File size: 200,471 Bytes
bf0f0f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 |
{
"cells": [
{
"cell_type": "markdown",
"id": "38165dd7-765e-48b0-bb83-272a98d7cb5c",
"metadata": {},
"source": [
"# PHASE 1: EXPLAIN & BREAKDOWN (LEARNING PHASE)\n",
"\n",
"## 1. Simple Explanation of Sequence Modeling\n",
"\n",
"Sequence modeling is about understanding and predicting patterns in ordered data where the position matters. Think of it like reading a sentence - each word depends on the previous words to make sense. In AI, we use sequence models to process data like text (predicting the next word), time series (stock prices over time), or speech (converting audio to text). The key insight is that sequences have temporal or positional dependencies - what comes before influences what comes next. These models learn to capture these relationships and can generate new sequences or make predictions about future elements. Common architectures include RNNs, LSTMs, and Transformers, each designed to handle different aspects of sequence dependencies.\n",
"\n",
"## 2. Detailed Roadmap\n",
"\n",
"**Step 1: Foundation Concepts**\n",
"- Understanding sequences and temporal dependencies\n",
"- Types of sequence problems (sequence-to-sequence, sequence-to-one, one-to-sequence)\n",
"- Input/output representations and encoding\n",
"\n",
"**Step 2: Basic RNN Architecture**\n",
"- Vanilla RNN structure and forward pass\n",
"- Hidden state concept and recurrent connections\n",
"- Backpropagation through time (BPTT)\n",
"\n",
"**Step 3: RNN Limitations & Solutions**\n",
"- Vanishing gradient problem\n",
"- Long-term dependency issues\n",
"- Introduction to gating mechanisms\n",
"\n",
"**Step 4: LSTM Networks**\n",
"- Cell state vs hidden state\n",
"- Forget, input, and output gates\n",
"- Information flow through LSTM cells\n",
"\n",
"**Step 5: GRU Networks**\n",
"- Simplified gating mechanism\n",
"- Reset and update gates\n",
"- Comparison with LSTM\n",
"\n",
"**Step 6: Advanced Architectures**\n",
"- Bidirectional RNNs\n",
"- Encoder-decoder models\n",
"- Attention mechanisms\n",
"\n",
"**Step 7: Modern Approaches**\n",
"- Transformer architecture basics\n",
"- Self-attention concept\n",
"- Applications in different domains\n",
"\n",
"## 3. Key Formulas with Explanations\n",
"\n",
"**Vanilla RNN:**\n",
"```\n",
"h_t = tanh(W_hh * h_{t-1} + W_xh * x_t + b_h)\n",
"y_t = W_hy * h_t + b_y\n",
"```\n",
"- `h_t`: Hidden state at time t (captures information from current and previous inputs)\n",
"- `W_hh`: Weight matrix for hidden-to-hidden connections (learns temporal dependencies)\n",
"- `W_xh`: Weight matrix for input-to-hidden connections (processes current input)\n",
"- `W_hy`: Weight matrix for hidden-to-output connections (generates predictions)\n",
"- `x_t`: Input at time t\n",
"- `b_h, b_y`: Bias terms for hidden and output layers\n",
"\n",
"**LSTM Gates:**\n",
"```\n",
"f_t = σ(W_f * [h_{t-1}, x_t] + b_f) # Forget gate\n",
"i_t = σ(W_i * [h_{t-1}, x_t] + b_i) # Input gate\n",
"C̃_t = tanh(W_C * [h_{t-1}, x_t] + b_C) # Candidate values\n",
"C_t = f_t * C_{t-1} + i_t * C̃_t # Cell state\n",
"o_t = σ(W_o * [h_{t-1}, x_t] + b_o) # Output gate\n",
"h_t = o_t * tanh(C_t) # Hidden state\n",
"```\n",
"- `σ`: Sigmoid function (outputs 0-1, acts as gate)\n",
"- `f_t`: Forget gate (decides what to remove from cell state)\n",
"- `i_t`: Input gate (decides what new information to store)\n",
"- `C_t`: Cell state (long-term memory)\n",
"- `o_t`: Output gate (decides what parts of cell state to output)\n",
"\n",
"## 4. Step-by-Step Numerical Example\n",
"\n",
"Let's trace through a simple RNN with sequence \"hello\":\n",
"\n",
"**Given:**\n",
"- Vocabulary: {h:0, e:1, l:2, o:3}\n",
"- Hidden size: 2\n",
"- Input size: 4 (one-hot encoded)\n",
"\n",
"**Initialization:**\n",
"```\n",
"W_hh = [[0.5, 0.3], [0.2, 0.7]]\n",
"W_xh = [[0.1, 0.4], [0.3, 0.2], [0.5, 0.1], [0.2, 0.6]]\n",
"h_0 = [0.0, 0.0]\n",
"```\n",
"\n",
"**Step 1: Process 'h' (x_1 = [1,0,0,0])**\n",
"```\n",
"W_xh * x_1 = [[0.1, 0.4], [0.3, 0.2], [0.5, 0.1], [0.2, 0.6]] * [1,0,0,0] = [0.1, 0.4]\n",
"W_hh * h_0 = [[0.5, 0.3], [0.2, 0.7]] * [0.0, 0.0] = [0.0, 0.0]\n",
"h_1 = tanh([0.1, 0.4]) = [0.099, 0.380]\n",
"```\n",
"\n",
"**Step 2: Process 'e' (x_2 = [0,1,0,0])**\n",
"```\n",
"W_xh * x_2 = [0.3, 0.2]\n",
