad_norm": 0.76171875, + "grad_norm_var": 0.00014896392822265624, + "learning_rate": 0.0006621052631578947, + "loss": 55.6979, + "step": 371 + }, + { + "crossentropy": 2.8140069246292114, + "epoch": 5.052, + "grad_norm": 0.796875, + "grad_norm_var": 0.0001983006795247396, + "learning_rate": 0.0006610526315789473, + "loss": 57.4654, + "step": 372 + }, + { + "crossentropy": 2.9149471521377563, + "epoch": 5.053, + "grad_norm": 0.796875, + "grad_norm_var": 0.0002517064412434896, + "learning_rate": 0.00066, + "loss": 58.3265, + "step": 373 + }, + { + "crossentropy": 2.922295570373535, + "epoch": 5.054, + "grad_norm": 0.77734375, + "grad_norm_var": 0.00023167928059895834, + "learning_rate": 0.0006589473684210527, + "loss": 58.1646, + "step": 374 + }, + { + "crossentropy": 2.7302639484405518, + "epoch": 5.055, + "grad_norm": 0.75, + "grad_norm_var": 0.0002459208170572917, + "learning_rate": 0.0006578947368421054, + "loss": 56.4477, + "step": 375 + }, + { + "crossentropy": 2.849370002746582, + "epoch": 5.056, + "grad_norm": 0.76171875, + "grad_norm_var": 0.00022627512613932293, + "learning_rate": 0.0006568421052631579, + "loss": 56.5778, + "step": 376 + }, + { + "crossentropy": 2.7923754453659058, + "epoch": 5.057, + "grad_norm": 0.73828125, + "grad_norm_var": 0.000284576416015625, + "learning_rate": 0.0006557894736842105, + "loss": 56.2568, + "step": 377 + }, + { + "crossentropy": 2.807488203048706, + "epoch": 5.058, + "grad_norm": 0.765625, + "grad_norm_var": 0.0002827326456705729, + "learning_rate": 0.0006547368421052632, + "loss": 55.3052, + "step": 378 + }, + { + "crossentropy": 2.947903275489807, + "epoch": 5.059, + "grad_norm": 0.75390625, + "grad_norm_var": 0.00027872721354166665, + "learning_rate": 0.0006536842105263158, + "loss": 58.4199, + "step": 379 + }, + { + "crossentropy": 2.838424563407898, + "epoch": 5.06, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0002812067667643229, + "learning_rate": 0.0006526315789473684, + "loss": 55.4688, + "step": 380 + }, + { + "crossentropy": 2.931127429008484, + "epoch": 5.061, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00028578440348307293, + "learning_rate": 0.000651578947368421, + "loss": 57.8073, + "step": 381 + }, + { + "crossentropy": 2.776180386543274, + "epoch": 5.062, + "grad_norm": 0.765625, + "grad_norm_var": 0.0002848307291666667, + "learning_rate": 0.0006505263157894738, + "loss": 55.5867, + "step": 382 + }, + { + "crossentropy": 2.95345675945282, + "epoch": 5.063, + "grad_norm": 0.765625, + "grad_norm_var": 0.0002848307291666667, + "learning_rate": 0.0006494736842105264, + "loss": 57.5454, + "step": 383 + }, + { + "crossentropy": 2.890448570251465, + "epoch": 5.064, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00027815500895182293, + "learning_rate": 0.0006484210526315789, + "loss": 57.2167, + "step": 384 + }, + { + "crossentropy": 2.896027088165283, + "epoch": 6.001, + "grad_norm": 0.75, + "grad_norm_var": 0.0002486546834309896, + "learning_rate": 0.0006473684210526316, + "loss": 56.383, + "step": 385 + }, + { + "crossentropy": 2.7579907178878784, + "epoch": 6.002, + "grad_norm": 0.765625, + "grad_norm_var": 0.0002471923828125, + "learning_rate": 0.0006463157894736842, + "loss": 54.8391, + "step": 386 + }, + { + "crossentropy": 2.7551032304763794, + "epoch": 6.003, + "grad_norm": 0.76171875, + "grad_norm_var": 0.00018253326416015626, + "learning_rate": 0.0006452631578947369, + "loss": 56.4615, + "step": 387 + }, + { + "crossentropy": 2.7534666061401367, + "epoch": 6.004, + "grad_norm": 0.78515625, + "grad_norm_var": 0.000140380859375, + "learning_rate": 0.0006442105263157894, + "loss": 55.3748, + "step": 388 + }, + { + "crossentropy": 2.878955602645874, + "epoch": 6.005, + "grad_norm": 0.75390625, + "grad_norm_var": 0.000131988525390625, + "learning_rate": 0.0006431578947368421, + "loss": 56.7231, + "step": 389 + }, + { + "crossentropy": 2.7627967596054077, + "epoch": 6.006, + "grad_norm": 0.78125, + "grad_norm_var": 0.00014216105143229166, + "learning_rate": 0.0006421052631578948, + "loss": 55.1437, + "step": 390 + }, + { + "crossentropy": 2.7477593421936035, + "epoch": 6.007, + "grad_norm": 0.75, + "grad_norm_var": 0.0001545588175455729, + "learning_rate": 0.0006410526315789474, + "loss": 55.0148, + "step": 391 + }, + { + "crossentropy": 2.919530153274536, + "epoch": 6.008, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0001891454060872396, + "learning_rate": 0.00064, + "loss": 57.6885, + "step": 392 + }, + { + "crossentropy": 2.819299101829529, + "epoch": 6.009, + "grad_norm": 0.765625, + "grad_norm_var": 0.0001891454060872396, + "learning_rate": 0.0006389473684210526, + "loss": 56.0235, + "step": 393 + }, + { + "crossentropy": 2.9445995092391968, + "epoch": 6.01, + "grad_norm": 0.796875, + "grad_norm_var": 0.00022761027018229166, + "learning_rate": 0.0006378947368421053, + "loss": 58.1254, + "step": 394 + }, + { + "crossentropy": 2.777245879173279, + "epoch": 6.011, + "grad_norm": 0.796875, + "grad_norm_var": 0.0002726236979166667, + "learning_rate": 0.0006368421052631579, + "loss": 55.7731, + "step": 395 + }, + { + "crossentropy": 2.983623743057251, + "epoch": 6.012, + "grad_norm": 0.78515625, + "grad_norm_var": 0.00026950836181640627, + "learning_rate": 0.0006357894736842106, + "loss": 58.7228, + "step": 396 + }, + { + "crossentropy": 2.9414658546447754, + "epoch": 6.013, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0002899169921875, + "learning_rate": 0.0006347368421052631, + "loss": 56.5824, + "step": 397 + }, + { + "crossentropy": 2.8643269538879395, + "epoch": 6.014, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00033156077067057293, + "learning_rate": 0.0006336842105263157, + "loss": 57.9013, + "step": 398 + }, + { + "crossentropy": 2.71036159992218, + "epoch": 6.015, + "grad_norm": 0.75, + "grad_norm_var": 0.0003590265909830729, + "learning_rate": 0.0006326315789473685, + "loss": 54.2278, + "step": 399 + }, + { + "crossentropy": 2.782063364982605, + "epoch": 6.016, + "grad_norm": 0.765625, + "grad_norm_var": 0.0003590265909830729, + "learning_rate": 0.0006315789473684211, + "loss": 55.5568, + "step": 400 + }, + { + "crossentropy": 2.783318877220154, + "epoch": 6.017, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0003829320271809896, + "learning_rate": 0.0006305263157894737, + "loss": 56.6671, + "step": 401 + }, + { + "crossentropy": 2.9031968116760254, + "epoch": 6.018, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0004412333170572917, + "learning_rate": 0.0006294736842105263, + "loss": 55.2412, + "step": 402 + }, + { + "crossentropy": 2.8032177686691284, + "epoch": 6.019, + "grad_norm": 0.75390625, + "grad_norm_var": 0.00045064290364583336, + "learning_rate": 0.000628421052631579, + "loss": 55.8731, + "step": 403 + }, + { + "crossentropy": 2.816411256790161, + "epoch": 6.02, + "grad_norm": 0.78125, + "grad_norm_var": 0.00044193267822265623, + "learning_rate": 0.0006273684210526316, + "loss": 56.364, + "step": 404 + }, + { + "crossentropy": 2.7340190410614014, + "epoch": 6.021, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005151748657226563, + "learning_rate": 0.0006263157894736841, + "loss": 54.9243, + "step": 405 + }, + { + "crossentropy": 2.8077826499938965, + "epoch": 6.022, + "grad_norm": 0.765625, + "grad_norm_var": 0.0004963556925455729, + "learning_rate": 0.0006252631578947368, + "loss": 56.1388, + "step": 406 + }, + { + "crossentropy": 2.8767653703689575, + "epoch": 6.023, + "grad_norm": 0.7265625, + "grad_norm_var": 0.000574175516764323, + "learning_rate": 0.0006242105263157895, + "loss": 56.2231, + "step": 407 + }, + { + "crossentropy": 2.6605910062789917, + "epoch": 6.024, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0004887262980143229, + "learning_rate": 0.0006231578947368422, + "loss": 54.9768, + "step": 408 + }, + { + "crossentropy": 2.831836223602295, + "epoch": 6.025, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0004900614420572917, + "learning_rate": 0.0006221052631578947, + "loss": 55.0988, + "step": 409 + }, + { + "crossentropy": 2.700801968574524, + "epoch": 6.026, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0004099527994791667, + "learning_rate": 0.0006210526315789474, + "loss": 54.9491, + "step": 410 + }, + { + "crossentropy": 2.933374762535095, + "epoch": 6.027, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0003191630045572917, + "learning_rate": 0.00062, + "loss": 56.9396, + "step": 411 + }, + { + "crossentropy": 2.74997615814209, + "epoch": 6.028, + "grad_norm": 0.70703125, + "grad_norm_var": 0.0003903706868489583, + "learning_rate": 0.0006189473684210526, + "loss": 55.024, + "step": 412 + }, + { + "crossentropy": 2.916796088218689, + "epoch": 6.029, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00039310455322265624, + "learning_rate": 0.0006178947368421053, + "loss": 57.4697, + "step": 413 + }, + { + "crossentropy": 2.900514841079712, + "epoch": 6.03, + "grad_norm": 0.75, + "grad_norm_var": 0.0003916422526041667, + "learning_rate": 0.0006168421052631578, + "loss": 57.3729, + "step": 414 + }, + { + "crossentropy": 2.8999792337417603, + "epoch": 6.031, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0003986994425455729, + "learning_rate": 0.0006157894736842106, + "loss": 57.0101, + "step": 415 + }, + { + "crossentropy": 2.8940166234970093, + "epoch": 6.032, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0004170099894205729, + "learning_rate": 0.0006147368421052632, + "loss": 59.3612, + "step": 416 + }, + { + "crossentropy": 2.7649847269058228, + "epoch": 6.033, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00042317708333333335, + "learning_rate": 0.0006136842105263159, + "loss": 55.2584, + "step": 417 + }, + { + "crossentropy": 2.8447442054748535, + "epoch": 6.034, + "grad_norm": 0.765625, + "grad_norm_var": 0.0004200617472330729, + "learning_rate": 0.0006126315789473684, + "loss": 56.9598, + "step": 418 + }, + { + "crossentropy": 2.9044229984283447, + "epoch": 6.035, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0004445393880208333, + "learning_rate": 0.000611578947368421, + "loss": 57.1472, + "step": 419 + }, + { + "crossentropy": 2.858897089958191, + "epoch": 6.036, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0004592259724934896, + "learning_rate": 0.0006105263157894737, + "loss": 58.3656, + "step": 420 + }, + { + "crossentropy": 2.781478762626648, + "epoch": 6.037, + "grad_norm": 0.765625, + "grad_norm_var": 0.0004208882649739583, + "learning_rate": 0.0006094736842105263, + "loss": 55.7423, + "step": 421 + }, + { + "crossentropy": 2.7873969078063965, + "epoch": 6.038, + "grad_norm": 0.76171875, + "grad_norm_var": 0.00041751861572265626, + "learning_rate": 0.0006084210526315789, + "loss": 56.0058, + "step": 422 + }, + { + "crossentropy": 2.7320199012756348, + "epoch": 6.039, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0004597981770833333, + "learning_rate": 0.0006073684210526316, + "loss": 55.8398, + "step": 423 + }, + { + "crossentropy": 2.859510898590088, + "epoch": 6.04, + "grad_norm": 0.734375, + "grad_norm_var": 0.0004856745402018229, + "learning_rate": 0.0006063157894736843, + "loss": 56.2963, + "step": 424 + }, + { + "crossentropy": 2.756445050239563, + "epoch": 6.041, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00048395792643229164, + "learning_rate": 0.0006052631578947369, + "loss": 55.111, + "step": 425 + }, + { + "crossentropy": 2.632467031478882, + "epoch": 6.042, + "grad_norm": 0.71484375, + "grad_norm_var": 0.0005929946899414062, + "learning_rate": 0.0006042105263157894, + "loss": 53.8061, + "step": 426 + }, + { + "crossentropy": 2.8806999921798706, + "epoch": 6.043, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0005755106608072917, + "learning_rate": 0.0006031578947368421, + "loss": 57.9055, + "step": 427 + }, + { + "crossentropy": 2.818897008895874, + "epoch": 6.044, + "grad_norm": 0.7265625, + "grad_norm_var": 0.00047092437744140626, + "learning_rate": 0.0006021052631578947, + "loss": 56.0326, + "step": 428 + }, + { + "crossentropy": 2.8834354877471924, + "epoch": 6.045, + "grad_norm": 0.765625, + "grad_norm_var": 0.0004749933878580729, + "learning_rate": 0.0006010526315789474, + "loss": 57.5019, + "step": 429 + }, + { + "crossentropy": 2.856741189956665, + "epoch": 6.046, + "grad_norm": 0.734375, + "grad_norm_var": 0.0005070368448893229, + "learning_rate": 0.0006, + "loss": 56.8689, + "step": 430 + }, + { + "crossentropy": 2.8887990713119507, + "epoch": 6.047, + "grad_norm": 0.765625, + "grad_norm_var": 0.000510406494140625, + "learning_rate": 0.0005989473684210527, + "loss": 57.7479, + "step": 431 + }, + { + "crossentropy": 2.8145207166671753, + "epoch": 6.048, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0004922866821289063, + "learning_rate": 0.0005978947368421053, + "loss": 56.8016, + "step": 432 + }, + { + "crossentropy": 2.841512441635132, + "epoch": 6.049, + "grad_norm": 0.7734375, + "grad_norm_var": 0.000485992431640625, + "learning_rate": 0.0005968421052631579, + "loss": 57.1147, + "step": 433 + }, + { + "crossentropy": 2.8247647285461426, + "epoch": 6.05, + "grad_norm": 0.7578125, + "grad_norm_var": 0.000482177734375, + "learning_rate": 0.0005957894736842106, + "loss": 57.3273, + "step": 434 + }, + { + "crossentropy": 2.7687268257141113, + "epoch": 6.051, + "grad_norm": 0.796875, + "grad_norm_var": 0.000565338134765625, + "learning_rate": 0.0005947368421052631, + "loss": 54.6459, + "step": 435 + }, + { + "crossentropy": 2.9791083335876465, + "epoch": 6.052, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0005961100260416667, + "learning_rate": 0.0005936842105263158, + "loss": 59.038, + "step": 436 + }, + { + "crossentropy": 2.80897319316864, + "epoch": 6.053, + "grad_norm": 0.75, + "grad_norm_var": 0.0005991617838541667, + "learning_rate": 0.0005926315789473684, + "loss": 56.0703, + "step": 437 + }, + { + "crossentropy": 2.8237274885177612, + "epoch": 6.054, + "grad_norm": 0.78125, + "grad_norm_var": 0.0006306330362955729, + "learning_rate": 0.0005915789473684211, + "loss": 56.6772, + "step": 438 + }, + { + "crossentropy": 2.7993067502975464, + "epoch": 6.055, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0005375544230143229, + "learning_rate": 0.0005905263157894736, + "loss": 56.7413, + "step": 439 + }, + { + "crossentropy": 2.8471277952194214, + "epoch": 6.056, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0004961649576822917, + "learning_rate": 0.0005894736842105263, + "loss": 56.4865, + "step": 440 + }, + { + "crossentropy": 2.8962905406951904, + "epoch": 6.057, + "grad_norm": 0.71875, + "grad_norm_var": 0.000604248046875, + "learning_rate": 0.000588421052631579, + "loss": 56.8234, + "step": 441 + }, + { + "crossentropy": 2.8405044078826904, + "epoch": 6.058, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0004903157552083333, + "learning_rate": 0.0005873684210526316, + "loss": 57.3965, + "step": 442 + }, + { + "crossentropy": 2.89117431640625, + "epoch": 6.059, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0004938125610351562, + "learning_rate": 0.0005863157894736842, + "loss": 57.63, + "step": 443 + }, + { + "crossentropy": 2.7827476263046265, + "epoch": 6.06, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00042292277018229164, + "learning_rate": 0.0005852631578947368, + "loss": 56.2097, + "step": 444 + }, + { + "crossentropy": 2.8849616050720215, + "epoch": 6.061, + "grad_norm": 0.796875, + "grad_norm_var": 0.0004900614420572917, + "learning_rate": 0.0005842105263157895, + "loss": 58.1, + "step": 445 + }, + { + "crossentropy": 2.994400978088379, + "epoch": 6.062, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00042012532552083336, + "learning_rate": 0.0005831578947368421, + "loss": 58.3295, + "step": 446 + }, + { + "crossentropy": 2.806332230567932, + "epoch": 6.063, + "grad_norm": 0.75, + "grad_norm_var": 0.00044148763020833334, + "learning_rate": 0.0005821052631578948, + "loss": 56.9378, + "step": 447 + }, + { + "crossentropy": 2.8283108472824097, + "epoch": 6.064, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0004353205362955729, + "learning_rate": 0.0005810526315789474, + "loss": 57.3855, + "step": 448 + }, + { + "crossentropy": 2.7301007509231567, + "epoch": 7.001, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0004729588826497396, + "learning_rate": 0.00058, + "loss": 54.0905, + "step": 449 + }, + { + "crossentropy": 2.741808295249939, + "epoch": 7.002, + "grad_norm": 0.81640625, + "grad_norm_var": 0.000577545166015625, + "learning_rate": 0.0005789473684210527, + "loss": 