karthik-2905 commited on
Commit
fc23744
Β·
verified Β·
1 Parent(s): 3e7f4dd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -1
README.md CHANGED
@@ -1 +1,82 @@
1
- # Bayesian-Networks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Bayesian Networks Implementation
2
+
3
+ A comprehensive implementation of Bayesian Networks for probabilistic modeling and inference, featuring educational content and practical applications using the Iris dataset.
4
+
5
+ ## πŸ“‹ Project Overview
6
+
7
+ This project provides a complete learning experience for Bayesian Networks, from theoretical foundations to practical implementation. It includes detailed explanations, step-by-step tutorials, and a working implementation that demonstrates probabilistic inference on real data.
8
+
9
+ ## 🎯 Key Features
10
+
11
+ - **Educational Content**: Comprehensive learning roadmap with real-life analogies
12
+ - **Practical Implementation**: Working Bayesian Network using the Iris dataset
13
+ - **Probabilistic Inference**: Multiple inference scenarios and predictions
14
+ - **Visualization**: Network structure analysis and results visualization
15
+ - **Model Persistence**: Trained models saved for reuse
16
+
17
+ ## πŸ“ Project Structure
18
+
19
+ ```
20
+ β”œβ”€β”€ implementation.ipynb # Main notebook with theory and implementation
21
+ β”œβ”€β”€ README.md # This file
22
+ β”œβ”€β”€ bayesian_network_model.pkl # Trained Bayesian Network model
23
+ β”œβ”€β”€ bayesian_network_analysis.png # Network structure visualization
24
+ β”œβ”€β”€ processed_iris_data.csv # Discretized Iris dataset
25
+ β”œβ”€β”€ model_summary.json # Model architecture and performance metrics
26
+ β”œβ”€β”€ inference_results.json # Inference scenarios and predictions
27
+ └── bayesian_network_training.log # Training process logs
28
+ ```
29
+
30
+ ## πŸš€ Getting Started
31
+
32
+ ### Prerequisites
33
+ ```bash
34
+ pip install numpy pandas scikit-learn pgmpy matplotlib seaborn jupyter
35
+ ```
36
+
37
+ ### Running the Project
38
+ 1. Open `implementation.ipynb` in Jupyter Notebook
39
+ 2. Run all cells to see the complete learning experience
40
+ 3. The notebook includes:
41
+ - Theoretical explanations with real-life analogies
42
+ - Step-by-step implementation
43
+ - Model training and evaluation
44
+ - Probabilistic inference examples
45
+
46
+ ## πŸ“Š Model Performance
47
+
48
+ - **Dataset**: Iris (discretized)
49
+ - **Accuracy**: 84.44%
50
+ - **Nodes**: 5 (Species, Sepal_Length, Sepal_Width, Petal_Length, Petal_Width)
51
+ - **Edges**: 5 probabilistic dependencies
52
+ - **Parameters**: 57 learned parameters
53
+ - **Inference Scenarios**: 4 different prediction scenarios
54
+
55
+ ## 🧠 Learning Content
56
+
57
+ The notebook includes comprehensive educational material:
58
+
59
+ 1. **Graph Theory Foundations** - DAGs and network structure
60
+ 2. **Probability Fundamentals** - Joint, marginal, and conditional probability
61
+ 3. **Conditional Independence** - D-separation rules
62
+ 4. **Network Construction** - Structure and parameter learning
63
+ 5. **Inference Methods** - Exact and approximate inference
64
+ 6. **Formula Memory Aids** - Real-life analogies for key concepts
65
+
66
+ ## πŸ” Key Concepts Covered
67
+
68
+ - **Bayes' Theorem**: Medical test accuracy analogy
69
+ - **Chain Rule**: Recipe steps dependencies
70
+ - **Conditional Independence**: Weather and clothing choice
71
+ - **Probabilistic Inference**: Medical diagnosis scenarios
72
+
73
+ ## πŸ“ˆ Outputs
74
+
75
+ - **Network Visualization**: Graphical representation of learned dependencies
76
+ - **Inference Results**: Probabilistic predictions for various scenarios
77
+ - **Model Metrics**: Performance evaluation and convergence analysis
78
+ - **Training Logs**: Detailed learning process documentation
79
+
80
+ ## πŸŽ“ Educational Value
81
+
82
+ This project serves as a complete learning resource for understanding Bayesian Networks, combining theoretical knowledge with practical implementation. Perfect for students, researchers, and practitioners looking to master probabilistic graphical models.