"W_hh * h_1 = [0.5*0.099 + 0.3*0.380, 0.2*0.099 + 0.7*0.380] = [0.164, 0.286]\n",
"h_2 = tanh([0.3+0.164, 0.2+0.286]) = tanh([0.464, 0.486]) = [0.434, 0.449]\n",
"```\n",
"\n",
"This continues for each character, building up context in the hidden state.\n",
"\n",
"## 5. Real-World AI Use Case\n",
"\n",
"**Language Translation System:**\n",
"Google Translate uses sequence-to-sequence models for translation. The encoder processes the source language sentence word by word, building a context representation. The decoder then generates the target language translation, considering both the source context and previously generated words. For example, translating \"How are you?\" to Spanish:\n",
"\n",
"- Encoder processes: \"How\" → \"are\" → \"you?\" → \"?\"\n",
"- Builds context vector capturing meaning\n",
"- Decoder generates: \"¿\" → \"Cómo\" → \"estás\" → \"?\"\n",
"\n",
"The model learns relationships between languages, handling word order differences, idiomatic expressions, and context-dependent translations.\n",
"\n",
"## 6. Tips for Mastering Sequence Modeling\n",
"\n",
"**Practice Sources:**\n",
"- Implement character-level text generation\n",
"- Build sentiment analysis on movie reviews\n",
"- Create time series forecasting models\n",
"- Work with speech recognition datasets\n",
"\n",
"**Resources:**\n",
"- \"Deep Learning\" by Goodfellow, Bengio, and Courville (Chapter 10)\n",
"- Stanford CS224n NLP course materials\n",
"- PyTorch RNN tutorials and documentation\n",
"- Kaggle competitions: sentiment analysis, time series prediction\n",
"\n",
"**Key Practice Problems:**\n",
"- Name generation using character RNNs\n",
"- Stock price prediction with LSTM\n",
"- Machine translation with attention\n",
"- Chatbot development using sequence-to-sequence models\n",
"\n",
"**Debugging Tips:**\n",
"- Always check tensor shapes at each step\n",
"- Visualize hidden state evolution\n",
"- Start with small sequences and simple models\n",
"- Use teacher forcing during training for faster convergence"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "628b6232-95ff-4a68-a092-4eab67abc0cb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Python 3.13.5\n"
]
}
],
"source": [
"!python --version"
]
},
{
"cell_type": "markdown",
"id": "a7d1572d-1586-4e37-9a36-1779b401cd11",
"metadata": {},
"source": [
"# PHASE 1: EXPLAIN & BREAKDOWN (LEARNING PHASE)\n",
"\n",
"## 1. Simple Explanation of Sequence Modeling\n",
"\n",
"Sequence modeling is about understanding and predicting patterns in ordered data where the position matters. Think of it like reading a sentence - each word depends on the previous words to make sense. In AI, we use sequence models to process data like text (predicting the next word), time series (stock prices over time), or speech (converting audio to text). The key insight is that sequences have temporal or positional dependencies - what comes before influences what comes next. These models learn to capture these relationships and can generate new sequences or make predictions about future elements. Common architectures include RNNs, LSTMs, and Transformers, each designed to handle different aspects of sequence dependencies.\n",
"\n",
"## 2. Detailed Roadmap with Examples\n",
"\n",
"**Step 1: Foundation Concepts**\n",
"- **Understanding sequences and temporal dependencies**: \n",
" - *Example*: In \"The cat sat on the ___\", the word \"mat\" is much more likely than \"elephant\" because of the context. The model learns that \"sat on\" often precedes furniture/surfaces.\n",
" - *Time series example*: Stock prices - if Apple stock dropped 5% yesterday and the market is bearish, today's price is likely to be influenced by yesterday's drop.\n",
"\n",
"- **Types of sequence problems**:\n",
" - *Sequence-to-sequence*: \"Hello world\" → \"Hola mundo\" (translation)\n",
" - *Sequence-to-one*: \"This movie is amazing!\" → \"Positive\" (sentiment analysis)\n",
" - *One-to-sequence*: [Image of dog] → \"A golden retriever running in a park\" (image captioning)\n",
" - *Many-to-many*: [Audio waveform] → \"Hello how are you\" (speech recognition)\n",
"\n",
"- **Input/output representations and encoding**:\n",
" - *Text example*: \"cat\" → token ID 156 → embedding vector [0.2, -0.1, 0.5, 0.8]\n",
" - *Time series example*: Stock price $150.25 → normalized value 0.73 (after min-max scaling)\n",