55.7839, + "step": 450 + }, + { + "crossentropy": 2.9567712545394897, + "epoch": 7.003, + "grad_norm": 0.76953125, + "grad_norm_var": 0.000531005859375, + "learning_rate": 0.0005778947368421053, + "loss": 58.1478, + "step": 451 + }, + { + "crossentropy": 2.740614175796509, + "epoch": 7.004, + "grad_norm": 0.7265625, + "grad_norm_var": 0.000614166259765625, + "learning_rate": 0.0005768421052631579, + "loss": 54.8335, + "step": 452 + }, + { + "crossentropy": 2.791291117668152, + "epoch": 7.005, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0006316502888997396, + "learning_rate": 0.0005757894736842105, + "loss": 57.0646, + "step": 453 + }, + { + "crossentropy": 2.830601930618286, + "epoch": 7.006, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0006243387858072916, + "learning_rate": 0.0005747368421052632, + "loss": 56.4297, + "step": 454 + }, + { + "crossentropy": 2.766074061393738, + "epoch": 7.007, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0006469090779622396, + "learning_rate": 0.0005736842105263158, + "loss": 55.315, + "step": 455 + }, + { + "crossentropy": 2.8447988033294678, + "epoch": 7.008, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0006357192993164063, + "learning_rate": 0.0005726315789473684, + "loss": 56.7864, + "step": 456 + }, + { + "crossentropy": 2.8546324968338013, + "epoch": 7.009, + "grad_norm": 0.75, + "grad_norm_var": 0.0006388346354166667, + "learning_rate": 0.0005715789473684211, + "loss": 56.896, + "step": 457 + }, + { + "crossentropy": 2.8077392578125, + "epoch": 7.01, + "grad_norm": 0.78125, + "grad_norm_var": 0.0006528218587239583, + "learning_rate": 0.0005705263157894737, + "loss": 55.2438, + "step": 458 + }, + { + "crossentropy": 2.8590996265411377, + "epoch": 7.011, + "grad_norm": 0.765625, + "grad_norm_var": 0.0006296157836914063, + "learning_rate": 0.0005694736842105264, + "loss": 56.4089, + "step": 459 + }, + { + "crossentropy": 2.6845264434814453, + "epoch": 7.012, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00059814453125, + "learning_rate": 0.0005684210526315789, + "loss": 54.5441, + "step": 460 + }, + { + "crossentropy": 2.821642518043518, + "epoch": 7.013, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0005889892578125, + "learning_rate": 0.0005673684210526316, + "loss": 57.5324, + "step": 461 + }, + { + "crossentropy": 2.8966156244277954, + "epoch": 7.014, + "grad_norm": 0.78125, + "grad_norm_var": 0.0006052652994791666, + "learning_rate": 0.0005663157894736842, + "loss": 57.1761, + "step": 462 + }, + { + "crossentropy": 2.9717679023742676, + "epoch": 7.015, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0006062189737955729, + "learning_rate": 0.0005652631578947368, + "loss": 57.733, + "step": 463 + }, + { + "crossentropy": 2.8593705892562866, + "epoch": 7.016, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0006060282389322917, + "learning_rate": 0.0005642105263157896, + "loss": 56.4377, + "step": 464 + }, + { + "crossentropy": 2.8285802602767944, + "epoch": 7.017, + "grad_norm": 0.75, + "grad_norm_var": 0.0005869547526041667, + "learning_rate": 0.0005631578947368421, + "loss": 56.9182, + "step": 465 + }, + { + "crossentropy": 2.80751633644104, + "epoch": 7.018, + "grad_norm": 0.78125, + "grad_norm_var": 0.0004215876261393229, + "learning_rate": 0.0005621052631578948, + "loss": 58.1339, + "step": 466 + }, + { + "crossentropy": 2.880888819694519, + "epoch": 7.019, + "grad_norm": 0.765625, + "grad_norm_var": 0.000418853759765625, + "learning_rate": 0.0005610526315789474, + "loss": 57.298, + "step": 467 + }, + { + "crossentropy": 2.818486213684082, + "epoch": 7.02, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0004012425740559896, + "learning_rate": 0.0005600000000000001, + "loss": 55.9215, + "step": 468 + }, + { + "crossentropy": 2.765039563179016, + "epoch": 7.021, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0003615697224934896, + "learning_rate": 0.0005589473684210526, + "loss": 56.3919, + "step": 469 + }, + { + "crossentropy": 2.765025496482849, + "epoch": 7.022, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0003956476847330729, + "learning_rate": 0.0005578947368421052, + "loss": 56.4707, + "step": 470 + }, + { + "crossentropy": 2.6866267919540405, + "epoch": 7.023, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0003679911295572917, + "learning_rate": 0.0005568421052631579, + "loss": 54.7156, + "step": 471 + }, + { + "crossentropy": 2.7979997396469116, + "epoch": 7.024, + "grad_norm": 0.7109375, + "grad_norm_var": 0.00043512980143229165, + "learning_rate": 0.0005557894736842106, + "loss": 56.7267, + "step": 472 + }, + { + "crossentropy": 2.851110816001892, + "epoch": 7.025, + "grad_norm": 0.75390625, + "grad_norm_var": 0.00043074289957682293, + "learning_rate": 0.0005547368421052632, + "loss": 56.6983, + "step": 473 + }, + { + "crossentropy": 2.7913917303085327, + "epoch": 7.026, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0004107157389322917, + "learning_rate": 0.0005536842105263158, + "loss": 55.4107, + "step": 474 + }, + { + "crossentropy": 2.8196051120758057, + "epoch": 7.027, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0004679361979166667, + "learning_rate": 0.0005526315789473685, + "loss": 57.6855, + "step": 475 + }, + { + "crossentropy": 2.7812657356262207, + "epoch": 7.028, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0004709879557291667, + "learning_rate": 0.0005515789473684211, + "loss": 56.5311, + "step": 476 + }, + { + "crossentropy": 2.884629964828491, + "epoch": 7.029, + "grad_norm": 0.734375, + "grad_norm_var": 0.0005205790201822917, + "learning_rate": 0.0005505263157894736, + "loss": 56.0411, + "step": 477 + }, + { + "crossentropy": 2.770102024078369, + "epoch": 7.03, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0005039850870768229, + "learning_rate": 0.0005494736842105263, + "loss": 55.6079, + "step": 478 + }, + { + "crossentropy": 2.7415486574172974, + "epoch": 7.031, + "grad_norm": 0.7734375, + "grad_norm_var": 0.000510406494140625, + "learning_rate": 0.0005484210526315789, + "loss": 56.3453, + "step": 479 + }, + { + "crossentropy": 2.850640296936035, + "epoch": 7.032, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0005035400390625, + "learning_rate": 0.0005473684210526317, + "loss": 56.8195, + "step": 480 + }, + { + "crossentropy": 2.7248213291168213, + "epoch": 7.033, + "grad_norm": 0.7265625, + "grad_norm_var": 0.000565338134765625, + "learning_rate": 0.0005463157894736843, + "loss": 54.4893, + "step": 481 + }, + { + "crossentropy": 2.8087538480758667, + "epoch": 7.034, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0005940755208333333, + "learning_rate": 0.0005452631578947369, + "loss": 56.456, + "step": 482 + }, + { + "crossentropy": 2.7221765518188477, + "epoch": 7.035, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0005904515584309896, + "learning_rate": 0.0005442105263157895, + "loss": 56.3871, + "step": 483 + }, + { + "crossentropy": 2.897437572479248, + "epoch": 7.036, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0005833307902018229, + "learning_rate": 0.0005431578947368421, + "loss": 56.8503, + "step": 484 + }, + { + "crossentropy": 2.9512122869491577, + "epoch": 7.037, + "grad_norm": 0.8359375, + "grad_norm_var": 0.0009389241536458333, + "learning_rate": 0.0005421052631578948, + "loss": 57.7135, + "step": 485 + }, + { + "crossentropy": 2.768813133239746, + "epoch": 7.038, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0009236653645833333, + "learning_rate": 0.0005410526315789473, + "loss": 55.8437, + "step": 486 + }, + { + "crossentropy": 2.994757056236267, + "epoch": 7.039, + "grad_norm": 0.76171875, + "grad_norm_var": 0.000919342041015625, + "learning_rate": 0.00054, + "loss": 57.5798, + "step": 487 + }, + { + "crossentropy": 2.804057478904724, + "epoch": 7.04, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0007410049438476562, + "learning_rate": 0.0005389473684210526, + "loss": 56.4264, + "step": 488 + }, + { + "crossentropy": 2.8012847900390625, + "epoch": 7.041, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0007410049438476562, + "learning_rate": 0.0005378947368421054, + "loss": 55.1591, + "step": 489 + }, + { + "crossentropy": 2.927749991416931, + "epoch": 7.042, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0007138570149739583, + "learning_rate": 0.0005368421052631579, + "loss": 56.8244, + "step": 490 + }, + { + "crossentropy": 2.840681791305542, + "epoch": 7.043, + "grad_norm": 0.8203125, + "grad_norm_var": 0.0008623758951822917, + "learning_rate": 0.0005357894736842105, + "loss": 56.2898, + "step": 491 + }, + { + "crossentropy": 2.743423581123352, + "epoch": 7.044, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00087890625, + "learning_rate": 0.0005347368421052632, + "loss": 56.1168, + "step": 492 + }, + { + "crossentropy": 2.800847887992859, + "epoch": 7.045, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0008481343587239584, + "learning_rate": 0.0005336842105263158, + "loss": 55.5752, + "step": 493 + }, + { + "crossentropy": 2.6926422119140625, + "epoch": 7.046, + "grad_norm": 0.71875, + "grad_norm_var": 0.0009749730428059896, + "learning_rate": 0.0005326315789473684, + "loss": 54.8747, + "step": 494 + }, + { + "crossentropy": 2.8151170015335083, + "epoch": 7.047, + "grad_norm": 0.75390625, + "grad_norm_var": 0.000980377197265625, + "learning_rate": 0.000531578947368421, + "loss": 55.6196, + "step": 495 + }, + { + "crossentropy": 2.9150657653808594, + "epoch": 7.048, + "grad_norm": 0.8046875, + "grad_norm_var": 0.001076189676920573, + "learning_rate": 0.0005305263157894737, + "loss": 57.0052, + "step": 496 + }, + { + "crossentropy": 2.840682625770569, + "epoch": 7.049, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0010121663411458333, + "learning_rate": 0.0005294736842105264, + "loss": 58.2104, + "step": 497 + }, + { + "crossentropy": 2.8163187503814697, + "epoch": 7.05, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0010121663411458333, + "learning_rate": 0.000528421052631579, + "loss": 56.675, + "step": 498 + }, + { + "crossentropy": 2.9374297857284546, + "epoch": 7.051, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0010660807291666666, + "learning_rate": 0.0005273684210526316, + "loss": 57.6299, + "step": 499 + }, + { + "crossentropy": 2.9131165742874146, + "epoch": 7.052, + "grad_norm": 0.828125, + "grad_norm_var": 0.0012598037719726562, + "learning_rate": 0.0005263157894736842, + "loss": 58.4242, + "step": 500 + }, + { + "crossentropy": 2.900420308113098, + "epoch": 7.053, + "grad_norm": 0.8203125, + "grad_norm_var": 0.0011463801066080729, + "learning_rate": 0.0005252631578947369, + "loss": 57.3699, + "step": 501 + }, + { + "crossentropy": 2.9151841402053833, + "epoch": 7.054, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0011463801066080729, + "learning_rate": 0.0005242105263157895, + "loss": 56.6537, + "step": 502 + }, + { + "crossentropy": 2.9279205799102783, + "epoch": 7.055, + "grad_norm": 0.78515625, + "grad_norm_var": 0.001144854227701823, + "learning_rate": 0.0005231578947368421, + "loss": 57.4459, + "step": 503 + }, + { + "crossentropy": 2.9333810806274414, + "epoch": 7.056, + "grad_norm": 0.77734375, + "grad_norm_var": 0.001114336649576823, + "learning_rate": 0.0005221052631578947, + "loss": 57.2862, + "step": 504 + }, + { + "crossentropy": 2.805972099304199, + "epoch": 7.057, + "grad_norm": 0.75, + "grad_norm_var": 0.0011566162109375, + "learning_rate": 0.0005210526315789474, + "loss": 56.7537, + "step": 505 + }, + { + "crossentropy": 2.8755249977111816, + "epoch": 7.058, + "grad_norm": 0.82421875, + "grad_norm_var": 0.0013111750284830728, + "learning_rate": 0.0005200000000000001, + "loss": 58.3636, + "step": 506 + }, + { + "crossentropy": 2.9246153831481934, + "epoch": 7.059, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0012326558430989583, + "learning_rate": 0.0005189473684210526, + "loss": 57.2294, + "step": 507 + }, + { + "crossentropy": 2.8592110872268677, + "epoch": 7.06, + "grad_norm": 0.75390625, + "grad_norm_var": 0.00120849609375, + "learning_rate": 0.0005178947368421053, + "loss": 57.1909, + "step": 508 + }, + { + "crossentropy": 2.755800485610962, + "epoch": 7.061, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0011682510375976562, + "learning_rate": 0.0005168421052631579, + "loss": 55.5823, + "step": 509 + }, + { + "crossentropy": 2.7610713243484497, + "epoch": 7.062, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0010129292805989584, + "learning_rate": 0.0005157894736842106, + "loss": 55.2065, + "step": 510 + }, + { + "crossentropy": 2.8712987899780273, + "epoch": 7.063, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0010129292805989584, + "learning_rate": 0.0005147368421052631, + "loss": 56.8722, + "step": 511 + }, + { + "crossentropy": 2.7960678339004517, + "epoch": 7.064, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0009702046712239584, + "learning_rate": 0.0005136842105263157, + "loss": 55.4123, + "step": 512 + }, + { + "crossentropy": 2.8373619318008423, + "epoch": 8.001, + "grad_norm": 0.78125, + "grad_norm_var": 0.0009103775024414063, + "learning_rate": 0.0005126315789473685, + "loss": 57.6566, + "step": 513 + }, + { + "crossentropy": 2.7967774868011475, + "epoch": 8.002, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0008508682250976563, + "learning_rate": 0.0005115789473684211, + "loss": 57.0669, + "step": 514 + }, + { + "crossentropy": 2.795915961265564, + "epoch": 8.003, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0006955464680989584, + "learning_rate": 0.0005105263157894738, + "loss": 54.5675, + "step": 515 + }, + { + "crossentropy": 2.754665493965149, + "epoch": 8.004, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0005246480305989583, + "learning_rate": 0.0005094736842105263, + "loss": 56.3108, + "step": 516 + }, + { + "crossentropy": 2.8175487518310547, + "epoch": 8.005, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0005121231079101562, + "learning_rate": 0.000508421052631579, + "loss": 56.5216, + "step": 517 + }, + { + "crossentropy": 2.884229898452759, + "epoch": 8.006, + "grad_norm": 0.7421875, + "grad_norm_var": 0.000531005859375, + "learning_rate": 0.0005073684210526316, + "loss": 56.2322, + "step": 518 + }, + { + "crossentropy": 2.8160749673843384, + "epoch": 8.007, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0005578994750976562, + "learning_rate": 0.0005063157894736841, + "loss": 56.09, + "step": 519 + }, + { + "crossentropy": 2.8993260860443115, + "epoch": 8.008, + "grad_norm": 0.8125, + "grad_norm_var": 0.000665728251139323, + "learning_rate": 0.0005052631578947368, + "loss": 56.7618, + "step": 520 + }, + { + "crossentropy": 2.8044674396514893, + "epoch": 8.009, + "grad_norm": 0.765625, + "grad_norm_var": 0.00045878092447916666, + "learning_rate": 0.0005042105263157895, + "loss": 56.7056, + "step": 521 + }, + { + "crossentropy": 2.688468098640442, + "epoch": 8.01, + "grad_norm": 0.7109375, + "grad_norm_var": 0.0006321589152018229, + "learning_rate": 0.0005031578947368422, + "loss": 54.6439, + "step": 522 + }, + { + "crossentropy": 2.77541720867157, + "epoch": 8.011, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0006469090779622396, + "learning_rate": 0.0005021052631578948, + "loss": 55.0559, + "step": 523 + }, + { + "crossentropy": 2.9500958919525146, + "epoch": 8.012, + "grad_norm": 0.765625, + "grad_norm_var": 0.0006398518880208333, + "learning_rate": 0.0005010526315789474, + "loss": 58.3708, + "step": 524 + }, + { + "crossentropy": 2.7789478302001953, + "epoch": 8.013, + "grad_norm": 0.7109375, + "grad_norm_var": 0.0008040746053059896, + "learning_rate": 0.0005, + "loss": 56.1477, + "step": 525 + }, + { + "crossentropy": 2.89370858669281, + "epoch": 8.014, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0008819580078125, + "learning_rate": 0.0004989473684210527, + "loss": 57.8208, + "step": 526 + }, + { + "crossentropy": 2.829719305038452, + "epoch": 8.015, + "grad_norm": 0.828125, + "grad_norm_var": 0.001163482666015625, + "learning_rate": 0.0004978947368421053, + "loss": 57.3503, + "step": 527 + }, + { + "crossentropy": 2.8827792406082153, + "epoch": 8.016, + "grad_norm": 0.7734375, + "grad_norm_var": 0.001163482666015625, + "learning_rate": 0.0004968421052631579, + "loss": 57.5831, + "step": 528 + }, + { + "crossentropy": 2.839862585067749, + "epoch": 8.017, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0011484146118164063, + "learning_rate": 0.0004957894736842105, + "loss": 55.7402, + "step": 