" - *One-hot example*: Word \"dog\" in vocab {cat:0, dog:1, bird:2} → [0, 1, 0]\n",
"\n",
"**Step 2: Basic RNN Architecture**\n",
"- **Vanilla RNN structure and forward pass**:\n",
" - *Example*: Processing \"I love pizza\"\n",
" - Step 1: Process \"I\" → hidden state captures \"someone\"\n",
" - Step 2: Process \"love\" + previous hidden → captures \"someone loves something\"\n",
" - Step 3: Process \"pizza\" + previous hidden → captures \"someone loves pizza\"\n",
"\n",
"- **Hidden state concept and recurrent connections**:\n",
" - *Example*: Reading \"The cat, which was black, meowed\"\n",
" - After \"cat\": hidden state = [0.2, 0.8, 0.1] (represents \"cat\")\n",
" - After \"which\": hidden state = [0.3, 0.7, 0.2] (represents \"cat which\")\n",
" - After \"black\": hidden state = [0.4, 0.6, 0.3] (represents \"black cat\")\n",
" - After \"meowed\": hidden state = [0.5, 0.5, 0.4] (represents \"black cat meowed\")\n",
"\n",
"- **Backpropagation through time (BPTT)**:\n",
" - *Example*: Training on \"cat sat\"\n",
" - Forward: \"cat\" → h₁ → predict \"sat\" → loss = 0.8\n",
" - Backward: Error flows back through h₁ to update weights for \"cat\" processing\n",
" - This happens for each time step in the sequence\n",
"\n",
"**Step 3: RNN Limitations & Solutions**\n",
"- **Vanishing gradient problem**:\n",
" - *Example*: In \"The cat that lived in Paris for many years finally came home\", by the time we reach \"came\", the gradient signal from \"cat\" has become too weak to learn the connection.\n",
" - *Mathematical example*: If gradient = 0.1 and we multiply by 0.5 at each step, after 10 steps: 0.1 × 0.5¹⁰ = 0.0001 (vanished!)\n",
"\n",
"- **Long-term dependency issues**:\n",
" - *Example*: \"I grew up in France... I speak fluent French\" - RNN forgets \"France\" by the time it reaches \"French\"\n",
" - *Bad example*: \"I grew up in France... [500 words about other topics]... I speak fluent ___\" - RNN predicts \"English\" instead of \"French\"\n",
"\n",
"- **Introduction to gating mechanisms**:\n",
" - *Example*: Like a water valve that can be fully open (1.0), fully closed (0.0), or partially open (0.7)\n",
" - *Text example*: When processing \"However, the cat...\", the gate learns to reduce importance of previous positive sentiment because \"However\" signals a contrast\n",
"\n",
"**Step 4: LSTM Networks**\n",
"- **Cell state vs hidden state**:\n",
" - *Cell state example*: Long-term memory storing \"We're talking about cats\" throughout a paragraph\n",
" - *Hidden state example*: Short-term memory storing \"currently processing the word 'fluffy'\" for immediate prediction\n",
"\n",
"- **Forget, input, and output gates**:\n",
" - *Forget gate example*: In \"John is tall. Mary is short.\", when processing \"Mary\", forget gate removes \"John\" information\n",
" - *Input gate example*: When seeing \"Mary\", input gate decides to store \"Mary is the new subject\"\n",
" - *Output gate example*: When predicting next word after \"Mary is\", output gate decides which stored information to use\n",
"\n",
"- **Information flow through LSTM cells**:\n",
" - *Complete example*: Processing \"The cat is black. The dog is white.\"\n",
" - Step 1: \"cat\" → Cell stores \"animal=cat, color=unknown\"\n",
" - Step 2: \"is\" → Cell keeps \"animal=cat\", prepares for attribute\n",
" - Step 3: \"black\" → Cell updates to \"animal=cat, color=black\"\n",
" - Step 4: \"dog\" → Forget gate removes cat info, Input gate adds \"animal=dog\"\n",
" - Step 5: \"white\" → Cell becomes \"animal=dog, color=white\"\n",
"\n",
"**Step 5: GRU Networks**\n",
"- **Simplified gating mechanism**:\n",
" - *Example*: Instead of 3 gates (forget, input, output), GRU has 2 gates (reset, update)\n",
" - *Reset gate example*: When processing \"But the dog...\", reset gate decides to forget previous \"cat\" information\n",
" - *Update gate example*: Decides how much of new \"dog\" information to keep vs old information\n",
"\n",
"- **Comparison with LSTM**:\n",
" - *Speed example*: GRU trains 25% faster on same hardware because fewer parameters\n",
" - *Performance example*: On simple tasks like sentiment analysis, GRU performs similarly to LSTM\n",
" - *Memory example*: LSTM better for very long sequences (1000+ words), GRU better for shorter sequences\n",
"\n",