529 + }, + { + "crossentropy": 2.7569580078125, + "epoch": 8.018, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0011270523071289062, + "learning_rate": 0.0004947368421052632, + "loss": 56.3813, + "step": 530 + }, + { + "crossentropy": 2.771231174468994, + "epoch": 8.019, + "grad_norm": 0.78125, + "grad_norm_var": 0.001053619384765625, + "learning_rate": 0.0004936842105263158, + "loss": 57.1672, + "step": 531 + }, + { + "crossentropy": 2.787784457206726, + "epoch": 8.02, + "grad_norm": 0.75, + "grad_norm_var": 0.0010528564453125, + "learning_rate": 0.0004926315789473684, + "loss": 56.1965, + "step": 532 + }, + { + "crossentropy": 2.716630458831787, + "epoch": 8.021, + "grad_norm": 0.75, + "grad_norm_var": 0.0010461807250976562, + "learning_rate": 0.000491578947368421, + "loss": 55.2343, + "step": 533 + }, + { + "crossentropy": 2.8388242721557617, + "epoch": 8.022, + "grad_norm": 0.73046875, + "grad_norm_var": 0.001084136962890625, + "learning_rate": 0.0004905263157894737, + "loss": 56.8292, + "step": 534 + }, + { + "crossentropy": 2.8070307970046997, + "epoch": 8.023, + "grad_norm": 0.75, + "grad_norm_var": 0.0010294596354166667, + "learning_rate": 0.0004894736842105264, + "loss": 55.36, + "step": 535 + }, + { + "crossentropy": 2.865221381187439, + "epoch": 8.024, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0009108861287434896, + "learning_rate": 0.000488421052631579, + "loss": 56.6106, + "step": 536 + }, + { + "crossentropy": 2.9020869731903076, + "epoch": 8.025, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0009165445963541667, + "learning_rate": 0.0004873684210526316, + "loss": 56.5227, + "step": 537 + }, + { + "crossentropy": 2.7119977474212646, + "epoch": 8.026, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0007786432902018229, + "learning_rate": 0.0004863157894736842, + "loss": 55.6506, + "step": 538 + }, + { + "crossentropy": 2.7730578184127808, + "epoch": 8.027, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0007781982421875, + "learning_rate": 0.00048526315789473683, + "loss": 56.5655, + "step": 539 + }, + { + "crossentropy": 2.736594557762146, + "epoch": 8.028, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0007769266764322916, + "learning_rate": 0.0004842105263157895, + "loss": 55.2709, + "step": 540 + }, + { + "crossentropy": 2.87870717048645, + "epoch": 8.029, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0006158828735351562, + "learning_rate": 0.00048315789473684213, + "loss": 56.1277, + "step": 541 + }, + { + "crossentropy": 2.8086968660354614, + "epoch": 8.03, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0006158828735351562, + "learning_rate": 0.00048210526315789476, + "loss": 56.0955, + "step": 542 + }, + { + "crossentropy": 2.807764172554016, + "epoch": 8.031, + "grad_norm": 0.734375, + "grad_norm_var": 0.00036869049072265627, + "learning_rate": 0.00048105263157894733, + "loss": 55.8439, + "step": 543 + }, + { + "crossentropy": 2.887509346008301, + "epoch": 8.032, + "grad_norm": 0.70703125, + "grad_norm_var": 0.0005124409993489584, + "learning_rate": 0.00048, + "loss": 57.691, + "step": 544 + }, + { + "crossentropy": 2.8629679679870605, + "epoch": 8.033, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0004961649576822917, + "learning_rate": 0.00047894736842105264, + "loss": 57.1656, + "step": 545 + }, + { + "crossentropy": 2.749383807182312, + "epoch": 8.034, + "grad_norm": 0.75, + "grad_norm_var": 0.0004968643188476562, + "learning_rate": 0.00047789473684210526, + "loss": 54.5942, + "step": 546 + }, + { + "crossentropy": 2.771678328514099, + "epoch": 8.035, + "grad_norm": 0.75, + "grad_norm_var": 0.00044091542561848957, + "learning_rate": 0.0004768421052631579, + "loss": 56.419, + "step": 547 + }, + { + "crossentropy": 2.6900097131729126, + "epoch": 8.036, + "grad_norm": 0.78125, + "grad_norm_var": 0.0004968643188476562, + "learning_rate": 0.00047578947368421057, + "loss": 55.0504, + "step": 548 + }, + { + "crossentropy": 2.769201636314392, + "epoch": 8.037, + "grad_norm": 0.73828125, + "grad_norm_var": 0.000510406494140625, + "learning_rate": 0.0004747368421052632, + "loss": 55.9095, + "step": 549 + }, + { + "crossentropy": 2.9785958528518677, + "epoch": 8.038, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0006134033203125, + "learning_rate": 0.00047368421052631577, + "loss": 57.2934, + "step": 550 + }, + { + "crossentropy": 2.833102226257324, + "epoch": 8.039, + "grad_norm": 0.77734375, + "grad_norm_var": 0.000635210673014323, + "learning_rate": 0.0004726315789473684, + "loss": 57.6031, + "step": 551 + }, + { + "crossentropy": 2.8962067365646362, + "epoch": 8.04, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0005619684855143229, + "learning_rate": 0.0004715789473684211, + "loss": 56.1431, + "step": 552 + }, + { + "crossentropy": 2.8563923835754395, + "epoch": 8.041, + "grad_norm": 0.82421875, + "grad_norm_var": 0.0008396784464518229, + "learning_rate": 0.0004705263157894737, + "loss": 58.5512, + "step": 553 + }, + { + "crossentropy": 2.8052828311920166, + "epoch": 8.042, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0008849461873372395, + "learning_rate": 0.0004694736842105263, + "loss": 54.951, + "step": 554 + }, + { + "crossentropy": 2.726549983024597, + "epoch": 8.043, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0009518941243489583, + "learning_rate": 0.00046842105263157895, + "loss": 55.8634, + "step": 555 + }, + { + "crossentropy": 2.8912360668182373, + "epoch": 8.044, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0009719212849934896, + "learning_rate": 0.00046736842105263163, + "loss": 56.6226, + "step": 556 + }, + { + "crossentropy": 2.8774843215942383, + "epoch": 8.045, + "grad_norm": 0.78125, + "grad_norm_var": 0.0009844462076822917, + "learning_rate": 0.0004663157894736842, + "loss": 57.6825, + "step": 557 + }, + { + "crossentropy": 2.7926796674728394, + "epoch": 8.046, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0009266535441080729, + "learning_rate": 0.00046526315789473683, + "loss": 56.6319, + "step": 558 + }, + { + "crossentropy": 2.8781834840774536, + "epoch": 8.047, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0008900960286458334, + "learning_rate": 0.00046421052631578946, + "loss": 57.2263, + "step": 559 + }, + { + "crossentropy": 2.768616557121277, + "epoch": 8.048, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0007138570149739583, + "learning_rate": 0.00046315789473684214, + "loss": 55.393, + "step": 560 + }, + { + "crossentropy": 2.8414195775985718, + "epoch": 8.049, + "grad_norm": 0.75, + "grad_norm_var": 0.0007196426391601563, + "learning_rate": 0.00046210526315789476, + "loss": 56.6017, + "step": 561 + }, + { + "crossentropy": 2.886254072189331, + "epoch": 8.05, + "grad_norm": 0.765625, + "grad_norm_var": 0.0007079442342122396, + "learning_rate": 0.0004610526315789474, + "loss": 57.1002, + "step": 562 + }, + { + "crossentropy": 2.882540702819824, + "epoch": 8.051, + "grad_norm": 0.734375, + "grad_norm_var": 0.0007521947224934896, + "learning_rate": 0.00046, + "loss": 57.4033, + "step": 563 + }, + { + "crossentropy": 2.8176023960113525, + "epoch": 8.052, + "grad_norm": 0.75, + "grad_norm_var": 0.0007369359334309896, + "learning_rate": 0.00045894736842105264, + "loss": 55.8245, + "step": 564 + }, + { + "crossentropy": 2.8578507900238037, + "epoch": 8.053, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0007994969685872396, + "learning_rate": 0.00045789473684210527, + "loss": 55.7208, + "step": 565 + }, + { + "crossentropy": 2.907991409301758, + "epoch": 8.054, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0006820042928059896, + "learning_rate": 0.0004568421052631579, + "loss": 57.6047, + "step": 566 + }, + { + "crossentropy": 2.9070833921432495, + "epoch": 8.055, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0006647109985351562, + "learning_rate": 0.0004557894736842105, + "loss": 56.8514, + "step": 567 + }, + { + "crossentropy": 2.8488681316375732, + "epoch": 8.056, + "grad_norm": 0.71484375, + "grad_norm_var": 0.000757280985514323, + "learning_rate": 0.0004547368421052632, + "loss": 55.2764, + "step": 568 + }, + { + "crossentropy": 2.843410849571228, + "epoch": 8.057, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0003986994425455729, + "learning_rate": 0.0004536842105263158, + "loss": 57.3239, + "step": 569 + }, + { + "crossentropy": 2.7495408058166504, + "epoch": 8.058, + "grad_norm": 0.8203125, + "grad_norm_var": 0.000689697265625, + "learning_rate": 0.00045263157894736845, + "loss": 56.725, + "step": 570 + }, + { + "crossentropy": 2.8769084215164185, + "epoch": 8.059, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0006743748982747396, + "learning_rate": 0.0004515789473684211, + "loss": 58.1138, + "step": 571 + }, + { + "crossentropy": 2.865220785140991, + "epoch": 8.06, + "grad_norm": 0.765625, + "grad_norm_var": 0.0006632486979166667, + "learning_rate": 0.00045052631578947365, + "loss": 57.7083, + "step": 572 + }, + { + "crossentropy": 2.7678266763687134, + "epoch": 8.061, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0006331761678059895, + "learning_rate": 0.00044947368421052633, + "loss": 56.7169, + "step": 573 + }, + { + "crossentropy": 2.716267228126526, + "epoch": 8.062, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0006306330362955729, + "learning_rate": 0.00044842105263157895, + "loss": 55.4713, + "step": 574 + }, + { + "crossentropy": 2.746058225631714, + "epoch": 8.063, + "grad_norm": 0.7578125, + "grad_norm_var": 0.000632476806640625, + "learning_rate": 0.0004473684210526316, + "loss": 56.1347, + "step": 575 + }, + { + "crossentropy": 2.8452965021133423, + "epoch": 8.064, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0005889892578125, + "learning_rate": 0.0004463157894736842, + "loss": 57.0829, + "step": 576 + }, + { + "crossentropy": 2.7510355710983276, + "epoch": 9.001, + "grad_norm": 0.71875, + "grad_norm_var": 0.0006367365519205729, + "learning_rate": 0.0004452631578947369, + "loss": 56.112, + "step": 577 + }, + { + "crossentropy": 2.735834240913391, + "epoch": 9.002, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0006235758463541667, + "learning_rate": 0.0004442105263157895, + "loss": 55.181, + "step": 578 + }, + { + "crossentropy": 2.731901526451111, + "epoch": 9.003, + "grad_norm": 0.765625, + "grad_norm_var": 0.000640869140625, + "learning_rate": 0.0004431578947368421, + "loss": 56.0573, + "step": 579 + }, + { + "crossentropy": 2.9925543069839478, + "epoch": 9.004, + "grad_norm": 0.78125, + "grad_norm_var": 0.0006418228149414062, + "learning_rate": 0.0004421052631578947, + "loss": 57.7087, + "step": 580 + }, + { + "crossentropy": 2.794908046722412, + "epoch": 9.005, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0006575902303059896, + "learning_rate": 0.0004410526315789474, + "loss": 55.5605, + "step": 581 + }, + { + "crossentropy": 2.9317067861557007, + "epoch": 9.006, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0006458918253580729, + "learning_rate": 0.00044, + "loss": 58.2652, + "step": 582 + }, + { + "crossentropy": 2.9609873294830322, + "epoch": 9.007, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0005431493123372396, + "learning_rate": 0.00043894736842105264, + "loss": 58.6218, + "step": 583 + }, + { + "crossentropy": 2.7990305423736572, + "epoch": 9.008, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0005462010701497396, + "learning_rate": 0.00043789473684210527, + "loss": 57.2674, + "step": 584 + }, + { + "crossentropy": 2.7703919410705566, + "epoch": 9.009, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0002913792928059896, + "learning_rate": 0.00043684210526315795, + "loss": 55.587, + "step": 585 + }, + { + "crossentropy": 2.887115478515625, + "epoch": 9.01, + "grad_norm": 0.80859375, + "grad_norm_var": 0.00040486653645833336, + "learning_rate": 0.0004357894736842105, + "loss": 56.62, + "step": 586 + }, + { + "crossentropy": 2.9152616262435913, + "epoch": 9.011, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0004546483357747396, + "learning_rate": 0.00043473684210526315, + "loss": 56.9964, + "step": 587 + }, + { + "crossentropy": 2.8132872581481934, + "epoch": 9.012, + "grad_norm": 0.75390625, + "grad_norm_var": 0.00042972564697265627, + "learning_rate": 0.00043368421052631577, + "loss": 55.0605, + "step": 588 + }, + { + "crossentropy": 2.7516273260116577, + "epoch": 9.013, + "grad_norm": 0.7421875, + "grad_norm_var": 0.000437164306640625, + "learning_rate": 0.00043263157894736845, + "loss": 56.6974, + "step": 589 + }, + { + "crossentropy": 2.7954412698745728, + "epoch": 9.014, + "grad_norm": 0.75390625, + "grad_norm_var": 0.00043837229410807293, + "learning_rate": 0.0004315789473684211, + "loss": 56.952, + "step": 590 + }, + { + "crossentropy": 2.7435046434402466, + "epoch": 9.015, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0004514058430989583, + "learning_rate": 0.0004305263157894737, + "loss": 56.8651, + "step": 591 + }, + { + "crossentropy": 2.85153329372406, + "epoch": 9.016, + "grad_norm": 0.734375, + "grad_norm_var": 0.0004892349243164062, + "learning_rate": 0.00042947368421052633, + "loss": 55.8497, + "step": 592 + }, + { + "crossentropy": 2.698570728302002, + "epoch": 9.017, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00039265950520833335, + "learning_rate": 0.00042842105263157896, + "loss": 55.0285, + "step": 593 + }, + { + "crossentropy": 2.8842196464538574, + "epoch": 9.018, + "grad_norm": 0.78515625, + "grad_norm_var": 0.00041681925455729166, + "learning_rate": 0.0004273684210526316, + "loss": 56.7253, + "step": 594 + }, + { + "crossentropy": 2.703991651535034, + "epoch": 9.019, + "grad_norm": 0.7265625, + "grad_norm_var": 0.000494384765625, + "learning_rate": 0.0004263157894736842, + "loss": 54.9482, + "step": 595 + }, + { + "crossentropy": 2.828360438346863, + "epoch": 9.02, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00047092437744140626, + "learning_rate": 0.00042526315789473683, + "loss": 56.6368, + "step": 596 + }, + { + "crossentropy": 2.7593008279800415, + "epoch": 9.021, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005039850870768229, + "learning_rate": 0.0004242105263157895, + "loss": 56.4671, + "step": 597 + }, + { + "crossentropy": 2.716967463493347, + "epoch": 9.022, + "grad_norm": 0.78125, + "grad_norm_var": 0.0005449930826822917, + "learning_rate": 0.00042315789473684214, + "loss": 55.5724, + "step": 598 + }, + { + "crossentropy": 2.774570941925049, + "epoch": 9.023, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005816141764322917, + "learning_rate": 0.00042210526315789477, + "loss": 56.5112, + "step": 599 + }, + { + "crossentropy": 2.72983181476593, + "epoch": 9.024, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0005899429321289063, + "learning_rate": 0.00042105263157894734, + "loss": 55.1346, + "step": 600 + }, + { + "crossentropy": 2.8420827388763428, + "epoch": 9.025, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0005706787109375, + "learning_rate": 0.00042, + "loss": 56.3536, + "step": 601 + }, + { + "crossentropy": 2.880441188812256, + "epoch": 9.026, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00036722819010416666, + "learning_rate": 0.00041894736842105264, + "loss": 57.4732, + "step": 602 + }, + { + "crossentropy": 2.8829102516174316, + "epoch": 9.027, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0003374735514322917, + "learning_rate": 0.00041789473684210527, + "loss": 57.025, + "step": 603 + }, + { + "crossentropy": 2.7579070329666138, + "epoch": 9.028, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00033976236979166665, + "learning_rate": 0.0004168421052631579, + "loss": 54.3299, + "step": 604 + }, + { + "crossentropy": 2.79787278175354, + "epoch": 9.029, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0003890355428059896, + "learning_rate": 0.0004157894736842106, + "loss": 56.4175, + "step": 605 + }, + { + "crossentropy": 2.814871907234192, + "epoch": 9.03, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0004109064737955729, + "learning_rate": 0.0004147368421052632, + "loss": 56.6412, + "step": 606 + }, + { + "crossentropy": 2.9164552688598633, + "epoch": 9.031, + "grad_norm": 0.76171875, + "grad_norm_var": 0.00038553873697916665, + "learning_rate": 0.0004136842105263158, + "loss": 56.5248, + "step": 607 + }, + { + "crossentropy": 2.851742148399353, + "epoch": 9.032, + "grad_norm": 0.7734375, + "grad_norm_var": 0.000394439697265625, + "learning_rate": 0.0004126315789473684, + "loss": 57.026, + "step": 608 + }, + { + "crossentropy": 2.8921687602996826, + "epoch": 9.033, + "grad_norm": 0.77734375, + "grad_norm_var": 0.000424957275390625, + "learning_rate": 0.0004115789473684211, + "loss": 56.07, + "step": 609 + }, + { + "crossentropy": 2.748379707336426, + "epoch": 9.034, + "grad_norm": 0.71484375, + "grad_norm_var": 0.0004547119140625, + "learning_rate": 0.0004105263157894737, + "loss": 54.6257, + "step": 610 + }, + { + "crossentropy": 2.8249024152755737, + "epoch": 9.035, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0004124323527018229, + "learning_rate": 0.00040947368421052633, + "loss": 55.8105, + "step": 611 + }, + { + "crossentropy": 2.793903946876526, + "epoch": 9.036, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0004124323527018229, + "learning_rate": 0.00040842105263157896, + "loss": 56.7126, + "step": 612 + }, + { + "crossentropy": 2.8926647901535034, + "epoch": 9.037, + "grad_norm": 0.734375, + "grad_norm_var": 0.0004018147786458333, + "learning_rate": 0.00040736842105263164, + "loss": 57.0243, + "step": 613 + }, + { + "crossentropy": 2.722157835960388, + "epoch": 9.038, + "grad_norm": 0.75, + "grad_norm_var": 0.0003448486328125, + "learning_rate": 0.0004063157894736842, + "loss": 56.15, + "step": 614 + }, + { + "crossentropy": 2.879178524017334, + "epoch": 9.039, + "grad_norm": 0.76953125, + "grad_norm_var": 0.000333404541015625, + "learning_rate": 0.00040526315789473684, + "loss": 56.5565, + "step": 615 + }, + { + "crossentropy": 2.870532989501953, + "epoch": 9.04, + "grad_norm": 0.734375, + "grad_norm_var": 0.00032450358072916665, + "learning_rate": 0.00040421052631578946, + "loss": 57.2944, + "step": 616 + }, + { + "crossentropy": 2.6587058305740356, + "epoch": 9.041, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0003513971964518229, + "learning_rate": 0.0004031578947368421, + "loss": 55.9194, + "step": 617 + }, + { + "crossentropy": 2.8166728019714355, + "epoch": 9.042, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00035800933837890623, + "learning_rate": 0.00040210526315789477, + "loss": 56.4466, + "step": 618 + }, + { + "crossentropy": 2.7822681665420532, + "epoch": 9.043, + "grad_norm": 0.765625, + "grad_norm_var": 0.0003753662109375, + "learning_rate": 0.0004010526315789474, + "loss": 55.9381, + "step": 619 + }, + { + "crossentropy": 2.7443701028823853, + "epoch": 9.044, + "grad_norm": 0.7421875, + "grad_norm_var": 0.00037784576416015624, + "learning_rate": 0.0004, + "loss": 55.3256, + "step": 620 + }, + { + "crossentropy": 2.77031409740448, + "epoch": 9.045, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0003371556599934896, + "learning_rate": 0.0003989473684210526, + "loss": 55.9228, + "step": 621 + }, + { + "crossentropy": 2.7815150022506714, + "epoch": 9.046, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0003371556599934896, + "learning_rate": 0.00039789473684210527, + "loss": 55.1725, + "step": 622 + }, + { + "crossentropy": 2.8636655807495117, + "epoch": 9.047, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0003371556599934896, + "learning_rate": 0.0003968421052631579, + "loss": 56.2236, + "step": 623 + }, + { + "crossentropy": 2.8161659240722656, + "epoch": 9.048, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0003356297810872396, + "learning_rate": 0.0003957894736842105, + "loss": 56.7137, + "step": 624 + }, + { + "crossentropy": 2.873541831970215, + "epoch": 9.049, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00027561187744140625, + "learning_rate": 0.00039473684210526315, + "loss": 58.0352, + "step": 625 + }, + { + "crossentropy": 2.830682158470154, + "epoch": 9.05, + "grad_norm": 0.78515625, + "grad_norm_var": 0.00028934478759765623, + "learning_rate": 0.00039368421052631583, + "loss": 56.4589, + "step": 626 + }, + { + "crossentropy": 2.8676915168762207, + "epoch": 9.051, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0002979914347330729, + "learning_rate": 0.00039263157894736846, + "loss": 57.3925, + "step": 627 + }, + { + "crossentropy": 2.846311330795288, + "epoch": 9.052, + "grad_norm": 0.765625, + "grad_norm_var": 0.00031229654947916664, + "learning_rate": 0.000391578947368421, + "loss": 57.5314, + "step": 628 + }, + { + "crossentropy": 2.8266266584396362, + "epoch": 9.053, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00029474894205729166, + "learning_rate": 0.00039052631578947365, + "loss": 57.0562, + "step": 629 + }, + { + "crossentropy": 2.8677502870559692, + "epoch": 9.054, + "grad_norm": 0.75, + "grad_norm_var": 0.00029474894205729166, + "learning_rate": 0.00038947368421052633, + "loss": 56.3468, + "step": 630 + }, + { + "crossentropy": 2.819862723350525, + "epoch": 9.055, + "grad_norm": 0.76953125, + "grad_norm_var": 0.00029474894205729166, + "learning_rate": 0.00038842105263157896, + "loss": 57.1646, + "step": 631 + }, + { + "crossentropy": 2.8373594284057617, + "epoch": 9.056, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0002873102823893229, + "learning_rate": 0.0003873684210526316, + "loss": 57.8049, + "step": 632 + }, + { + "crossentropy": 2.844488739967346, + "epoch": 9.057, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0002440770467122396, + "learning_rate": 0.0003863157894736842, + "loss": 57.1337, + "step": 633 + }, + { + "crossentropy": 2.8051549196243286, + "epoch": 9.058, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0002227783203125, + "learning_rate": 0.0003852631578947369, + "loss": 55.1455, + "step": 634 + }, + { + "crossentropy": 2.889759659767151, + "epoch": 9.059, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00022373199462890624, + "learning_rate": 0.00038421052631578946, + "loss": 57.317, + "step": 635 + }, + { + "crossentropy": 2.9444185495376587, + "epoch": 9.06, + "grad_norm": 0.75, + "grad_norm_var": 0.0002135594685872396, + "learning_rate": 0.0003831578947368421, + "loss": 57.7695, + "step": 636 + }, + { + "crossentropy": 2.893734097480774, + "epoch": 9.061, + "grad_norm": 0.78515625, + "grad_norm_var": 0.00026543935139973957, + "learning_rate": 0.0003821052631578947, + "loss": 56.677, + "step": 637 + }, + { + "crossentropy": 2.8171656131744385, + "epoch": 9.062, + "grad_norm": 0.734375, + "grad_norm_var": 0.00028661092122395836, + "learning_rate": 0.0003810526315789474, + "loss": 55.8621, + "step": 638 + }, + { + "crossentropy": 2.9001771211624146, + "epoch": 9.063, + "grad_norm": 0.76171875, + "grad_norm_var": 0.00028661092122395836, + "learning_rate": 0.00038, + "loss": 58.2953, + "step": 639 + }, + { + "crossentropy": 2.8124544620513916, + "epoch": 9.064, + "grad_norm": 0.7421875, + "grad_norm_var": 0.000241851806640625, + "learning_rate": 0.00037894736842105265, + "loss": 56.2274, + "step": 640 + }, + { + "crossentropy": 2.691709280014038, + "epoch": 10.001, + "grad_norm": 0.7109375, + "grad_norm_var": 0.00030492146809895835, + "learning_rate": 0.00037789473684210527, + "loss": 53.1371, + "step": 641 + }, + { + "crossentropy": 2.748944401741028, + "epoch": 10.002, + "grad_norm": 0.765625, + "grad_norm_var": 0.00030358632405598957, + "learning_rate": 0.0003768421052631579, + "loss": 55.4782, + "step": 642 + }, + { + "crossentropy": 2.8715380430221558, + "epoch": 10.003, + "grad_norm": 0.734375, + "grad_norm_var": 0.0003127415974934896, + "learning_rate": 0.0003757894736842105, + "loss": 56.7533, + "step": 643 + }, + { + "crossentropy": 2.7285449504852295, + "epoch": 10.004, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0003110249837239583, + "learning_rate": 0.00037473684210526315, + "loss": 56.2589, + "step": 644 + }, + { + "crossentropy": 2.9220064878463745, + "epoch": 10.005, + "grad_norm": 0.75, + "grad_norm_var": 0.0003110249837239583, + "learning_rate": 0.0003736842105263158, + "loss": 55.9243, + "step": 645 + }, + { + "crossentropy": 2.886649250984192, + "epoch": 10.006, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0002898534138997396, + "learning_rate": 0.00037263157894736846, + "loss": 58.1926, + "step": 646 + }, + { + "crossentropy": 2.7266123294830322, + "epoch": 10.007, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0002898534138997396, + "learning_rate": 0.0003715789473684211, + "loss": 56.4874, + "step": 647 + }, + { + "crossentropy": 2.8823474645614624, + "epoch": 10.008, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0003193537394205729, + "learning_rate": 0.0003705263157894737, + "loss": 56.2834, + "step": 648 + }, + { + "crossentropy": 2.8225646018981934, + "epoch": 10.009, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0004058202107747396, + "learning_rate": 0.00036947368421052633, + "loss": 56.0732, + "step": 649 + }, + { + "crossentropy": 2.7276248931884766, + "epoch": 10.01, + "grad_norm": 0.734375, + "grad_norm_var": 0.00042622884114583334, + "learning_rate": 0.00036842105263157896, + "loss": 54.2119, + "step": 650 + }, + { + "crossentropy": 2.851339101791382, + "epoch": 10.011, + "grad_norm": 0.7265625, + "grad_norm_var": 0.00046971638997395836, + "learning_rate": 0.0003673684210526316, + "loss": 57.2307, + "step": 651 + }, + { + "crossentropy": 2.81039559841156, + "epoch": 10.012, + "grad_norm": 0.75, + "grad_norm_var": 0.0003890355428059896, + "learning_rate": 0.0003663157894736842, + "loss": 55.5788, + "step": 652 + }, + { + "crossentropy": 2.917648434638977, + "epoch": 10.013, + "grad_norm": 0.79296875, + "grad_norm_var": 0.00048726399739583334, + "learning_rate": 0.00036526315789473684, + "loss": 58.2029, + "step": 653 + }, + { + "crossentropy": 2.8261080980300903, + "epoch": 10.014, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005116780598958333, + "learning_rate": 0.0003642105263157895, + "loss": 56.476, + "step": 654 + }, + { + "crossentropy": 2.7618919610977173, + "epoch": 10.015, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0005080540974934896, + "learning_rate": 0.00036315789473684214, + "loss": 55.7106, + "step": 655 + }, + { + "crossentropy": 2.804520845413208, + "epoch": 10.016, + "grad_norm": 0.7890625, + "grad_norm_var": 0.0005889256795247396, + "learning_rate": 0.00036210526315789477, + "loss": 56.374, + "step": 656 + }, + { + "crossentropy": 2.751194953918457, + "epoch": 10.017, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0005141576131184896, + "learning_rate": 0.00036105263157894734, + "loss": 55.439, + "step": 657 + }, + { + "crossentropy": 2.893984794616699, + "epoch": 10.018, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0005156834920247396, + "learning_rate": 0.00035999999999999997, + "loss": 59.3323, + "step": 658 + }, + { + "crossentropy": 2.833603858947754, + "epoch": 10.019, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0005395889282226562, + "learning_rate": 0.00035894736842105265, + "loss": 56.9289, + "step": 659 + }, + { + "crossentropy": 2.7936803102493286, + "epoch": 10.02, + "grad_norm": 0.75, + "grad_norm_var": 0.0005368550618489583, + "learning_rate": 0.0003578947368421053, + "loss": 55.5988, + "step": 660 + }, + { + "crossentropy": 2.797438144683838, + "epoch": 10.021, + "grad_norm": 0.7578125, + "grad_norm_var": 0.000537109375, + "learning_rate": 0.0003568421052631579, + "loss": 56.618, + "step": 661 + }, + { + "crossentropy": 2.6816130876541138, + "epoch": 10.022, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0006326675415039062, + "learning_rate": 0.0003557894736842105, + "loss": 55.4491, + "step": 662 + }, + { + "crossentropy": 2.775187849998474, + "epoch": 10.023, + "grad_norm": 0.71875, + "grad_norm_var": 0.0007029215494791667, + "learning_rate": 0.0003547368421052632, + "loss": 54.9814, + "step": 663 + }, + { + "crossentropy": 2.9283132553100586, + "epoch": 10.024, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0006931940714518229, + "learning_rate": 0.0003536842105263158, + "loss": 57.377, + "step": 664 + }, + { + "crossentropy": 2.754921555519104, + "epoch": 10.025, + "grad_norm": 0.73828125, + "grad_norm_var": 0.000608062744140625, + "learning_rate": 0.0003526315789473684, + "loss": 55.0399, + "step": 665 + }, + { + "crossentropy": 2.87182080745697, + "epoch": 10.026, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0005950927734375, + "learning_rate": 0.00035157894736842103, + "loss": 56.8635, + "step": 666 + }, + { + "crossentropy": 2.787114143371582, + "epoch": 10.027, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0006545384724934896, + "learning_rate": 0.0003505263157894737, + "loss": 56.3069, + "step": 667 + }, + { + "crossentropy": 2.770491600036621, + "epoch": 10.028, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0006581624348958333, + "learning_rate": 0.00034947368421052634, + "loss": 56.8387, + "step": 668 + }, + { + "crossentropy": 2.8516522645950317, + "epoch": 10.029, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0005614598592122396, + "learning_rate": 0.00034842105263157896, + "loss": 56.9971, + "step": 669 + }, + { + "crossentropy": 2.750314712524414, + "epoch": 10.03, + "grad_norm": 0.69921875, + "grad_norm_var": 0.0007109959920247396, + "learning_rate": 0.0003473684210526316, + "loss": 54.2891, + "step": 670 + }, + { + "crossentropy": 2.7711139917373657, + "epoch": 10.031, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0007138570149739583, + "learning_rate": 0.0003463157894736842, + "loss": 55.5093, + "step": 671 + }, + { + "crossentropy": 2.7986541986465454, + "epoch": 10.032, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0006138483683268229, + "learning_rate": 0.00034526315789473684, + "loss": 56.5041, + "step": 672 + }, + { + "crossentropy": 2.8304941654205322, + "epoch": 10.033, + "grad_norm": 0.734375, + "grad_norm_var": 0.0005960464477539062, + "learning_rate": 0.00034421052631578947, + "loss": 56.5678, + "step": 673 + }, + { + "crossentropy": 2.748772144317627, + "epoch": 10.034, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0006336847941080729, + "learning_rate": 0.0003431578947368421, + "loss": 56.2156, + "step": 674 + }, + { + "crossentropy": 2.911113739013672, + "epoch": 10.035, + "grad_norm": 0.80859375, + "grad_norm_var": 0.0008005777994791667, + "learning_rate": 0.00034210526315789477, + "loss": 57.6437, + "step": 675 + }, + { + "crossentropy": 2.8851195573806763, + "epoch": 10.036, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0008117039998372396, + "learning_rate": 0.0003410526315789474, + "loss": 57.8075, + "step": 676 + }, + { + "crossentropy": 2.8386086225509644, + "epoch": 10.037, + "grad_norm": 0.73046875, + "grad_norm_var": 0.000852203369140625, + "learning_rate": 0.00034, + "loss": 56.9642, + "step": 677 + }, + { + "crossentropy": 2.837552309036255, + "epoch": 10.038, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0007862726847330729, + "learning_rate": 0.0003389473684210526, + "loss": 56.0464, + "step": 678 + }, + { + "crossentropy": 2.7876830101013184, + "epoch": 10.039, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0007181803385416667, + "learning_rate": 0.0003378947368421053, + "loss": 57.0013, + "step": 679 + }, + { + "crossentropy": 2.6957716941833496, + "epoch": 10.04, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0007008234659830729, + "learning_rate": 0.0003368421052631579, + "loss": 54.8812, + "step": 680 + }, + { + "crossentropy": 2.858887195587158, + "epoch": 10.041, + "grad_norm": 0.78125, + "grad_norm_var": 0.0007476806640625, + "learning_rate": 0.00033578947368421053, + "loss": 57.4649, + "step": 681 + }, + { + "crossentropy": 2.835731267929077, + "epoch": 10.042, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0007766087849934896, + "learning_rate": 0.00033473684210526315, + "loss": 57.3096, + "step": 682 + }, + { + "crossentropy": 2.7914698123931885, + "epoch": 10.043, + "grad_norm": 0.75, + "grad_norm_var": 0.0006528218587239583, + "learning_rate": 0.00033368421052631583, + "loss": 54.5885, + "step": 683 + }, + { + "crossentropy": 2.7969202995300293, + "epoch": 10.044, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0006947835286458333, + "learning_rate": 0.00033263157894736846, + "loss": 55.199, + "step": 684 + }, + { + "crossentropy": 2.7273718118667603, + "epoch": 10.045, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0006947835286458333, + "learning_rate": 0.00033157894736842103, + "loss": 54.9177, + "step": 685 + }, + { + "crossentropy": 2.9325153827667236, + "epoch": 10.046, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0005777994791666667, + "learning_rate": 0.00033052631578947366, + "loss": 57.8565, + "step": 686 + }, + { + "crossentropy": 2.8253042697906494, + "epoch": 10.047, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0005955378214518229, + "learning_rate": 