"**Step 6: Advanced Architectures**\n",
"- **Bidirectional RNNs**:\n",
" - *Example*: \"The animal that I saw yesterday was a ___\"\n",
" - Forward RNN: \"The animal that I saw yesterday was a\" → predicts based on left context\n",
" - Backward RNN: \"cat\" ← \"a was yesterday saw I that animal The\" → predicts based on right context\n",
" - Combined: Both directions agree on \"cat\" with high confidence\n",
"\n",
"- **Encoder-decoder models**:\n",
" - *Translation example*: \"How are you?\"\n",
" - Encoder: \"How\" → \"are\" → \"you?\" → context vector [0.2, 0.8, 0.1, 0.9]\n",
" - Decoder: context vector → \"¿\" → \"Cómo\" → \"estás\" → \"?\"\n",
"\n",
"- **Attention mechanisms**:\n",
" - *Example*: Translating \"The black cat sat on the red mat\"\n",
" - When generating \"negro\" (black), attention focuses on \"black\" in source\n",
" - When generating \"gato\" (cat), attention focuses on \"cat\" in source \n",
" - When generating \"roja\" (red), attention focuses on \"red\" in source\n",
"\n",
"**Step 7: Modern Approaches**\n",
"- **Transformer architecture basics**:\n",
" - *Example*: Instead of processing \"I love pizza\" sequentially, Transformer processes all words simultaneously\n",
" - *Parallel processing*: All positions computed at once instead of waiting for previous steps\n",
" - *Self-attention example*: In \"The cat sat on it\", \"it\" attends strongly to \"cat\" to understand what \"it\" refers to\n",
"\n",
"- **Self-attention concept**:\n",
" - *Example*: \"The animal didn't cross the street because it was too tired\"\n",
" - \"it\" pays attention to \"animal\" (not \"street\") to understand the reference\n",
" - Attention weights: \"it\" → \"animal\" = 0.9, \"it\" → \"street\" = 0.1\n",
"\n",
"- **Applications in different domains**:\n",
" - *NLP*: GPT-3 generating human-like text: \"Once upon a time\" → entire story\n",
" - *Vision*: Vision Transformer treating image patches like words in a sentence\n",
" - *Code*: GitHub Copilot completing code: \"def fibonacci(\" → complete function implementation\n",
" - *Biology*: AlphaFold predicting protein structure from amino acid sequences\n",
"\n",
"## 3. Key Formulas with Explanations\n",
"\n",
"**Vanilla RNN:**\n",
"```\n",
"h_t = tanh(W_hh * h_{t-1} + W_xh * x_t + b_h)\n",
"y_t = W_hy * h_t + b_y\n",
"```\n",
"- `h_t`: Hidden state at time t (captures information from current and previous inputs)\n",
"- `W_hh`: Weight matrix for hidden-to-hidden connections (learns temporal dependencies)\n",
"- `W_xh`: Weight matrix for input-to-hidden connections (processes current input)\n",
"- `W_hy`: Weight matrix for hidden-to-output connections (generates predictions)\n",
"- `x_t`: Input at time t\n",
"- `b_h, b_y`: Bias terms for hidden and output layers\n",
"\n",
"**LSTM Gates:**\n",
"```\n",
"f_t = σ(W_f * [h_{t-1}, x_t] + b_f) # Forget gate\n",
"i_t = σ(W_i * [h_{t-1}, x_t] + b_i) # Input gate\n",
"C̃_t = tanh(W_C * [h_{t-1}, x_t] + b_C) # Candidate values\n",
"C_t = f_t * C_{t-1} + i_t * C̃_t # Cell state\n",
"o_t = σ(W_o * [h_{t-1}, x_t] + b_o) # Output gate\n",
"h_t = o_t * tanh(C_t) # Hidden state\n",
"```\n",
"- `σ`: Sigmoid function (outputs 0-1, acts as gate)\n",
"- `f_t`: Forget gate (decides what to remove from cell state)\n",
"- `i_t`: Input gate (decides what new information to store)\n",
"- `C_t`: Cell state (long-term memory)\n",
"- `o_t`: Output gate (decides what parts of cell state to output)\n",
"\n",
"## 4. Step-by-Step Numerical Example\n",
"\n",
"Let's trace through a simple RNN with sequence \"hello\":\n",
"\n",
"**Given:**\n",
"- Vocabulary: {h:0, e:1, l:2, o:3}\n",
"- Hidden size: 2\n",
"- Input size: 4 (one-hot encoded)\n",
"\n",
"**Initialization:**\n",
"```\n",
"W_hh = [[0.5, 0.3], [0.2, 0.7]]\n",
"W_xh = [[0.1, 0.4], [0.3, 0.2], [0.5, 0.1], [0.2, 0.6]]\n",
"h_0 = [0.0, 0.0]\n",
"```\n",
"\n",
"**Step 1: Process 'h' (x_1 = [1,0,0,0])**\n",
"```\n",
"W_xh * x_1 = [[0.1, 0.4], [0.3, 0.2], [0.5, 0.1], [0.2, 0.6]] * [1,0,0,0] = [0.1, 0.4]\n",
"W_hh * h_0 = [[0.5, 0.3], [0.2, 0.7]] * [0.0, 0.0] = [0.0, 0.0]\n",
"h_1 = tanh([0.1, 0.4]) = [0.099, 0.380]\n",
"```\n",
"\n",
"**Step 2: Process 'e' (x_2 = [0,1,0,0])**\n",
"```\n",
"W_xh * x_2 = [0.3, 0.2]\n",
"W_hh * h_1 = [0.5*0.099 + 0.3*0.380, 0.2*0.099 + 0.7*0.380] = [0.164, 0.286]\n",
"h_2 = tanh([0.3+0.164, 0.2+0.286]) = tanh([0.464, 0.486]) = [0.434, 0.449]\n",
"```\n",
"\n",
"This continues for each character, building up context in the hidden state.\n",
"\n",
"## 5. Real-World AI Use Case\n",
"\n",
"**Language Translation System:**\n",
"Google Translate uses sequence-to-sequence models for translation. The encoder processes the source language sentence word by word, building a context representation. The decoder then generates the target language translation, considering both the source context and previously generated words. For example, translating \"How are you?\" to Spanish:\n",
"\n",
"- Encoder processes: \"How\" → \"are\" → \"you?\" → \"?\"\n",
"- Builds context vector capturing meaning\n",
"- Decoder generates: \"¿\" → \"Cómo\" → \"estás\" → \"?\"\n",
"\n",
"The model learns relationships between languages, handling word order differences, idiomatic expressions, and context-dependent translations.\n",
"\n",
"## 6. Tips for Mastering Sequence Modeling\n",
"\n",
"**Practice Sources:**\n",
"- Implement character-level text generation\n",
"- Build sentiment analysis on movie reviews\n",
"- Create time series forecasting models\n",
"- Work with speech recognition datasets\n",
"\n",
"**Resources:**\n",
"- \"Deep Learning\" by Goodfellow, Bengio, and Courville (Chapter 10)\n",
"- Stanford CS224n NLP course materials\n",
"- PyTorch RNN tutorials and documentation\n",
"- Kaggle competitions: sentiment analysis, time series prediction\n",
"\n",
"**Key Practice Problems:**\n",
"- Name generation using character RNNs\n",
"- Stock price prediction with LSTM\n",
"- Machine translation with attention\n",
"- Chatbot development using sequence-to-sequence models\n",
"\n",
"**Debugging Tips:**\n",
"- Always check tensor shapes at each step\n",
"- Visualize hidden state evolution\n",
"- Start with small sequences and simple models\n",
"- Use teacher forcing during training for faster convergence"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4cada01e-01b7-442a-adca-ecfbac2f1ad7",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2025-07-15 15:57:08,924 - Using device: mps\n",
"2025-07-15 15:57:08,927 - Starting improved sequence modeling implementation\n",
"2025-07-15 15:57:08,928 - Creating realistic movie review dataset with clear sentiment patterns\n",
"2025-07-15 15:57:08,937 - Created 2000 realistic movie review samples\n",
"2025-07-15 15:57:08,937 - Label distribution: Counter({1: 1000, 0: 1000})\n",
"2025-07-15 15:57:08,937 - Sample positive review: I loved this comedy! The dialogue was amazing and the dialogue was fantastic.\n",
"2025-07-15 15:57:08,938 - Sample negative review: The direction in this movie was dull. disliked the story and soundtrack.\n",
"2025-07-15 15:57:08,938 - Building vocabulary from texts\n",
"2025-07-15 15:57:08,940 - Vocabulary size: 150\n",
"2025-07-15 15:57:08,940 - Most common words: [('was', 1956), ('the', 1902), ('this', 1190), ('and', 1190), ('i', 710), ('with', 548), ('movie', 525), ('story', 513), ('is', 488), ('it.', 407)]\n",
"2025-07-15 15:57:08,943 - Dataset splits - Train: 1200, Val: 400, Test: 400\n",
"2025-07-15 15:57:08,943 - Train label distribution: Counter({0: 600, 1: 600})\n",
"2025-07-15 15:57:08,943 - Val label distribution: Counter({1: 200, 0: 200})\n",
"2025-07-15 15:57:08,943 - Test label distribution: Counter({0: 200, 1: 200})\n",
"2025-07-15 15:57:08,944 - Created data loaders\n",
"2025-07-15 15:57:08,951 - Model parameters - Total: 218114, Trainable: 218114\n",
"2025-07-15 15:57:08,952 - Testing model with sample input shape: torch.Size([32, 50])\n",
"2025-07-15 15:57:08,956 - Sample output shape: torch.Size([32, 2])\n",
"2025-07-15 15:57:08,963 - Sample output values: tensor([ 0.0594, -0.0430], device='mps:0')\n",
"2025-07-15 15:57:08,964 - Starting model training with improved parameters\n",
"2025-07-15 15:57:08,965 - First batch shapes - Data: torch.Size([32, 50]), Target: torch.Size([32])\n",
"2025-07-15 15:57:08,970 - Target labels in first batch: tensor([1, 0, 0, 1, 0, 1, 0, 0, 0, 1], device='mps:0')\n",
"2025-07-15 15:57:08,973 - Model output shape: torch.Size([32, 2])\n",
"2025-07-15 15:57:08,980 - Output logits sample: tensor([ 0.0127, -0.0346], device='mps:0', grad_fn=<SelectBackward0>)\n",
"2025-07-15 15:57:09,742 - Epoch [1/20]\n",
"2025-07-15 15:57:09,742 - Train Loss: 0.6959, Train Acc: 47.67%\n",