0.00032947368421052634, + "loss": 56.367, + "step": 687 + }, + { + "crossentropy": 2.9794070720672607, + "epoch": 10.048, + "grad_norm": 0.80078125, + "grad_norm_var": 0.0007196426391601563, + "learning_rate": 0.00032842105263157896, + "loss": 58.8961, + "step": 688 + }, + { + "crossentropy": 2.8630117177963257, + "epoch": 10.049, + "grad_norm": 0.74609375, + "grad_norm_var": 0.000693511962890625, + "learning_rate": 0.0003273684210526316, + "loss": 55.8875, + "step": 689 + }, + { + "crossentropy": 2.885907292366028, + "epoch": 10.05, + "grad_norm": 0.734375, + "grad_norm_var": 0.0007049560546875, + "learning_rate": 0.0003263157894736842, + "loss": 57.5656, + "step": 690 + }, + { + "crossentropy": 2.809995174407959, + "epoch": 10.051, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0005050023396809896, + "learning_rate": 0.0003252631578947369, + "loss": 57.0467, + "step": 691 + }, + { + "crossentropy": 2.9418861865997314, + "epoch": 10.052, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00048421223958333335, + "learning_rate": 0.00032421052631578947, + "loss": 57.9401, + "step": 692 + }, + { + "crossentropy": 2.795152425765991, + "epoch": 10.053, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0004597345987955729, + "learning_rate": 0.0003231578947368421, + "loss": 56.1651, + "step": 693 + }, + { + "crossentropy": 2.81339955329895, + "epoch": 10.054, + "grad_norm": 0.8515625, + "grad_norm_var": 0.0010171890258789062, + "learning_rate": 0.0003221052631578947, + "loss": 56.595, + "step": 694 + }, + { + "crossentropy": 2.9207112789154053, + "epoch": 10.055, + "grad_norm": 0.76171875, + "grad_norm_var": 0.001004473368326823, + "learning_rate": 0.0003210526315789474, + "loss": 57.6239, + "step": 695 + }, + { + "crossentropy": 2.7555843591690063, + "epoch": 10.056, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0009958902994791667, + "learning_rate": 0.00032, + "loss": 55.6938, + "step": 696 + }, + { + "crossentropy": 2.7774757146835327, + "epoch": 10.057, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0009724299112955729, + "learning_rate": 0.00031894736842105265, + "loss": 56.9648, + "step": 697 + }, + { + "crossentropy": 2.934939742088318, + "epoch": 10.058, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0009144465128580729, + "learning_rate": 0.0003178947368421053, + "loss": 57.7034, + "step": 698 + }, + { + "crossentropy": 2.8009008169174194, + "epoch": 10.059, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0009213765462239583, + "learning_rate": 0.00031684210526315785, + "loss": 56.4452, + "step": 699 + }, + { + "crossentropy": 2.9469012022018433, + "epoch": 10.06, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0008447647094726562, + "learning_rate": 0.00031578947368421053, + "loss": 58.8681, + "step": 700 + }, + { + "crossentropy": 2.7601804733276367, + "epoch": 10.061, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0008562723795572917, + "learning_rate": 0.00031473684210526316, + "loss": 56.4526, + "step": 701 + }, + { + "crossentropy": 2.8851720094680786, + "epoch": 10.062, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0008406956990559896, + "learning_rate": 0.0003136842105263158, + "loss": 56.0664, + "step": 702 + }, + { + "crossentropy": 2.7828023433685303, + "epoch": 10.063, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0008483250935872396, + "learning_rate": 0.0003126315789473684, + "loss": 55.3705, + "step": 703 + }, + { + "crossentropy": 2.9105297327041626, + "epoch": 10.064, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0007705052693684895, + "learning_rate": 0.0003115789473684211, + "loss": 57.2773, + "step": 704 + }, + { + "crossentropy": 2.706776738166809, + "epoch": 11.001, + "grad_norm": 0.734375, + "grad_norm_var": 0.0008045832316080729, + "learning_rate": 0.0003105263157894737, + "loss": 54.4294, + "step": 705 + }, + { + "crossentropy": 2.785434126853943, + "epoch": 11.002, + "grad_norm": 0.73828125, + "grad_norm_var": 0.000811767578125, + "learning_rate": 0.0003094736842105263, + "loss": 56.077, + "step": 706 + }, + { + "crossentropy": 2.708212375640869, + "epoch": 11.003, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0008254369099934896, + "learning_rate": 0.0003084210526315789, + "loss": 53.1839, + "step": 707 + }, + { + "crossentropy": 2.7735451459884644, + "epoch": 11.004, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0008300145467122396, + "learning_rate": 0.0003073684210526316, + "loss": 56.1457, + "step": 708 + }, + { + "crossentropy": 2.8523166179656982, + "epoch": 11.005, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0001713434855143229, + "learning_rate": 0.0003063157894736842, + "loss": 57.1347, + "step": 709 + }, + { + "crossentropy": 2.914563536643982, + "epoch": 11.006, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0002522150675455729, + "learning_rate": 0.00030526315789473684, + "loss": 57.723, + "step": 710 + }, + { + "crossentropy": 2.7213577032089233, + "epoch": 11.007, + "grad_norm": 0.765625, + "grad_norm_var": 0.00027033487955729164, + "learning_rate": 0.00030421052631578947, + "loss": 55.6901, + "step": 711 + }, + { + "crossentropy": 2.912691831588745, + "epoch": 11.008, + "grad_norm": 0.765625, + "grad_norm_var": 0.0002608617146809896, + "learning_rate": 0.00030315789473684215, + "loss": 57.1725, + "step": 712 + }, + { + "crossentropy": 2.8348140716552734, + "epoch": 11.009, + "grad_norm": 0.765625, + "grad_norm_var": 0.0002766927083333333, + "learning_rate": 0.0003021052631578947, + "loss": 56.1903, + "step": 713 + }, + { + "crossentropy": 2.8859379291534424, + "epoch": 11.01, + "grad_norm": 0.77734375, + "grad_norm_var": 0.00032145182291666666, + "learning_rate": 0.00030105263157894735, + "loss": 58.3572, + "step": 714 + }, + { + "crossentropy": 2.778756260871887, + "epoch": 11.011, + "grad_norm": 0.765625, + "grad_norm_var": 0.00032526652018229166, + "learning_rate": 0.0003, + "loss": 56.3487, + "step": 715 + }, + { + "crossentropy": 2.982430934906006, + "epoch": 11.012, + "grad_norm": 0.78125, + "grad_norm_var": 0.0003539403279622396, + "learning_rate": 0.00029894736842105265, + "loss": 57.9075, + "step": 716 + }, + { + "crossentropy": 2.8630356788635254, + "epoch": 11.013, + "grad_norm": 0.73046875, + "grad_norm_var": 0.000394439697265625, + "learning_rate": 0.0002978947368421053, + "loss": 56.721, + "step": 717 + }, + { + "crossentropy": 2.6543571949005127, + "epoch": 11.014, + "grad_norm": 0.74609375, + "grad_norm_var": 0.000394439697265625, + "learning_rate": 0.0002968421052631579, + "loss": 54.8384, + "step": 718 + }, + { + "crossentropy": 2.869687557220459, + "epoch": 11.015, + "grad_norm": 0.77734375, + "grad_norm_var": 0.000382232666015625, + "learning_rate": 0.00029578947368421053, + "loss": 57.8614, + "step": 719 + }, + { + "crossentropy": 2.846762180328369, + "epoch": 11.016, + "grad_norm": 0.7421875, + "grad_norm_var": 0.00034885406494140626, + "learning_rate": 0.00029473684210526316, + "loss": 57.1553, + "step": 720 + }, + { + "crossentropy": 2.7584152221679688, + "epoch": 11.017, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0003280003865559896, + "learning_rate": 0.0002936842105263158, + "loss": 55.2654, + "step": 721 + }, + { + "crossentropy": 2.8962432146072388, + "epoch": 11.018, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0003682454427083333, + "learning_rate": 0.0002926315789473684, + "loss": 56.6584, + "step": 722 + }, + { + "crossentropy": 2.7644320726394653, + "epoch": 11.019, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0003590265909830729, + "learning_rate": 0.00029157894736842104, + "loss": 55.4874, + "step": 723 + }, + { + "crossentropy": 2.6588387489318848, + "epoch": 11.02, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0004241943359375, + "learning_rate": 0.0002905263157894737, + "loss": 54.2554, + "step": 724 + }, + { + "crossentropy": 2.8226871490478516, + "epoch": 11.021, + "grad_norm": 0.734375, + "grad_norm_var": 0.0004330952962239583, + "learning_rate": 0.00028947368421052634, + "loss": 56.599, + "step": 725 + }, + { + "crossentropy": 2.8901766538619995, + "epoch": 11.022, + "grad_norm": 0.734375, + "grad_norm_var": 0.0003859837849934896, + "learning_rate": 0.00028842105263157897, + "loss": 56.2554, + "step": 726 + }, + { + "crossentropy": 2.772639751434326, + "epoch": 11.023, + "grad_norm": 0.75, + "grad_norm_var": 0.0003712336222330729, + "learning_rate": 0.0002873684210526316, + "loss": 56.7091, + "step": 727 + }, + { + "crossentropy": 2.8242876529693604, + "epoch": 11.024, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00035502115885416665, + "learning_rate": 0.0002863157894736842, + "loss": 55.5862, + "step": 728 + }, + { + "crossentropy": 2.9208909273147583, + "epoch": 11.025, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00034122467041015626, + "learning_rate": 0.00028526315789473685, + "loss": 56.8342, + "step": 729 + }, + { + "crossentropy": 2.6857054233551025, + "epoch": 11.026, + "grad_norm": 0.71875, + "grad_norm_var": 0.000321197509765625, + "learning_rate": 0.00028421052631578947, + "loss": 54.6538, + "step": 730 + }, + { + "crossentropy": 2.8337063789367676, + "epoch": 11.027, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0003021240234375, + "learning_rate": 0.0002831578947368421, + "loss": 57.5415, + "step": 731 + }, + { + "crossentropy": 2.786600351333618, + "epoch": 11.028, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00020084381103515624, + "learning_rate": 0.0002821052631578948, + "loss": 55.5913, + "step": 732 + }, + { + "crossentropy": 2.690516948699951, + "epoch": 11.029, + "grad_norm": 0.77734375, + "grad_norm_var": 0.00027256011962890626, + "learning_rate": 0.0002810526315789474, + "loss": 53.9815, + "step": 733 + }, + { + "crossentropy": 2.7604899406433105, + "epoch": 11.03, + "grad_norm": 0.73046875, + "grad_norm_var": 0.00028324127197265625, + "learning_rate": 0.00028000000000000003, + "loss": 54.824, + "step": 734 + }, + { + "crossentropy": 2.7863725423812866, + "epoch": 11.031, + "grad_norm": 0.70703125, + "grad_norm_var": 0.00026950836181640627, + "learning_rate": 0.0002789473684210526, + "loss": 55.8541, + "step": 735 + }, + { + "crossentropy": 2.8232542276382446, + "epoch": 11.032, + "grad_norm": 0.76171875, + "grad_norm_var": 0.000302886962890625, + "learning_rate": 0.0002778947368421053, + "loss": 56.7185, + "step": 736 + }, + { + "crossentropy": 2.7417391538619995, + "epoch": 11.033, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0003330866495768229, + "learning_rate": 0.0002768421052631579, + "loss": 57.2269, + "step": 737 + }, + { + "crossentropy": 2.819975972175598, + "epoch": 11.034, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0003265380859375, + "learning_rate": 0.00027578947368421053, + "loss": 56.6551, + "step": 738 + }, + { + "crossentropy": 2.9095921516418457, + "epoch": 11.035, + "grad_norm": 0.77734375, + "grad_norm_var": 0.00040836334228515624, + "learning_rate": 0.00027473684210526316, + "loss": 56.8075, + "step": 739 + }, + { + "crossentropy": 2.91646945476532, + "epoch": 11.036, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0003956476847330729, + "learning_rate": 0.00027368421052631584, + "loss": 57.2162, + "step": 740 + }, + { + "crossentropy": 2.9138376712799072, + "epoch": 11.037, + "grad_norm": 0.765625, + "grad_norm_var": 0.0004088719685872396, + "learning_rate": 0.00027263157894736847, + "loss": 56.7284, + "step": 741 + }, + { + "crossentropy": 2.84540057182312, + "epoch": 11.038, + "grad_norm": 0.70703125, + "grad_norm_var": 0.0005045572916666667, + "learning_rate": 0.00027157894736842104, + "loss": 55.8447, + "step": 742 + }, + { + "crossentropy": 2.7151050567626953, + "epoch": 11.039, + "grad_norm": 0.734375, + "grad_norm_var": 0.0005116780598958333, + "learning_rate": 0.00027052631578947366, + "loss": 55.9625, + "step": 743 + }, + { + "crossentropy": 2.9206697940826416, + "epoch": 11.04, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0005619684855143229, + "learning_rate": 0.0002694736842105263, + "loss": 57.6432, + "step": 744 + }, + { + "crossentropy": 2.8370519876480103, + "epoch": 11.041, + "grad_norm": 0.765625, + "grad_norm_var": 0.000577545166015625, + "learning_rate": 0.00026842105263157897, + "loss": 55.4367, + "step": 745 + }, + { + "crossentropy": 2.8395227193832397, + "epoch": 11.042, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0005156834920247396, + "learning_rate": 0.0002673684210526316, + "loss": 56.171, + "step": 746 + }, + { + "crossentropy": 2.786525845527649, + "epoch": 11.043, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0005467096964518229, + "learning_rate": 0.0002663157894736842, + "loss": 57.2315, + "step": 747 + }, + { + "crossentropy": 2.9187395572662354, + "epoch": 11.044, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0005472819010416667, + "learning_rate": 0.00026526315789473685, + "loss": 57.2511, + "step": 748 + }, + { + "crossentropy": 2.7996715307235718, + "epoch": 11.045, + "grad_norm": 0.70703125, + "grad_norm_var": 0.0006182352701822917, + "learning_rate": 0.0002642105263157895, + "loss": 57.045, + "step": 749 + }, + { + "crossentropy": 2.8842201232910156, + "epoch": 11.046, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0006001154581705729, + "learning_rate": 0.0002631578947368421, + "loss": 57.6562, + "step": 750 + }, + { + "crossentropy": 2.805160880088806, + "epoch": 11.047, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0004795710245768229, + "learning_rate": 0.0002621052631578947, + "loss": 56.6321, + "step": 751 + }, + { + "crossentropy": 2.9018155336380005, + "epoch": 11.048, + "grad_norm": 0.734375, + "grad_norm_var": 0.00048802693684895835, + "learning_rate": 0.00026105263157894735, + "loss": 57.7864, + "step": 752 + }, + { + "crossentropy": 2.8916486501693726, + "epoch": 11.049, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0005156834920247396, + "learning_rate": 0.00026000000000000003, + "loss": 56.4045, + "step": 753 + }, + { + "crossentropy": 2.8715128898620605, + "epoch": 11.05, + "grad_norm": 0.78125, + "grad_norm_var": 0.0005429585774739584, + "learning_rate": 0.00025894736842105266, + "loss": 57.9977, + "step": 754 + }, + { + "crossentropy": 2.798703193664551, + "epoch": 11.051, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0005083719889322917, + "learning_rate": 0.0002578947368421053, + "loss": 57.3152, + "step": 755 + }, + { + "crossentropy": 2.9445585012435913, + "epoch": 11.052, + "grad_norm": 0.75, + "grad_norm_var": 0.0005024592081705729, + "learning_rate": 0.00025684210526315786, + "loss": 57.4762, + "step": 756 + }, + { + "crossentropy": 2.8702229261398315, + "epoch": 11.053, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0004900614420572917, + "learning_rate": 0.00025578947368421054, + "loss": 57.5399, + "step": 757 + }, + { + "crossentropy": 2.8421502113342285, + "epoch": 11.054, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0003636042277018229, + "learning_rate": 0.00025473684210526316, + "loss": 58.3388, + "step": 758 + }, + { + "crossentropy": 2.9485079050064087, + "epoch": 11.055, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0003483454386393229, + "learning_rate": 0.0002536842105263158, + "loss": 58.1595, + "step": 759 + }, + { + "crossentropy": 2.7640316486358643, + "epoch": 11.056, + "grad_norm": 0.75, + "grad_norm_var": 0.0003193537394205729, + "learning_rate": 0.0002526315789473684, + "loss": 55.4479, + "step": 760 + }, + { + "crossentropy": 2.9783310890197754, + "epoch": 11.057, + "grad_norm": 0.76953125, + "grad_norm_var": 0.00032755533854166664, + "learning_rate": 0.0002515789473684211, + "loss": 58.1017, + "step": 761 + }, + { + "crossentropy": 2.8926788568496704, + "epoch": 11.058, + "grad_norm": 0.76953125, + "grad_norm_var": 0.00034357706705729165, + "learning_rate": 0.0002505263157894737, + "loss": 56.6529, + "step": 762 + }, + { + "crossentropy": 2.82997465133667, + "epoch": 11.059, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00034357706705729165, + "learning_rate": 0.00024947368421052635, + "loss": 56.8071, + "step": 763 + }, + { + "crossentropy": 2.813700556755066, + "epoch": 11.06, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0003742853800455729, + "learning_rate": 0.00024842105263157897, + "loss": 55.8355, + "step": 764 + }, + { + "crossentropy": 2.7938244342803955, + "epoch": 11.061, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0002491633097330729, + "learning_rate": 0.0002473684210526316, + "loss": 55.8545, + "step": 