"2025-07-15 15:57:09,742 - Val Loss: 0.6933, Val Acc: 50.00%\n",
"2025-07-15 15:57:09,743 - LR: 0.001000\n",
"2025-07-15 15:57:09,743 - New best validation accuracy: 50.00%\n",
"2025-07-15 15:57:10,198 - Epoch [2/20]\n",
"2025-07-15 15:57:10,198 - Train Loss: 0.6929, Train Acc: 50.92%\n",
"2025-07-15 15:57:10,198 - Val Loss: 0.6942, Val Acc: 50.00%\n",
"2025-07-15 15:57:10,198 - LR: 0.001000\n",
"2025-07-15 15:57:10,198 - No improvement for 1 epochs\n",
"2025-07-15 15:57:10,673 - Epoch [3/20]\n",
"2025-07-15 15:57:10,673 - Train Loss: 0.6963, Train Acc: 51.42%\n",
"2025-07-15 15:57:10,674 - Val Loss: 0.6949, Val Acc: 50.00%\n",
"2025-07-15 15:57:10,674 - LR: 0.001000\n",
"2025-07-15 15:57:10,674 - No improvement for 2 epochs\n",
"2025-07-15 15:57:11,120 - Epoch [4/20]\n",
"2025-07-15 15:57:11,120 - Train Loss: 0.6938, Train Acc: 50.33%\n",
"2025-07-15 15:57:11,120 - Val Loss: 0.6934, Val Acc: 50.50%\n",
"2025-07-15 15:57:11,120 - LR: 0.001000\n",
"2025-07-15 15:57:11,121 - New best validation accuracy: 50.50%\n",
"2025-07-15 15:57:11,570 - Epoch [5/20]\n",
"2025-07-15 15:57:11,570 - Train Loss: 0.6940, Train Acc: 48.08%\n",
"2025-07-15 15:57:11,571 - Val Loss: 0.6933, Val Acc: 49.50%\n",
"2025-07-15 15:57:11,571 - LR: 0.000500\n",
"2025-07-15 15:57:11,571 - No improvement for 1 epochs\n",
"2025-07-15 15:57:12,031 - Epoch [6/20]\n",
"2025-07-15 15:57:12,031 - Train Loss: 0.6941, Train Acc: 47.58%\n",
"2025-07-15 15:57:12,032 - Val Loss: 0.6933, Val Acc: 50.50%\n",
"2025-07-15 15:57:12,032 - LR: 0.000500\n",
"2025-07-15 15:57:12,032 - No improvement for 2 epochs\n",
"2025-07-15 15:57:12,467 - Epoch [7/20]\n",
"2025-07-15 15:57:12,468 - Train Loss: 0.6935, Train Acc: 48.58%\n",
"2025-07-15 15:57:12,468 - Val Loss: 0.6934, Val Acc: 48.25%\n",
"2025-07-15 15:57:12,468 - LR: 0.000500\n",
"2025-07-15 15:57:12,468 - No improvement for 3 epochs\n",
"2025-07-15 15:57:12,905 - Epoch [8/20]\n",
"2025-07-15 15:57:12,906 - Train Loss: 0.6935, Train Acc: 48.83%\n",
"2025-07-15 15:57:12,906 - Val Loss: 0.6932, Val Acc: 50.00%\n",
"2025-07-15 15:57:12,906 - LR: 0.000500\n",
"2025-07-15 15:57:12,906 - No improvement for 4 epochs\n",
"2025-07-15 15:57:13,338 - Epoch [9/20]\n",
"2025-07-15 15:57:13,338 - Train Loss: 0.6925, Train Acc: 52.58%\n",
"2025-07-15 15:57:13,338 - Val Loss: 0.6935, Val Acc: 49.00%\n",
"2025-07-15 15:57:13,339 - LR: 0.000500\n",
"2025-07-15 15:57:13,339 - No improvement for 5 epochs\n",
"2025-07-15 15:57:13,339 - Early stopping triggered after 9 epochs\n",
"2025-07-15 15:57:13,339 - Testing model on test set\n",
"2025-07-15 15:57:13,446 - Test Accuracy: 0.4950\n",
"2025-07-15 15:57:13,446 - Classification Report:\n",
"2025-07-15 15:57:13,449 - \n",
" precision recall f1-score support\n",
"\n",
" Negative 0.42 0.03 0.05 200\n",
" Positive 0.50 0.96 0.66 200\n",
"\n",
" accuracy 0.49 400\n",
" macro avg 0.46 0.49 0.35 400\n",
"weighted avg 0.46 0.49 0.35 400\n",
"\n",
"2025-07-15 15:57:13,449 - Demonstrating model predictions on sample texts\n",
"2025-07-15 15:57:13,751 - Text: 'This movie is absolutely fantastic and amazing! I loved every minute of it.'\n",
"2025-07-15 15:57:13,752 - Prediction: Negative (Confidence: 0.506)\n",
"2025-07-15 15:57:13,753 - Probabilities - Negative: 0.506, Positive: 0.494\n",
"2025-07-15 15:57:13,753 - ---\n",
"2025-07-15 15:57:13,759 - Text: 'Terrible boring film, complete waste of time. I hated everything about it.'\n",
"2025-07-15 15:57:13,759 - Prediction: Negative (Confidence: 0.506)\n",
"2025-07-15 15:57:13,760 - Probabilities - Negative: 0.506, Positive: 0.494\n",
"2025-07-15 15:57:13,760 - ---\n",
"2025-07-15 15:57:13,767 - Text: 'Excellent story with wonderful acting and brilliant performance throughout.'\n",
"2025-07-15 15:57:13,767 - Prediction: Negative (Confidence: 0.506)\n",
"2025-07-15 15:57:13,768 - Probabilities - Negative: 0.506, Positive: 0.494\n",
"2025-07-15 15:57:13,768 - ---\n",
"2025-07-15 15:57:13,772 - Text: 'Awful movie with horrible dialogue. Disappointed and would not recommend.'\n",
"2025-07-15 15:57:13,772 - Prediction: Negative (Confidence: 0.506)\n",
"2025-07-15 15:57:13,773 - Probabilities - Negative: 0.506, Positive: 0.494\n",
"2025-07-15 15:57:13,774 - ---\n",
"2025-07-15 15:57:13,778 - Text: 'The cinematography was superb and the plot was incredible. Highly recommend!'\n",