765 + }, + { + "crossentropy": 2.8322267532348633, + "epoch": 11.062, + "grad_norm": 0.75, + "grad_norm_var": 0.00024102528889973957, + "learning_rate": 0.0002463157894736842, + "loss": 57.2321, + "step": 766 + }, + { + "crossentropy": 2.7156633138656616, + "epoch": 11.063, + "grad_norm": 0.75390625, + "grad_norm_var": 0.00024102528889973957, + "learning_rate": 0.00024526315789473685, + "loss": 54.8035, + "step": 767 + }, + { + "crossentropy": 2.634229063987732, + "epoch": 11.064, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00023167928059895834, + "learning_rate": 0.0002442105263157895, + "loss": 54.4477, + "step": 768 + }, + { + "crossentropy": 2.7296793460845947, + "epoch": 12.001, + "grad_norm": 0.78125, + "grad_norm_var": 0.0002196629842122396, + "learning_rate": 0.0002431578947368421, + "loss": 56.2054, + "step": 769 + }, + { + "crossentropy": 2.8033626079559326, + "epoch": 12.002, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0002196629842122396, + "learning_rate": 0.00024210526315789475, + "loss": 56.5435, + "step": 770 + }, + { + "crossentropy": 2.8827661275863647, + "epoch": 12.003, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0002608617146809896, + "learning_rate": 0.00024105263157894738, + "loss": 56.553, + "step": 771 + }, + { + "crossentropy": 2.798128128051758, + "epoch": 12.004, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0002598444620768229, + "learning_rate": 0.00024, + "loss": 56.1054, + "step": 772 + }, + { + "crossentropy": 2.79728901386261, + "epoch": 12.005, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0003072102864583333, + "learning_rate": 0.00023894736842105263, + "loss": 57.2369, + "step": 773 + }, + { + "crossentropy": 2.758781909942627, + "epoch": 12.006, + "grad_norm": 0.734375, + "grad_norm_var": 0.0003191630045572917, + "learning_rate": 0.00023789473684210529, + "loss": 54.4973, + "step": 774 + }, + { + "crossentropy": 2.9363932609558105, + "epoch": 12.007, + "grad_norm": 0.8046875, + "grad_norm_var": 0.0005096435546875, + "learning_rate": 0.00023684210526315788, + "loss": 57.2391, + "step": 775 + }, + { + "crossentropy": 2.8779611587524414, + "epoch": 12.008, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0004961649576822917, + "learning_rate": 0.00023578947368421054, + "loss": 56.8895, + "step": 776 + }, + { + "crossentropy": 2.824180841445923, + "epoch": 12.009, + "grad_norm": 0.75, + "grad_norm_var": 0.00047550201416015627, + "learning_rate": 0.00023473684210526316, + "loss": 57.5237, + "step": 777 + }, + { + "crossentropy": 2.8232827186584473, + "epoch": 12.01, + "grad_norm": 0.7265625, + "grad_norm_var": 0.00047397613525390625, + "learning_rate": 0.00023368421052631582, + "loss": 56.4012, + "step": 778 + }, + { + "crossentropy": 2.817031145095825, + "epoch": 12.011, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0004521052042643229, + "learning_rate": 0.00023263157894736841, + "loss": 55.2773, + "step": 779 + }, + { + "crossentropy": 2.731096386909485, + "epoch": 12.012, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00044733683268229166, + "learning_rate": 0.00023157894736842107, + "loss": 55.6655, + "step": 780 + }, + { + "crossentropy": 2.7005906105041504, + "epoch": 12.013, + "grad_norm": 0.7421875, + "grad_norm_var": 0.00045166015625, + "learning_rate": 0.0002305263157894737, + "loss": 55.448, + "step": 781 + }, + { + "crossentropy": 2.7934017181396484, + "epoch": 12.014, + "grad_norm": 0.71484375, + "grad_norm_var": 0.0005266825358072917, + "learning_rate": 0.00022947368421052632, + "loss": 54.7745, + "step": 782 + }, + { + "crossentropy": 2.8664556741714478, + "epoch": 12.015, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0005228042602539063, + "learning_rate": 0.00022842105263157895, + "loss": 57.5525, + "step": 783 + }, + { + "crossentropy": 2.797169327735901, + "epoch": 12.016, + "grad_norm": 0.75, + "grad_norm_var": 0.000516510009765625, + "learning_rate": 0.0002273684210526316, + "loss": 56.7851, + "step": 784 + }, + { + "crossentropy": 2.8436896800994873, + "epoch": 12.017, + "grad_norm": 0.73046875, + "grad_norm_var": 0.00045617421468098957, + "learning_rate": 0.00022631578947368422, + "loss": 56.0802, + "step": 785 + }, + { + "crossentropy": 2.664197087287903, + "epoch": 12.018, + "grad_norm": 0.79296875, + "grad_norm_var": 0.0005853652954101562, + "learning_rate": 0.00022526315789473682, + "loss": 54.7135, + "step": 786 + }, + { + "crossentropy": 2.6850061416625977, + "epoch": 12.019, + "grad_norm": 0.78125, + "grad_norm_var": 0.0006209691365559896, + "learning_rate": 0.00022421052631578948, + "loss": 55.2802, + "step": 787 + }, + { + "crossentropy": 2.7967450618743896, + "epoch": 12.02, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0006245930989583333, + "learning_rate": 0.0002231578947368421, + "loss": 57.1233, + "step": 788 + }, + { + "crossentropy": 2.872409701347351, + "epoch": 12.021, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0006245930989583333, + "learning_rate": 0.00022210526315789476, + "loss": 56.7216, + "step": 789 + }, + { + "crossentropy": 2.8131096363067627, + "epoch": 12.022, + "grad_norm": 0.734375, + "grad_norm_var": 0.0006245930989583333, + "learning_rate": 0.00022105263157894735, + "loss": 55.5856, + "step": 790 + }, + { + "crossentropy": 2.847323417663574, + "epoch": 12.023, + "grad_norm": 0.7421875, + "grad_norm_var": 0.00041300455729166666, + "learning_rate": 0.00022, + "loss": 56.5617, + "step": 791 + }, + { + "crossentropy": 2.8835920095443726, + "epoch": 12.024, + "grad_norm": 0.7421875, + "grad_norm_var": 0.00039615631103515623, + "learning_rate": 0.00021894736842105263, + "loss": 57.2592, + "step": 792 + }, + { + "crossentropy": 2.830420136451721, + "epoch": 12.025, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00040531158447265625, + "learning_rate": 0.00021789473684210526, + "loss": 56.2414, + "step": 793 + }, + { + "crossentropy": 2.755424976348877, + "epoch": 12.026, + "grad_norm": 0.734375, + "grad_norm_var": 0.0003895441691080729, + "learning_rate": 0.00021684210526315789, + "loss": 55.1508, + "step": 794 + }, + { + "crossentropy": 2.737109422683716, + "epoch": 12.027, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0003903706868489583, + "learning_rate": 0.00021578947368421054, + "loss": 55.5294, + "step": 795 + }, + { + "crossentropy": 2.8102558851242065, + "epoch": 12.028, + "grad_norm": 0.71875, + "grad_norm_var": 0.0004221598307291667, + "learning_rate": 0.00021473684210526316, + "loss": 55.6168, + "step": 796 + }, + { + "crossentropy": 2.8057838678359985, + "epoch": 12.029, + "grad_norm": 0.72265625, + "grad_norm_var": 0.00044854482014973957, + "learning_rate": 0.0002136842105263158, + "loss": 56.8656, + "step": 797 + }, + { + "crossentropy": 2.7969436645507812, + "epoch": 12.03, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0004514058430989583, + "learning_rate": 0.00021263157894736842, + "loss": 56.5856, + "step": 798 + }, + { + "crossentropy": 2.854472517967224, + "epoch": 12.031, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0004595438639322917, + "learning_rate": 0.00021157894736842107, + "loss": 57.0911, + "step": 799 + }, + { + "crossentropy": 2.705453634262085, + "epoch": 12.032, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0004622777303059896, + "learning_rate": 0.00021052631578947367, + "loss": 53.9657, + "step": 800 + }, + { + "crossentropy": 2.823037266731262, + "epoch": 12.033, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0004622777303059896, + "learning_rate": 0.00020947368421052632, + "loss": 56.4739, + "step": 801 + }, + { + "crossentropy": 2.826178789138794, + "epoch": 12.034, + "grad_norm": 0.765625, + "grad_norm_var": 0.0003407796223958333, + "learning_rate": 0.00020842105263157895, + "loss": 57.7884, + "step": 802 + }, + { + "crossentropy": 2.868850827217102, + "epoch": 12.035, + "grad_norm": 0.7109375, + "grad_norm_var": 0.0003110249837239583, + "learning_rate": 0.0002073684210526316, + "loss": 56.8438, + "step": 803 + }, + { + "crossentropy": 2.870843529701233, + "epoch": 12.036, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0003218968709309896, + "learning_rate": 0.0002063157894736842, + "loss": 57.301, + "step": 804 + }, + { + "crossentropy": 2.8651864528656006, + "epoch": 12.037, + "grad_norm": 0.7265625, + "grad_norm_var": 0.00031305948893229165, + "learning_rate": 0.00020526315789473685, + "loss": 57.0191, + "step": 805 + }, + { + "crossentropy": 2.9826983213424683, + "epoch": 12.038, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0003559748331705729, + "learning_rate": 0.00020421052631578948, + "loss": 57.7126, + "step": 806 + }, + { + "crossentropy": 2.7978984117507935, + "epoch": 12.039, + "grad_norm": 0.71875, + "grad_norm_var": 0.0003956476847330729, + "learning_rate": 0.0002031578947368421, + "loss": 55.453, + "step": 807 + }, + { + "crossentropy": 2.668187379837036, + "epoch": 12.04, + "grad_norm": 0.71484375, + "grad_norm_var": 0.000443267822265625, + "learning_rate": 0.00020210526315789473, + "loss": 53.316, + "step": 808 + }, + { + "crossentropy": 2.7966721057891846, + "epoch": 12.041, + "grad_norm": 0.7421875, + "grad_norm_var": 0.00042292277018229164, + "learning_rate": 0.00020105263157894738, + "loss": 55.6218, + "step": 809 + }, + { + "crossentropy": 2.739244222640991, + "epoch": 12.042, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0004404703776041667, + "learning_rate": 0.0002, + "loss": 56.3849, + "step": 810 + }, + { + "crossentropy": 2.783705234527588, + "epoch": 12.043, + "grad_norm": 0.7265625, + "grad_norm_var": 0.00045369466145833335, + "learning_rate": 0.00019894736842105264, + "loss": 57.1809, + "step": 811 + }, + { + "crossentropy": 2.8895143270492554, + "epoch": 12.044, + "grad_norm": 0.7578125, + "grad_norm_var": 0.000437164306640625, + "learning_rate": 0.00019789473684210526, + "loss": 58.2889, + "step": 812 + }, + { + "crossentropy": 2.8347127437591553, + "epoch": 12.045, + "grad_norm": 0.75390625, + "grad_norm_var": 0.00041478474934895834, + "learning_rate": 0.00019684210526315791, + "loss": 56.1132, + "step": 813 + }, + { + "crossentropy": 2.8544065952301025, + "epoch": 12.046, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0003651301066080729, + "learning_rate": 0.0001957894736842105, + "loss": 56.9511, + "step": 814 + }, + { + "crossentropy": 2.7046180963516235, + "epoch": 12.047, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0003600438435872396, + "learning_rate": 0.00019473684210526317, + "loss": 54.0523, + "step": 815 + }, + { + "crossentropy": 2.912235379219055, + "epoch": 12.048, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0003560384114583333, + "learning_rate": 0.0001936842105263158, + "loss": 57.7615, + "step": 816 + }, + { + "crossentropy": 2.8122063875198364, + "epoch": 12.049, + "grad_norm": 0.75, + "grad_norm_var": 0.00035953521728515625, + "learning_rate": 0.00019263157894736845, + "loss": 57.801, + "step": 817 + }, + { + "crossentropy": 2.74889874458313, + "epoch": 12.05, + "grad_norm": 0.76171875, + "grad_norm_var": 0.00034688313802083335, + "learning_rate": 0.00019157894736842104, + "loss": 57.198, + "step": 818 + }, + { + "crossentropy": 2.9050692319869995, + "epoch": 12.051, + "grad_norm": 0.73046875, + "grad_norm_var": 0.00029697418212890623, + "learning_rate": 0.0001905263157894737, + "loss": 56.6941, + "step": 819 + }, + { + "crossentropy": 2.7928906679153442, + "epoch": 12.052, + "grad_norm": 0.734375, + "grad_norm_var": 0.00028584798177083335, + "learning_rate": 0.00018947368421052632, + "loss": 56.1308, + "step": 820 + }, + { + "crossentropy": 2.7914161682128906, + "epoch": 12.053, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00034383138020833336, + "learning_rate": 0.00018842105263157895, + "loss": 56.491, + "step": 821 + }, + { + "crossentropy": 2.7516348361968994, + "epoch": 12.054, + "grad_norm": 0.734375, + "grad_norm_var": 0.0002929051717122396, + "learning_rate": 0.00018736842105263158, + "loss": 56.2496, + "step": 822 + }, + { + "crossentropy": 2.7576178312301636, + "epoch": 12.055, + "grad_norm": 0.71875, + "grad_norm_var": 0.0002929051717122396, + "learning_rate": 0.00018631578947368423, + "loss": 56.6343, + "step": 823 + }, + { + "crossentropy": 2.8195626735687256, + "epoch": 12.056, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0002486546834309896, + "learning_rate": 0.00018526315789473685, + "loss": 57.3709, + "step": 824 + }, + { + "crossentropy": 2.7876213788986206, + "epoch": 12.057, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0002486546834309896, + "learning_rate": 0.00018421052631578948, + "loss": 55.6639, + "step": 825 + }, + { + "crossentropy": 2.88731849193573, + "epoch": 12.058, + "grad_norm": 0.7265625, + "grad_norm_var": 0.00024153391520182293, + "learning_rate": 0.0001831578947368421, + "loss": 57.4164, + "step": 826 + }, + { + "crossentropy": 2.9272228479385376, + "epoch": 12.059, + "grad_norm": 0.76953125, + "grad_norm_var": 0.00028279622395833336, + "learning_rate": 0.00018210526315789476, + "loss": 57.3789, + "step": 827 + }, + { + "crossentropy": 2.833387613296509, + "epoch": 12.06, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0003864924112955729, + "learning_rate": 0.00018105263157894739, + "loss": 57.4141, + "step": 828 + }, + { + "crossentropy": 2.896293044090271, + "epoch": 12.061, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0003895441691080729, + "learning_rate": 0.00017999999999999998, + "loss": 58.0117, + "step": 829 + }, + { + "crossentropy": 2.831289052963257, + "epoch": 12.062, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00039265950520833335, + "learning_rate": 0.00017894736842105264, + "loss": 56.8003, + "step": 830 + }, + { + "crossentropy": 2.8674780130386353, + "epoch": 12.063, + "grad_norm": 0.69140625, + "grad_norm_var": 0.0005523045857747396, + "learning_rate": 0.00017789473684210526, + "loss": 56.9051, + "step": 831 + }, + { + "crossentropy": 2.9149069786071777, + "epoch": 12.064, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0006467183430989583, + "learning_rate": 0.0001768421052631579, + "loss": 57.5528, + "step": 832 + }, + { + "crossentropy": 2.824967622756958, + "epoch": 13.001, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0007888158162434896, + "learning_rate": 0.00017578947368421052, + "loss": 56.2444, + "step": 833 + }, + { + "crossentropy": 2.784726858139038, + "epoch": 13.002, + "grad_norm": 0.765625, + "grad_norm_var": 0.0007802327473958333, + "learning_rate": 0.00017473684210526317, + "loss": 54.6207, + "step": 834 + }, + { + "crossentropy": 2.924685478210449, + "epoch": 13.003, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0007664362589518229, + "learning_rate": 0.0001736842105263158, + "loss": 57.5746, + "step": 835 + }, + { + "crossentropy": 2.897099494934082, + "epoch": 13.004, + "grad_norm": 0.71484375, + "grad_norm_var": 0.0008188883463541666, + "learning_rate": 0.00017263157894736842, + "loss": 56.227, + "step": 836 + }, + { + "crossentropy": 2.7194520235061646, + "epoch": 13.005, + "grad_norm": 0.734375, + "grad_norm_var": 0.0008188883463541666, + "learning_rate": 0.00017157894736842105, + "loss": 54.1649, + "step": 837 + }, + { + "crossentropy": 2.7639235258102417, + "epoch": 13.006, + "grad_norm": 0.7265625, + "grad_norm_var": 0.000791168212890625, + "learning_rate": 0.0001705263157894737, + "loss": 55.093, + "step": 838 + }, + { + "crossentropy": 2.7386432886123657, + "epoch": 13.007, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0008066813151041667, + "learning_rate": 0.0001694736842105263, + "loss": 54.6862, + "step": 839 + }, + { + "crossentropy": 2.814002513885498, + "epoch": 13.008, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0008066813151041667, + "learning_rate": 0.00016842105263157895, + "loss": 56.0865, + "step": 840 + }, + { + "crossentropy": 2.8583909273147583, + "epoch": 13.009, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0007933934529622395, + "learning_rate": 0.00016736842105263158, + "loss": 56.4426, + "step": 841 + }, + { + "crossentropy": 2.79672372341156, + "epoch": 13.01, + "grad_norm": 0.7421875, + "grad_norm_var": 0.000775146484375, + "learning_rate": 0.00016631578947368423, + "loss": 55.4208, + "step": 842 + }, + { + "crossentropy": 2.8741607666015625, + "epoch": 13.011, + "grad_norm": 0.7109375, + "grad_norm_var": 0.0007715225219726562, + "learning_rate": 0.00016526315789473683, + "loss": 56.4795, + "step": 843 + }, + { + "crossentropy": 2.7828328609466553, + "epoch": 13.012, + "grad_norm": 0.71875, + "grad_norm_var": 0.000803375244140625, + "learning_rate": 0.00016421052631578948, + "loss": 54.505, + "step": 844 + }, + { + "crossentropy": 2.7500873804092407, + "epoch": 13.013, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0007974624633789063, + "learning_rate": 0.0001631578947368421, + "loss": 54.9745, + "step": 845 + }, + { + "crossentropy": 2.7167465686798096, + "epoch": 13.014, + "grad_norm": 0.71875, + "grad_norm_var": 0.0006510416666666666, + "learning_rate": 0.00016210526315789473, + "loss": 54.637, + "step": 846 + }, + { + "crossentropy": 2.838550090789795, + "epoch": 13.015, + "grad_norm": 0.73046875, + "grad_norm_var": 0.000553131103515625, + "learning_rate": 0.00016105263157894736, + "loss": 56.9125, + "step": 847 + }, + { + "crossentropy": 2.728639602661133, + "epoch": 13.016, + "grad_norm": 0.734375, + "grad_norm_var": 0.00042667388916015623, + "learning_rate": 0.00016, + "loss": 55.2942, + "step": 848 + }, + { + "crossentropy": 2.8884626626968384, + "epoch": 13.017, + "grad_norm": 0.81640625, + "grad_norm_var": 0.000719134012858073, + "learning_rate": 0.00015894736842105264, + "loss": 58.9905, + "step": 849 + }, + { + "crossentropy": 2.6712993383407593, + "epoch": 13.018, + "grad_norm": 0.74609375, + "grad_norm_var": 0.000681304931640625, + "learning_rate": 0.00015789473684210527, + "loss": 54.4483, + "step": 850 + }, + { + "crossentropy": 2.8165026903152466, + "epoch": 13.019, + "grad_norm": 0.71484375, + "grad_norm_var": 0.000687408447265625, + "learning_rate": 0.0001568421052631579, + "loss": 56.7351, + "step": 851 + }, + { + "crossentropy": 2.9343361854553223, + "epoch": 13.02, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0006713231404622395, + "learning_rate": 0.00015578947368421054, + "loss": 58.3815, + "step": 852 + }, + { + "crossentropy": 2.931985378265381, + "epoch": 13.021, + "grad_norm": 0.70703125, + "grad_norm_var": 0.0007403055826822917, + "learning_rate": 0.00015473684210526314, + "loss": 57.2322, + "step": 853 + }, + { + "crossentropy": 2.8127466440200806, + "epoch": 13.022, + "grad_norm": 0.734375, + "grad_norm_var": 0.0007314046223958333, + "learning_rate": 0.0001536842105263158, + "loss": 55.7789, + "step": 854 + }, + { + "crossentropy": 2.8048046827316284, + "epoch": 13.023, + "grad_norm": 0.70703125, + "grad_norm_var": 0.0007932027180989583, + "learning_rate": 0.00015263157894736842, + "loss": 56.2506, + "step": 855 + }, + { + "crossentropy": 2.787923812866211, + "epoch": 13.024, + "grad_norm": 0.703125, + "grad_norm_var": 0.0008656819661458333, + "learning_rate": 0.00015157894736842108, + "loss": 54.8036, + "step": 856 + }, + { + "crossentropy": 2.829706907272339, + "epoch": 13.025, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0007893880208333333, + "learning_rate": 0.00015052631578947367, + "loss": 56.4524, + "step": 857 + }, + { + "crossentropy": 2.810854196548462, + "epoch": 13.026, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0007893880208333333, + "learning_rate": 0.00014947368421052633, + "loss": 56.9006, + "step": 858 + }, + { + "crossentropy": 2.7314698696136475, + "epoch": 13.027, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0007609049479166667, + "learning_rate": 0.00014842105263157895, + "loss": 55.7139, + "step": 859 + }, + { + "crossentropy": 2.747408866882324, + "epoch": 13.028, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0007440567016601563, + "learning_rate": 0.00014736842105263158, + "loss": 54.023, + "step": 860 + }, + { + "crossentropy": 2.8353370428085327, + "epoch": 13.029, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0007287979125976563, + "learning_rate": 0.0001463157894736842, + "loss": 55.9548, + "step": 861 + }, + { + "crossentropy": 2.757072687149048, + "epoch": 13.03, + "grad_norm": 0.7109375, + "grad_norm_var": 0.0007481257120768229, + "learning_rate": 0.00014526315789473686, + "loss": 54.7874, + "step": 862 + }, + { + "crossentropy": 2.8938580751419067, + "epoch": 13.031, + "grad_norm": 0.77734375, + "grad_norm_var": 0.0008686701456705729, + "learning_rate": 0.00014421052631578948, + "loss": 58.1519, + "step": 863 + }, + { + "crossentropy": 2.7633159160614014, + "epoch": 13.032, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0008707046508789062, + "learning_rate": 0.0001431578947368421, + "loss": 56.3047, + "step": 864 + }, + { + "crossentropy": 2.810257911682129, + "epoch": 13.033, + "grad_norm": 0.7734375, + "grad_norm_var": 0.000528717041015625, + "learning_rate": 0.00014210526315789474, + "loss": 57.6018, + "step": 865 + }, + { + "crossentropy": 2.753029227256775, + "epoch": 13.034, + "grad_norm": 0.7265625, + "grad_norm_var": 0.000520769755045573, + "learning_rate": 0.0001410526315789474, + "loss": 56.7448, + "step": 866 + }, + { + "crossentropy": 2.7661619186401367, + "epoch": 13.035, + "grad_norm": 0.71875, + "grad_norm_var": 0.0005124409993489584, + "learning_rate": 0.00014000000000000001, + "loss": 56.7924, + "step": 867 + }, + { + "crossentropy": 2.915842056274414, + "epoch": 13.036, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00047143300374348957, + "learning_rate": 0.00013894736842105264, + "loss": 57.8143, + "step": 868 + }, + { + "crossentropy": 2.838146448135376, + "epoch": 13.037, + "grad_norm": 0.75, + "grad_norm_var": 0.000445556640625, + "learning_rate": 0.00013789473684210527, + "loss": 57.094, + "step": 869 + }, + { + "crossentropy": 2.917192220687866, + "epoch": 13.038, + "grad_norm": 0.75, + "grad_norm_var": 0.0004608154296875, + "learning_rate": 0.00013684210526315792, + "loss": 58.5578, + "step": 870 + }, + { + "crossentropy": 2.8409940004348755, + "epoch": 13.039, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00040384928385416664, + "learning_rate": 0.00013578947368421052, + "loss": 55.9825, + "step": 871 + }, + { + "crossentropy": 2.70103657245636, + "epoch": 13.04, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0003208796183268229, + "learning_rate": 0.00013473684210526314, + "loss": 55.2032, + "step": 872 + }, + { + "crossentropy": 2.7406742572784424, + "epoch": 13.041, + "grad_norm": 0.734375, + "grad_norm_var": 0.0003031412760416667, + "learning_rate": 0.0001336842105263158, + "loss": 56.4148, + "step": 873 + }, + { + "crossentropy": 2.919757843017578, + "epoch": 13.042, + "grad_norm": 0.765625, + "grad_norm_var": 0.00034357706705729165, + "learning_rate": 0.00013263157894736842, + "loss": 57.4301, + "step": 874 + }, + { + "crossentropy": 2.7461795806884766, + "epoch": 13.043, + "grad_norm": 0.70703125, + "grad_norm_var": 0.0004185358683268229, + "learning_rate": 0.00013157894736842105, + "loss": 54.4688, + "step": 875 + }, + { + "crossentropy": 2.7317864894866943, + "epoch": 13.044, + "grad_norm": 0.75, + "grad_norm_var": 0.0004252115885416667, + "learning_rate": 0.00013052631578947368, + "loss": 55.3466, + "step": 876 + }, + { + "crossentropy": 2.761776566505432, + "epoch": 13.045, + "grad_norm": 0.71875, + "grad_norm_var": 0.0004353205362955729, + "learning_rate": 0.00012947368421052633, + "loss": 56.4126, + "step": 877 + }, + { + "crossentropy": 2.8709728717803955, + "epoch": 13.046, + "grad_norm": 0.734375, + "grad_norm_var": 0.0003788630167643229, + "learning_rate": 0.00012842105263157893, + "loss": 55.527, + "step": 878 + }, + { + "crossentropy": 2.9433149099349976, + "epoch": 13.047, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0002878824869791667, + "learning_rate": 0.00012736842105263158, + "loss": 56.7329, + "step": 879 + }, + { + "crossentropy": 2.7954342365264893, + "epoch": 13.048, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0003611246744791667, + "learning_rate": 0.0001263157894736842, + "loss": 56.6293, + "step": 880 + }, + { + "crossentropy": 2.9298503398895264, + "epoch": 13.049, + "grad_norm": 0.7265625, + "grad_norm_var": 0.00029703776041666664, + "learning_rate": 0.00012526315789473686, + "loss": 57.9576, + "step": 881 + }, + { + "crossentropy": 2.910145401954651, + "epoch": 13.05, + "grad_norm": 0.71484375, + "grad_norm_var": 0.00032393137613932293, + "learning_rate": 0.00012421052631578949, + "loss": 57.0496, + "step": 882 + }, + { + "crossentropy": 2.80023729801178, + "epoch": 13.051, + "grad_norm": 0.7578125, + "grad_norm_var": 0.00032138824462890625, + "learning_rate": 0.0001231578947368421, + "loss": 56.4184, + "step": 883 + }, + { + "crossentropy": 2.8765305280685425, + "epoch": 13.052, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0003326416015625, + "learning_rate": 0.00012210526315789474, + "loss": 57.1571, + "step": 884 + }, + { + "crossentropy": 2.877085328102112, + "epoch": 13.053, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0003402074178059896, + "learning_rate": 0.00012105263157894738, + "loss": 56.3713, + "step": 885 + }, + { + "crossentropy": 2.825315833091736, + "epoch": 13.054, + "grad_norm": 0.73046875, + "grad_norm_var": 0.00033162434895833335, + "learning_rate": 0.00012, + "loss": 58.7512, + "step": 886 + }, + { + "crossentropy": 2.9117591381073, + "epoch": 13.055, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0003371556599934896, + "learning_rate": 0.00011894736842105264, + "loss": 57.4971, + "step": 887 + }, + { + "crossentropy": 2.95816707611084, + "epoch": 13.056, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0003371556599934896, + "learning_rate": 0.00011789473684210527, + "loss": 58.199, + "step": 888 + }, + { + "crossentropy": 2.877577304840088, + "epoch": 13.057, + "grad_norm": 0.7421875, + "grad_norm_var": 0.00033969879150390624, + "learning_rate": 0.00011684210526315791, + "loss": 57.5653, + "step": 889 + }, + { + "crossentropy": 2.839280843734741, + "epoch": 13.058, + "grad_norm": 0.796875, + "grad_norm_var": 0.0005238215128580729, + "learning_rate": 0.00011578947368421053, + "loss": 55.8712, + "step": 890 + }, + { + "crossentropy": 2.9066461324691772, + "epoch": 13.059, + "grad_norm": 0.78515625, + "grad_norm_var": 0.0005823135375976563, + "learning_rate": 0.00011473684210526316, + "loss": 57.5233, + "step": 891 + }, + { + "crossentropy": 2.963346004486084, + "epoch": 13.06, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005877176920572917, + "learning_rate": 0.0001136842105263158, + "loss": 58.7213, + "step": 892 + }, + { + "crossentropy": 2.887979745864868, + "epoch": 13.061, + "grad_norm": 0.734375, + "grad_norm_var": 0.0005551656087239583, + "learning_rate": 0.00011263157894736841, + "loss": 57.1343, + "step": 893 + }, + { + "crossentropy": 2.8576492071151733, + "epoch": 13.062, + "grad_norm": 0.765625, + "grad_norm_var": 0.0005816141764322917, + "learning_rate": 0.00011157894736842105, + "loss": 57.0907, + "step": 894 + }, + { + "crossentropy": 2.950958728790283, + "epoch": 13.063, + "grad_norm": 0.71484375, + "grad_norm_var": 0.0006372451782226563, + "learning_rate": 0.00011052631578947368, + "loss": 56.6607, + "step": 895 + }, + { + "crossentropy": 2.8504726886749268, + "epoch": 13.064, + "grad_norm": 0.73828125, + "grad_norm_var": 0.000571441650390625, + "learning_rate": 0.00010947368421052632, + "loss": 57.7151, + "step": 896 + }, + { + "crossentropy": 2.878578782081604, + "epoch": 14.001, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005177179972330729, + "learning_rate": 0.00010842105263157894, + "loss": 55.9718, + "step": 897 + }, + { + "crossentropy": 2.782250165939331, + "epoch": 14.002, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005083719889322917, + "learning_rate": 0.00010736842105263158, + "loss": 57.0449, + "step": 898 + }, + { + "crossentropy": 2.8027374744415283, + "epoch": 14.003, + "grad_norm": 0.734375, + "grad_norm_var": 0.0004974365234375, + "learning_rate": 0.00010631578947368421, + "loss": 55.2197, + "step": 899 + }, + { + "crossentropy": 2.7636749744415283, + "epoch": 14.004, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0004819234212239583, + "learning_rate": 0.00010526315789473683, + "loss": 55.1626, + "step": 900 + }, + { + "crossentropy": 2.7231706380844116, + "epoch": 14.005, + "grad_norm": 0.734375, + "grad_norm_var": 0.00047702789306640624, + "learning_rate": 0.00010421052631578947, + "loss": 54.001, + "step": 901 + }, + { + "crossentropy": 2.883240580558777, + "epoch": 14.006, + "grad_norm": 0.73046875, + "grad_norm_var": 0.000469970703125, + "learning_rate": 0.0001031578947368421, + "loss": 58.3301, + "step": 902 + }, + { + "crossentropy": 2.6990073919296265, + "epoch": 14.007, + "grad_norm": 0.703125, + "grad_norm_var": 0.0005655288696289062, + "learning_rate": 0.00010210526315789474, + "loss": 55.7926, + "step": 903 + }, + { + "crossentropy": 2.786812424659729, + "epoch": 14.008, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005706787109375, + "learning_rate": 0.00010105263157894737, + "loss": 56.0858, + "step": 904 + }, + { + "crossentropy": 2.8873369693756104, + "epoch": 14.009, + "grad_norm": 0.75, + "grad_norm_var": 0.000347900390625, + "learning_rate": 0.0001, + "loss": 57.1081, + "step": 905 + }, + { + "crossentropy": 2.8812583684921265, + "epoch": 14.01, + "grad_norm": 0.7734375, + "grad_norm_var": 0.00028018951416015626, + "learning_rate": 9.894736842105263e-05, + "loss": 56.194, + "step": 906 + }, + { + "crossentropy": 2.73581063747406, + "epoch": 14.011, + "grad_norm": 0.77734375, + "grad_norm_var": 0.00038547515869140624, + "learning_rate": 9.789473684210526e-05, + "loss": 56.1636, + "step": 907 + }, + { + "crossentropy": 2.7859939336776733, + "epoch": 14.012, + "grad_norm": 0.73046875, + "grad_norm_var": 0.00038859049479166664, + "learning_rate": 9.68421052631579e-05, + "loss": 56.4249, + "step": 908 + }, + { + "crossentropy": 2.8880062103271484, + "epoch": 14.013, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00034122467041015626, + "learning_rate": 9.578947368421052e-05, + "loss": 58.172, + "step": 909 + }, + { + "crossentropy": 2.772728443145752, + "epoch": 14.014, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0003218968709309896, + "learning_rate": 9.473684210526316e-05, + "loss": 55.1069, + "step": 910 + }, + { + "crossentropy": 2.77231502532959, + "epoch": 14.015, + "grad_norm": 0.7734375, + "grad_norm_var": 0.0004025777180989583, + "learning_rate": 9.368421052631579e-05, + "loss": 54.3101, + "step": 911 + }, + { + "crossentropy": 2.7247848510742188, + "epoch": 14.016, + "grad_norm": 0.73046875, + "grad_norm_var": 0.00040791829427083335, + "learning_rate": 9.263157894736843e-05, + "loss": 55.4261, + "step": 912 + }, + { + "crossentropy": 2.907187581062317, + "epoch": 14.017, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00040486653645833336, + "learning_rate": 9.157894736842105e-05, + "loss": 57.3701, + "step": 913 + }, + { + "crossentropy": 2.816227078437805, + "epoch": 14.018, + "grad_norm": 0.69921875, + "grad_norm_var": 0.000506591796875, + "learning_rate": 9.052631578947369e-05, + "loss": 55.6567, + "step": 914 + }, + { + "crossentropy": 2.8363900184631348, + "epoch": 14.019, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0005202611287434896, + "learning_rate": 8.947368421052632e-05, + "loss": 57.0809, + "step": 915 + }, + { + "crossentropy": 2.856706380844116, + "epoch": 14.02, + "grad_norm": 0.69921875, + "grad_norm_var": 0.0006189346313476562, + "learning_rate": 8.842105263157894e-05, + "loss": 57.1048, + "step": 916 + }, + { + "crossentropy": 2.8060814142227173, + "epoch": 14.021, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0006182352701822917, + "learning_rate": 8.736842105263158e-05, + "loss": 55.9918, + "step": 917 + }, + { + "crossentropy": 2.956759810447693, + "epoch": 14.022, + "grad_norm": 0.71875, + "grad_norm_var": 0.0006382624308268229, + "learning_rate": 8.631578947368421e-05, + "loss": 57.2669, + "step": 918 + }, + { + "crossentropy": 2.754731297492981, + "epoch": 14.023, + "grad_norm": 0.7109375, + "grad_norm_var": 0.0006067276000976563, + "learning_rate": 8.526315789473685e-05, + "loss": 53.8387, + "step": 919 + }, + { + "crossentropy": 2.7637789249420166, + "epoch": 14.024, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0006652196248372396, + "learning_rate": 8.421052631578948e-05, + "loss": 55.6373, + "step": 920 + }, + { + "crossentropy": 2.721121907234192, + "epoch": 14.025, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0006586074829101563, + "learning_rate": 8.315789473684212e-05, + "loss": 54.8625, + "step": 921 + }, + { + "crossentropy": 2.8451952934265137, + "epoch": 14.026, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0005782445271809896, + "learning_rate": 8.210526315789474e-05, + "loss": 57.2868, + "step": 922 + }, + { + "crossentropy": 2.796187996864319, + "epoch": 14.027, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0004668553670247396, + "learning_rate": 8.105263157894737e-05, + "loss": 56.2234, + "step": 923 + }, + { + "crossentropy": 2.824811339378357, + "epoch": 14.028, + "grad_norm": 0.703125, + "grad_norm_var": 0.000528717041015625, + "learning_rate": 8e-05, + "loss": 56.7024, + "step": 924 + }, + { + "crossentropy": 2.7085684537887573, + "epoch": 14.029, + "grad_norm": 0.765625, + "grad_norm_var": 0.0005868911743164062, + "learning_rate": 7.894736842105263e-05, + "loss": 56.1883, + "step": 925 + }, + { + "crossentropy": 2.7962204217910767, + "epoch": 14.03, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0005782445271809896, + "learning_rate": 7.789473684210527e-05, + "loss": 57.1829, + "step": 926 + }, + { + "crossentropy": 2.796944737434387, + "epoch": 14.031, + "grad_norm": 0.7578125, + "grad_norm_var": 0.0005136489868164063, + "learning_rate": 7.68421052631579e-05, + "loss": 56.7551, + "step": 927 + }, + { + "crossentropy": 2.7813810110092163, + "epoch": 14.032, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0005212783813476563, + "learning_rate": 7.578947368421054e-05, + "loss": 56.2743, + "step": 928 + }, + { + "crossentropy": 2.8674248456954956, + "epoch": 14.033, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0005212783813476563, + "learning_rate": 7.473684210526316e-05, + "loss": 58.4157, + "step": 929 + }, + { + "crossentropy": 2.7428762912750244, + "epoch": 14.034, + "grad_norm": 0.69140625, + "grad_norm_var": 0.0005609512329101563, + "learning_rate": 7.368421052631579e-05, + "loss": 55.4523, + "step": 930 + }, + { + "crossentropy": 2.7889604568481445, + "epoch": 14.035, + "grad_norm": 0.73046875, + "grad_norm_var": 0.0005304336547851563, + "learning_rate": 7.263157894736843e-05, + "loss": 56.8295, + "step": 931 + }, + { + "crossentropy": 2.78811252117157, + "epoch": 14.036, + "grad_norm": 0.76171875, + "grad_norm_var": 0.0005039850870768229, + "learning_rate": 7.157894736842105e-05, + "loss": 56.2246, + "step": 932 + }, + { + "crossentropy": 2.797974109649658, + "epoch": 14.037, + "grad_norm": 0.69921875, + "grad_norm_var": 0.0005853652954101562, + "learning_rate": 7.05263157894737e-05, + "loss": 56.1583, + "step": 933 + }, + { + "crossentropy": 2.9307310581207275, + "epoch": 14.038, + "grad_norm": 0.71875, + "grad_norm_var": 0.0005853652954101562, + "learning_rate": 6.947368421052632e-05, + "loss": 57.1375, + "step": 934 + }, + { + "crossentropy": 2.8903194665908813, + "epoch": 14.039, + "grad_norm": 0.72265625, + "grad_norm_var": 0.000559234619140625, + "learning_rate": 6.842105263157896e-05, + "loss": 57.0463, + "step": 935 + }, + { + "crossentropy": 2.865442395210266, + "epoch": 14.04, + "grad_norm": 0.69921875, + "grad_norm_var": 0.0005340576171875, + "learning_rate": 6.736842105263157e-05, + "loss": 56.6052, + "step": 936 + }, + { + "crossentropy": 2.9218584299087524, + "epoch": 14.041, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0005228678385416667, + "learning_rate": 6.631578947368421e-05, + "loss": 57.2276, + "step": 937 + }, + { + "crossentropy": 2.819886326789856, + "epoch": 14.042, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0005167007446289062, + "learning_rate": 6.526315789473684e-05, + "loss": 57.4423, + "step": 938 + }, + { + "crossentropy": 2.6768345832824707, + "epoch": 14.043, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0005228042602539063, + "learning_rate": 6.421052631578946e-05, + "loss": 54.1839, + "step": 939 + }, + { + "crossentropy": 2.7807631492614746, + "epoch": 14.044, + "grad_norm": 0.73046875, + "grad_norm_var": 0.00047607421875, + "learning_rate": 6.31578947368421e-05, + "loss": 55.5346, + "step": 940 + }, + { + "crossentropy": 2.8685619831085205, + "epoch": 14.045, + "grad_norm": 0.7421875, + "grad_norm_var": 0.000400543212890625, + "learning_rate": 6.210526315789474e-05, + "loss": 57.8767, + "step": 941 + }, + { + "crossentropy": 2.8203389644622803, + "epoch": 14.046, + "grad_norm": 0.72265625, + "grad_norm_var": 0.00039647420247395835, + "learning_rate": 6.105263157894737e-05, + "loss": 56.1573, + "step": 942 + }, + { + "crossentropy": 2.8836749792099, + "epoch": 14.047, + "grad_norm": 0.71484375, + "grad_norm_var": 0.00034122467041015626, + "learning_rate": 6e-05, + "loss": 56.838, + "step": 943 + }, + { + "crossentropy": 2.9158384799957275, + "epoch": 14.048, + "grad_norm": 0.7578125, + "grad_norm_var": 0.000382232666015625, + "learning_rate": 5.8947368421052634e-05, + "loss": 58.3756, + "step": 944 + }, + { + "crossentropy": 2.7543821334838867, + "epoch": 14.049, + "grad_norm": 0.6953125, + "grad_norm_var": 0.0004414240519205729, + "learning_rate": 5.789473684210527e-05, + "loss": 55.6096, + "step": 945 + }, + { + "crossentropy": 2.918057680130005, + "epoch": 14.05, + "grad_norm": 0.75, + "grad_norm_var": 0.0003985087076822917, + "learning_rate": 5.68421052631579e-05, + "loss": 56.9547, + "step": 946 + }, + { + "crossentropy": 2.8211581707000732, + "epoch": 14.051, + "grad_norm": 0.71484375, + "grad_norm_var": 0.00040868123372395836, + "learning_rate": 5.5789473684210526e-05, + "loss": 55.7815, + "step": 947 + }, + { + "crossentropy": 2.7923535108566284, + "epoch": 14.052, + "grad_norm": 0.72265625, + "grad_norm_var": 0.000323486328125, + "learning_rate": 5.473684210526316e-05, + "loss": 55.9897, + "step": 948 + }, + { + "crossentropy": 2.8318454027175903, + "epoch": 14.053, + "grad_norm": 0.7109375, + "grad_norm_var": 0.00029239654541015627, + "learning_rate": 5.368421052631579e-05, + "loss": 57.443, + "step": 949 + }, + { + "crossentropy": 2.7717995643615723, + "epoch": 14.054, + "grad_norm": 0.73046875, + "grad_norm_var": 0.000290679931640625, + "learning_rate": 5.263157894736842e-05, + "loss": 55.1007, + "step": 950 + }, + { + "crossentropy": 2.7858974933624268, + "epoch": 14.055, + "grad_norm": 0.71875, + "grad_norm_var": 0.00029341379801432293, + "learning_rate": 5.157894736842105e-05, + "loss": 57.4654, + "step": 951 + }, + { + "crossentropy": 2.9458006620407104, + "epoch": 14.056, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00025018056233723957, + "learning_rate": 5.052631578947368e-05, + "loss": 57.8048, + "step": 952 + }, + { + "crossentropy": 2.7548274993896484, + "epoch": 14.057, + "grad_norm": 0.72265625, + "grad_norm_var": 0.00025202433268229165, + "learning_rate": 4.9473684210526315e-05, + "loss": 56.2672, + "step": 953 + }, + { + "crossentropy": 2.8330026865005493, + "epoch": 14.058, + "grad_norm": 0.734375, + "grad_norm_var": 0.00024763743082682293, + "learning_rate": 4.842105263157895e-05, + "loss": 56.3621, + "step": 954 + }, + { + "crossentropy": 2.775303602218628, + "epoch": 14.059, + "grad_norm": 0.73046875, + "grad_norm_var": 0.00024051666259765624, + "learning_rate": 4.736842105263158e-05, + "loss": 56.4681, + "step": 955 + }, + { + "crossentropy": 2.84080708026886, + "epoch": 14.06, + "grad_norm": 0.76953125, + "grad_norm_var": 0.0003524144490559896, + "learning_rate": 4.6315789473684214e-05, + "loss": 57.448, + "step": 956 + }, + { + "crossentropy": 2.891412377357483, + "epoch": 14.061, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0003524144490559896, + "learning_rate": 4.5263157894736846e-05, + "loss": 57.3745, + "step": 957 + }, + { + "crossentropy": 2.778434157371521, + "epoch": 14.062, + "grad_norm": 0.73046875, + "grad_norm_var": 0.00034885406494140626, + "learning_rate": 4.421052631578947e-05, + "loss": 55.2243, + "step": 958 + }, + { + "crossentropy": 2.949416756629944, + "epoch": 14.063, + "grad_norm": 0.7578125, + "grad_norm_var": 0.000376129150390625, + "learning_rate": 4.3157894736842105e-05, + "loss": 59.2026, + "step": 959 + }, + { + "crossentropy": 2.902771472930908, + "epoch": 14.064, + "grad_norm": 0.76171875, + "grad_norm_var": 0.00039005279541015625, + "learning_rate": 4.210526315789474e-05, + "loss": 56.5269, + "step": 960 + }, + { + "crossentropy": 2.698053002357483, + "epoch": 15.001, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0003310521443684896, + "learning_rate": 4.105263157894737e-05, + "loss": 54.2453, + "step": 961 + }, + { + "crossentropy": 2.75066876411438, + "epoch": 15.002, + "grad_norm": 0.7421875, + "grad_norm_var": 0.0003021240234375, + "learning_rate": 4e-05, + "loss": 56.7785, + "step": 962 + }, + { + "crossentropy": 2.881886601448059, + "epoch": 15.003, + "grad_norm": 0.734375, + "grad_norm_var": 0.00028781890869140626, + "learning_rate": 3.8947368421052636e-05, + "loss": 56.9223, + "step": 963 + }, + { + "crossentropy": 2.8759313821792603, + "epoch": 15.004, + "grad_norm": 0.72265625, + "grad_norm_var": 0.000254058837890625, + "learning_rate": 3.789473684210527e-05, + "loss": 56.867, + "step": 964 + }, + { + "crossentropy": 2.783510446548462, + "epoch": 15.005, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00025202433268229165, + "learning_rate": 3.6842105263157895e-05, + "loss": 56.8626, + "step": 965 + }, + { + "crossentropy": 2.778250217437744, + "epoch": 15.006, + "grad_norm": 0.6953125, + "grad_norm_var": 0.00035196940104166666, + "learning_rate": 3.578947368421053e-05, + "loss": 54.6814, + "step": 966 + }, + { + "crossentropy": 2.755368709564209, + "epoch": 15.007, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00035196940104166666, + "learning_rate": 3.473684210526316e-05, + "loss": 56.5905, + "step": 967 + }, + { + "crossentropy": 2.8220062255859375, + "epoch": 15.008, + "grad_norm": 0.72265625, + "grad_norm_var": 0.00035196940104166666, + "learning_rate": 3.3684210526315786e-05, + "loss": 56.3069, + "step": 968 + }, + { + "crossentropy": 2.8596099615097046, + "epoch": 15.009, + "grad_norm": 0.7265625, + "grad_norm_var": 0.0003598531087239583, + "learning_rate": 3.263157894736842e-05, + "loss": 56.5936, + "step": 969 + }, + { + "crossentropy": 2.797579288482666, + "epoch": 15.01, + "grad_norm": 0.71875, + "grad_norm_var": 0.00037988026936848957, + "learning_rate": 3.157894736842105e-05, + "loss": 55.846, + "step": 970 + }, + { + "crossentropy": 2.6855785846710205, + "epoch": 15.011, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0003142674763997396, + "learning_rate": 3.0526315789473684e-05, + "loss": 55.2178, + "step": 971 + }, + { + "crossentropy": 2.7928699254989624, + "epoch": 15.012, + "grad_norm": 0.6953125, + "grad_norm_var": 0.0004012425740559896, + "learning_rate": 2.9473684210526317e-05, + "loss": 54.3003, + "step": 972 + }, + { + "crossentropy": 2.7457377910614014, + "epoch": 15.013, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0004042943318684896, + "learning_rate": 2.842105263157895e-05, + "loss": 54.456, + "step": 973 + }, + { + "crossentropy": 2.825121760368347, + "epoch": 15.014, + "grad_norm": 0.75390625, + "grad_norm_var": 0.0003916422526041667, + "learning_rate": 2.736842105263158e-05, + "loss": 56.7055, + "step": 974 + }, + { + "crossentropy": 2.6830825805664062, + "epoch": 15.015, + "grad_norm": 0.75390625, + "grad_norm_var": 0.000363922119140625, + "learning_rate": 2.631578947368421e-05, + "loss": 55.219, + "step": 975 + }, + { + "crossentropy": 2.712595582008362, + "epoch": 15.016, + "grad_norm": 0.734375, + "grad_norm_var": 0.00029850006103515625, + "learning_rate": 2.526315789473684e-05, + "loss": 55.8602, + "step": 976 + }, + { + "crossentropy": 2.9039396047592163, + "epoch": 15.017, + "grad_norm": 0.734375, + "grad_norm_var": 0.000296783447265625, + "learning_rate": 2.4210526315789474e-05, + "loss": 56.9117, + "step": 977 + }, + { + "crossentropy": 2.8268353939056396, + "epoch": 15.018, + "grad_norm": 0.765625, + "grad_norm_var": 0.0003692626953125, + "learning_rate": 2.3157894736842107e-05, + "loss": 55.0809, + "step": 978 + }, + { + "crossentropy": 2.846464157104492, + "epoch": 15.019, + "grad_norm": 0.73828125, + "grad_norm_var": 0.00037174224853515626, + "learning_rate": 2.2105263157894736e-05, + "loss": 57.271, + "step": 979 + }, + { + "crossentropy": 2.920137643814087, + "epoch": 15.02, + "grad_norm": 0.72265625, + "grad_norm_var": 0.00037174224853515626, + "learning_rate": 2.105263157894737e-05, + "loss": 58.0873, + "step": 980 + }, + { + "crossentropy": 2.5910059213638306, + "epoch": 15.021, + "grad_norm": 0.703125, + "grad_norm_var": 0.00040461222330729165, + "learning_rate": 2e-05, + "loss": 54.132, + "step": 981 + }, + { + "crossentropy": 2.8294392824172974, + "epoch": 15.022, + "grad_norm": 0.75, + "grad_norm_var": 0.0003458658854166667, + "learning_rate": 1.8947368421052634e-05, + "loss": 57.1192, + "step": 982 + }, + { + "crossentropy": 2.8623571395874023, + "epoch": 15.023, + "grad_norm": 0.74609375, + "grad_norm_var": 0.00035578409830729166, + "learning_rate": 1.7894736842105264e-05, + "loss": 56.702, + "step": 983 + }, + { + "crossentropy": 2.8070725202560425, + "epoch": 15.024, + "grad_norm": 0.69921875, + "grad_norm_var": 0.0004221598307291667, + "learning_rate": 1.6842105263157893e-05, + "loss": 55.9888, + "step": 984 + }, + { + "crossentropy": 2.7253717184066772, + "epoch": 15.025, + "grad_norm": 0.73046875, + "grad_norm_var": 0.00042057037353515625, + "learning_rate": 1.5789473684210526e-05, + "loss": 56.3073, + "step": 985 + }, + { + "crossentropy": 2.8384543657302856, + "epoch": 15.026, + "grad_norm": 0.71875, + "grad_norm_var": 0.00042057037353515625, + "learning_rate": 1.4736842105263159e-05, + "loss": 56.2086, + "step": 986 + }, + { + "crossentropy": 2.8448028564453125, + "epoch": 15.027, + "grad_norm": 0.7265625, + "grad_norm_var": 0.00041681925455729166, + "learning_rate": 1.368421052631579e-05, + "loss": 57.0379, + "step": 987 + }, + { + "crossentropy": 2.7504059076309204, + "epoch": 15.028, + "grad_norm": 0.75, + "grad_norm_var": 0.00033671061197916666, + "learning_rate": 1.263157894736842e-05, + "loss": 56.9316, + "step": 988 + }, + { + "crossentropy": 2.8394349813461304, + "epoch": 15.029, + "grad_norm": 0.765625, + "grad_norm_var": 0.0003941218058268229, + "learning_rate": 1.1578947368421053e-05, + "loss": 57.3295, + "step": 989 + }, + { + "crossentropy": 2.8349748849868774, + "epoch": 15.03, + "grad_norm": 0.70703125, + "grad_norm_var": 0.0004261652628580729, + "learning_rate": 1.0526315789473684e-05, + "loss": 56.5169, + "step": 990 + }, + { + "crossentropy": 2.8274471759796143, + "epoch": 15.031, + "grad_norm": 0.74609375, + "grad_norm_var": 0.0004093805948893229, + "learning_rate": 9.473684210526317e-06, + "loss": 56.015, + "step": 991 + }, + { + "crossentropy": 2.8977288007736206, + "epoch": 15.032, + "grad_norm": 0.72265625, + "grad_norm_var": 0.00041681925455729166, + "learning_rate": 8.421052631578947e-06, + "loss": 56.5352, + "step": 992 + }, + { + "crossentropy": 2.9102202653884888, + "epoch": 15.033, + "grad_norm": 0.71875, + "grad_norm_var": 0.0004290262858072917, + "learning_rate": 7.368421052631579e-06, + "loss": 57.9547, + "step": 993 + }, + { + "crossentropy": 2.9221819639205933, + "epoch": 15.034, + "grad_norm": 0.734375, + "grad_norm_var": 0.0003496805826822917, + "learning_rate": 6.31578947368421e-06, + "loss": 56.7362, + "step": 994 + }, + { + "crossentropy": 2.800140857696533, + "epoch": 15.035, + "grad_norm": 0.73828125, + "grad_norm_var": 0.0003496805826822917, + "learning_rate": 5.263157894736842e-06, + "loss": 56.3905, + "step": 995 + }, + { + "crossentropy": 2.6751104593276978, + "epoch": 15.036, + "grad_norm": 0.7109375, + "grad_norm_var": 0.00036970774332682293, + "learning_rate": 4.210526315789473e-06, + "loss": 55.695, + "step": 996 + }, + { + "crossentropy": 2.7358882427215576, + "epoch": 15.037, + "grad_norm": 0.72265625, + "grad_norm_var": 0.0003255208333333333, + "learning_rate": 3.157894736842105e-06, + "loss": 57.0907, + "step": 997 + }, + { + "crossentropy": 2.7598263025283813, + "epoch": 15.038, + "grad_norm": 0.7109375, + "grad_norm_var": 0.0003191630045572917, + "learning_rate": 2.1052631578947366e-06, + "loss": 55.385, + "step": 998 + }, + { + "crossentropy": 2.8410521745681763, + "epoch": 15.039, + "grad_norm": 0.6953125, + "grad_norm_var": 0.00035800933837890623, + "learning_rate": 1.0526315789473683e-06, + "loss": 57.0506, + "step": 999 + }, + { + "crossentropy": 2.7283369302749634, + "epoch": 15.04, + "grad_norm": 0.7265625, + "grad_norm_var": 0.000311279296875, + "learning_rate": 0.0, + "loss": 57.0943, + "step": 1000 + } + ], + "logging_steps": 1, + "max_steps": 1000, + "num_input_tokens_seen": 0, + "num_train_epochs": 9223372036854775807, + "save_steps": 250, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 1.033762523578368e+18, + "train_batch_size": 16, + "trial_name": null, + "trial_params": null +}