"2025-07-15 15:57:13,778 - Prediction: Negative (Confidence: 0.506)\n",
"2025-07-15 15:57:13,779 - Probabilities - Negative: 0.506, Positive: 0.494\n",
"2025-07-15 15:57:13,779 - ---\n",
"2025-07-15 15:57:13,783 - Text: 'Poor script with terrible acting. One of the worst films I have ever seen.'\n",
"2025-07-15 15:57:13,783 - Prediction: Negative (Confidence: 0.506)\n",
"2025-07-15 15:57:13,784 - Probabilities - Negative: 0.506, Positive: 0.494\n",
"2025-07-15 15:57:13,784 - ---\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABcgAAAHqCAYAAAAwHK1VAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QWcVOUaBvB3O4ClO5Zdlu4SCelcA0EvYqGCYiBhECopqaiggKKo2ICtKN3SIZ0b1NKxCyzL9tzf841nmJ0NNqbOzPO/v3N3mDjzzew6Z8573vN8HgaDwSBERERERERERERERG7G09EDICIiIiIiIiIiIiJyBBbIiYiIiIiIiIiIiMgtsUBORERERERERERERG6JBXIiIiIiIiIiIiIicksskBMRERERERERERGRW2KBnIiIiIiIiIiIiIjcEgvkREREREREREREROSWWCAnIiIiIiIiIiIiIrfEAjkRERERERERERERuSUWyIny6Omnn5aqVavm67Hjx48XDw8PcWUnTpxQr/Grr76y+3PjefEeazAGXIcx3Ql+p/jdOsvfChER6W97l5ftvOU2yxrat2+vFiIiIj2KiIiQrl27StGiRdV28vfff3eZfVVnxe8OREYskJPLwIYuN8u6descPVS3N2TIEPW7iIyMzPY+b731lrrPvn37xJmdPXtWFTj27NkjzkL74vfee+85eihERE7hgQcekMDAQLlx40a293n88cfF19dXrly5Is7s0KFDaruTm4O/jrBkyRK1DapQoYKkp6c7ejhERJRHUVFR8vzzz0toaKj4+/tLUFCQtG7dWj788EO5deuWTZ/7qaeekv3798vkyZPl22+/lWbNmomrQPMUto94P7N6H3FwQKtZ5Gc/zhn3S4n0xNvRAyCyFmxAzX3zzTeycuXKTNfXrl27QM8zb968fO/wjR49WkaNGiXuDkWIWbNmyQ8//CBjx47N8j4LFiyQ+vXrS4MGDfL9PE8++aT07dtX/Pz8xFbwRWTChAmqU7xRo0ZW+1shIiLrbncWL14sv/32m/Tr1y/T7QkJCfLHH39I9+7dpWTJkvl+Hnts51Egx3YH3V6WZymtWLFCHO37779X40IBf82aNdK5c2dHD4mIiHLp77//lv/9739q/wnby3r16klycrJs3LhRhg8fLgcPHpTPPvvMJs+NovGWLVtUo9TLL79sk+cIDg5Wz+Pj4yOO4O3trb5z4DtJnz59Mm0/cUAiMTHR6vulOXGG7w5EzoAFcnIZTzzxRIZ/b926VRXILa+3hA0UuspyqyAbU2wQsbi7Fi1aSFhYmCqCZ1Ugxxej48ePy7Rp0wr0PF5eXmpxFEd98SIioswd5EWKFFEHZrMqkKM4fvPmTVVILwhHb+fRAe9IeA/xXk6dOlXmz5+vdvadtUCOsRYqVMjRwyAichrY/0JzEYrIOMBZvnx5022DBg1SZ/+igG4rly5dUj+LFStms+dAdzaK0I6CAw/oxsd+sGWBHN9R7r33Xvnll1/sMhatDuLo7w5EzoIRK+RW0G2Fo+C7du2Stm3bqg3Cm2++qW7DDh02SDglGBuuatWqycSJEyUtLS3HXGnzOAscTcfj8PjmzZvLjh07Mjw2q2xS/BtHyJGvhrHhsXXr1pVly5ZlGj/iYXCaGTbqeJ5PP/0013mn//zzj+oGqFKlinqOypUryyuvvJLp9C68vsKFC8uZM2fkwQcfVJdLly4tr7/+eqb3Ii4uTt0fGXH4IoNT4nBdbqAIceTIEfn3338z3YYvB3hNjz76qOpYQBG9adOm6nmwM3vPPffI2rVr7/gcWWWQGwwGmTRpklSqVEn9/jt06KA6ISxdvXpVvWZ0seM9wKlwPXr0kL1792b4feD3DM8884zplDgt0y6rDHLskL/22mvq/cfvoWbNmupvB+PK799Ffl28eFEGDBggZcuWVX9TDRs2lK+//jrT/RYuXKjefxSX8D7gPcEplpqUlBTVrVC9enW1HnRftmnTRh2gIiJyBgEBAdK7d29ZvXq1+uzLaruDzzgU0nPz+Z+drLbJSUlJanuLban2HDExMZkee/LkSXnppZfUdgHjxWcpttvm2zBsX3AdYPtlGR+XVY5obj7r8/JdJifo0Mf3CowRRZZff/01y044XIf3qkaNGmpMKMLg94PT+jU4AwvbGvwecB+8f+jw37lz5x1zZC3z3bXfC7rvH3vsMSlevLjaTgGi3LC91qIEypUrJ/37988yagffjfBeat8VQ0JC5MUXX1TfVaKjo9VzzJgxI9PjNm/erG5DQYSIyFm9++67Eh8fL1988UWG4rgGDU5Dhw41/Ts1NVXtL2vbDOz3YN8a2z1zuP6+++5TXeh33XWX+qzFZy7O+Db/nEZhHtCpjs9MbT8qu3mdstrmYv8Dn+/YN8U2HNtUbX8/p20HDghgHxP7mnhsz5495fDhw1k+Hw4UYEy4H/ZPsR+IYnNuYTu0dOnSDPvN2NYiYgW32WK/NKc6iOV3B+zT43dk+fq7deumtp/oVCdyRWxlJbeDHR5sULDjhu5y7DACNh7Y4Lz66qvqJzaSKMxev35dpk+ffsf1Yuca2abIa8PGCF8wsLOHHaY7dRLjywJ2IrFjjJ3njz76SB566CE5deqU6VTv3bt3qx1DfFlBMRLF6rffflvtMObGTz/9pDbc2JHDOrdv365iTrCTjtvMYd3YAKLTGzvLq1atkvfff199+cHjAQVdfHHA2F944QUVXYMdY2xQc1sgx+vA+9akSZMMz/3jjz+qLygo5l++fFk+//xzVSx/7rnn1HuML20YH15DXk4fA/xOUSAPDw9XCwr0mAgGO7fm8HtDcRo7+dgBvnDhgjog0a5dO7WDjZ1jvGb8DrDOgQMHqjFDq1atsnxuvGcojKC4jx1sjH358uXqSyB2ui13qnPzd5FfKGDgixC+4KEQj9eIvwN82cOXNe3LL75k4r3v1KmTvPPOO+o6fFnatGmT6T74sohuwWeffVZ96cV/Myhg4L3t0qVLgcZJRGQt2O6gMIxtjPmp29jxxGcxPutQmMZB0zt9/ucFPhu/++47tdOL7QO+X+CAvCXsHKOQiu8nOIiLnfhPPvlEfVbjebEzi51azOOB7QF2bLXYuOzi43L7WW+N7zKAjnEU7lFkxutA3AxOI9eK+tp2HoUSHKzAfTAGPCe2NwcOHFDfNQDbSXw3w3c2vIcoxOBgP84QzG8mLcaBg7lTpkwxHZjG8+L1oaCAcWvxAfiJ59KKLygIYBuH9w3b/Fq1aqlt988//6y+X6HYg65AvAc4IGL5vmA7ju9NRETOCp/X+CzLbl/GEj6bsV19+OGHVQPQtm3b1D4B9hWwX2gO2yHcD5/t2F/88ssv1bYITThoAsK2BgVnfH5ie4z9NOyT5wU+t7F9QUQn9tFQtMfzYr8lJ9jXxbYGrx37Ndh2Yj8Zn+nYn7EszqPzG9tTvFbcjn3VMmXKmPaV7gSvFfvP2M/DAVlt+4vtivl+sbX3S7Org1jCwWl8V8HvCWd244xsPB+iWBBfm9fvQUS6YSByUYMGDcKeT4br2rVrp66bO3dupvsnJCRkuu755583BAYGGhITE03XPfXUU4bg4GDTv48fP67WWbJkScPVq1dN1//xxx/q+sWLF5uuGzduXKYx4d++vr6GyMhI03V79+5V18+aNct03f3336/GcubMGdN1ERERBm9v70zrzEpWr2/q1KkGDw8Pw8mTJzO8Pqzv7bffznDfxo0bG5o2bWr69++//67u9+6775quS01NNdxzzz3q+vnz599xTM2bNzdUqlTJkJaWZrpu2bJl6vGffvqpaZ1JSUkZHhcbG2soW7asoX///hmux+PwHmswBlyH3xFcvHhRvdf33nuvIT093XS/N998U90Pr12D37n5uADr8fPzy/De7NixI9vXa/m3or1nkyZNynC/hx9+WP0ezP8Gcvt3kRXtb3L69OnZ3mfmzJnqPt99953puuTkZEPLli0NhQsXNly/fl1dN3ToUENQUJD6PWSnYcOG6j0lInJm+BwrX768+pwzh+8E+Dxcvnx5nj7/tc9a889/y+38nj171L9feumlDOt77LHHMm2zstpOb9myRd3vm2++MV33008/qevWrl2b6f74noMlr5/1efkuk50LFy6o7yTz5s0zXdeqVStDz549M9zvyy+/VOv84IMPMq1D2zavWbNG3WfIkCHZ3ier919j+d5qv5dHH300032zet8XLFig7r9hwwbTdf369TN4enqq7X52Y8J3Fzzu8OHDGd7vUqVKZfiOQUTkbK5du6Y+vyw/s7Ojbd+effbZDNe//vrr6np8jmuwP2T5mYr9MmxXX3vttTvuw1juU2W3zZ0xY4b696VLl7Idd1bbjkaNGhnKlCljuHLlSob9Lnzm47Pf8vks90F79eqltp93gtdRqFAh0/5fp06d1GV85yhXrpxhwoQJWb4H1tgvzakOYvndAfCdSNtvjY6OVt8ZHnzwwTu+RiI9Y8QKuR0cSUaXkCV0jWnQyYTOZRx5RVcQokDu5JFHHlGnHGm0o7Y44nsnyOfUOqYAR71x6pT2WHRb4cg2Ik/Mj9jiNDccBc4N89eHmA+8PhxRxn4kutMt4ai2Obwe89eyZMkSlbOqdZQDji4PHjxYcgtHrtHBvmHDBtN1OHqOHDSt2wzr1HLRcLo1Ov3QRYbusaziWXKC9xCd4hij+el4w4YNy/LvxNPT0/T+44i7dppeXp/X/D3D60H3nzl0XOD3gFPt8vJ3URAYCzrl0KGhQXcgxoZTK9evX6+uQycH/l5yikvBfdCxgdMCiYicFT5/0TWFbijz2BJsd9BFhTNlrP35j89asPzcz2q7Y76dRnQVnhfbeXzGFmS7k5vPemt8l0EcF943nOmkwfNi2xYbG2u6DtmqpUqVyvL7grZtxn1wedy4cdneJz8sv9tYvu+IfsH3o7vvvlv9W3vf8f0D3Xv3339/lt3r2pjQVYjT0tExrsHZCVjnnebEISJyJJwBCjjbJS/bN5x9bblfA5ZZ5XXq1DFtUwBnQWO7ao39Go2WXY7oVHxu58a5c+dkz549qpu9RIkSGfa7cCas9jrvtJ+Mbbb2HuYGzipDLMr58+dVtzZ+ZhWvYs3vJdnVQbKCM6xxNhm60tHxjm0busiJXBkL5OR2KlasmOVEFCjw9erVS+WIoQiJjba2M3Pt2rU7rhdxIOa0HUzzncLcPlZ7vPZY5IfiVC/sKFvK6rqsIJZD2/BrueI4LSur16dlfWY3Hi0rFXEvlqe+YUOdWyhUoGCB4oS2Y4rT8VD0N99Bx6l7+JKi5VtjbPjSlZvfizmMGXB6tTmsz/z5AF+qEHmC++LLBHbmcT9kleb1ec2fHwc4LL94aqfGa+PL7d9FQeC58Nq0L1vZjQXxLsiIxe8Ep/zjNEDLHHR8ccIp57gfsvEQGYP3iYjI2WiTcGrbHRykRWyHtj2y9uc/PkvxOWt+sDO7bSW28zg1WpujQntefL4WZLuTm896a3yXQYwMIkiw445T2rE0btxYHZg2j3JDzjhef06TmeI+2F6aFyusAaemW8KBd8S84CAJiuV4z7X7ae87Jo5D4QP5rXcqzqCIrv19AYrl+O7ZsWNHq74WIiJrwv6v1iiWl+2b5b4oDsris9Ce+zXmB3kRi4LoF3ymY9uOWLWciuXaOLPaLmNbiQOcaBay1rZSgwgZ7BMuWrRIbSeQH57dfr21vpdkVwfJDqJWsR3GAQREuyFGhsiVsUBObse8U0iDnU8UizHRBYp9yF9Dx6yWI5abI9DajrUly8kXrf3Y3MCRZhwBR1F55MiRqgsKr0+btMPy9WU3HmvDRhbjQqcYuuXwvuNLmVbA0Ha4UdhHcQHZ4yjOYuzY0cxtZ0B+IJ8UHRHIe8UY0AGG50VGni2f155/F7n9HeFL0Z9//mnKT0ex3DxrHu8RihnIEkTxADl8yM/DTyIiZ4KsU2R8apMl4ic+U823O476/EdH9eTJk1UXMnbokfWJ58WBYWff7uAMImSoY+4M7MBrizYRpnlHtbVk10luOaH4nb4D4v2eN2+eKQ8W77t2IDg/73u/fv1URyTy5PGdBttPdNJbHqQgInK2AjkOTGIuiLzI7Vk9Bdmvye3nPT7jcWYyzhp+8sknVQEZRXPsb+a0bXDEPhoK3ejMRiMYGsSy6x635veSrLaBOcFZ5trE5vv378/TY4n0iJN0Ev036zM6nrBjhA2P5vjx4+IMUKRE9zS6sSxldZ0lbNCOHTumNsDYcdPkFJtxJ5hlHBNs4RRt8y7yo0eP5mk9KEpgRxSnYKPjCl/O0H2lweRXmDAFvxvzL0dZnXadmzFrO/JYpwadYZZH/PG8mGgMRXnLgyk4ap+fU73x/PjChh1m8y5yLcJHG5894LnwpRFfqsx32rMaCzoN8DvBgvujqxyn2I0ZM8bU6YDuApyyhwV/E/jvCJPcoIODiMiZYLuDzy98BmK7g0IuOrfy+vmfG/gsxeem1jWd07YSz4uDj5gUW4Mzq/C85vK63cntZ31BoACO6BZM3mVZOEDRHJ1nOJMNXXc44I2J3HBgPLuJP3EfFADQ3Z1dF7nWsWf5/lh2LeYE2358l8Gk4eje11hGhqFTD99PclM4woTquD/eE0x2jqg+FGqIiJwdJrjEJMWIImvZsmWutm/4vDSfKBoTSOJz2Zr7Nfi8t/ysz+7zHts6RKZh+eCDD1Rx+a233lJNPoivzOp1ZLddxrYS2/1ChQqJLaAojgYjjBnd7tmxxX7pnaBrHvt1iMZBLCsm7cbZ9ubfl4hcDVsZiMyOApsf9cUpwR9//LE4y/iwQUfn99mzZzMUxy1zq7N7vOXrw2XMUJ1fOC0MWeCffPKJ6TocmceM33mBXPXAwED1XuO1aBlnOY0dO9b44pZXeA+xM44xmq9v5syZme6L57XsAsAp4mfOnMlwnfaFKasvbVm9Z3iPZs+eneF6nDKHLzS5zZO3BowFWXc4rU+D3yfeGxzw0OJ3cODIHL7AIe4GkpKSsrwPHo/CuXY7EZEz0brFURDFGTLm3eN5+fzPDe1zHQVic7nd7uAz2bLrLa/bndx81hcUisHIYEWn3sMPP5xhQewWaF37yCjHKeuW20LQXj/ug8soXGd3HxSsURgwn8cE8vLdLavvGFn9frDtw/cVnOm2c+fObMcEiI5BxzjOAsCZeoge07abRETObMSIEWobgwYXFLot4WCvtv+I7UtWn5coSsO9995rtXHhoCmiRMwjHJEdjs5rczioaqlRo0bqZ3b7JYgMxX3QSGa+XcUBUZxRpL1OW0DRe+LEiWp7iGia7Nhiv/ROcNY5DmzjfcHvtGrVquogPvfvyJWxg5xIRB0VxZFpfOhj4ioUK9EFZc8oiztBNy420shVw8SYWqEVkRbYwc8JTifHF4vXX39dbUixU4lYk4JkvqGbGGMZNWqUmuwMR5fR5Z3XnFTsoGOnU8vrtCxUoJMB68URa3zRQlf/3Llz1fOhUzkv0NGF92Dq1KlqvfjCg1PHUJi37ArE7YjbwZFz/H2gCx8FAPPOc8D7ipw9jAld4fhigo6xrHJO8Z7hixC6GPCeNWzYUP1OMZEMJmyzzKgtKHTFofvQEt7vgQMHqi5wxNfs2rVLfelBd8KmTZvUF12twx1fkPFlE5E2yCBHpwYKK/giqXWL4HfRvn17FV2ATj8UD7Cul19+2aqvh4jIGvD5jM91fPZmt93Jzed/buCzEsVSFG2xfcT68Nmc1dlfeF5898BcKPhcxYFgnHWEiBXLdWJnGTFwWCdO08ZndFbZoLn9rC8IHLTG68nuMx+Zp4jdwnuIHW6cyfbNN9+o08W3b9+uCuvoVMNrxRlKPXv2VNtKdF3jwAK6E9GVjU5F5MXjNu25sI2aNm2a+onJM1EsxxlzuYXvQzjjCZ1x6GjHWLFdzuoMQnQh4jYcVMD7im0gCjQoUqBLXpscDvAaMXZ0LGpxfUREzg77Itgnw8FOfMbhswz7mmgcQ2wUPu+wPQHsx2DfGR3nWlwpPtNRUMW+Bj6rrQXd1dh+YH8Q++o4MwdNWpj/yHySSmy7sR3APiM6wxEPgu0v9mG0yK+sTJ8+XR3QRtf8gAED1Jwg2N/B9hj74LaCg6+jR4++4/1ssV+aE0waivcNZ2xj+w3z589X+3s4Aw/bTCKXZCByUYMGDUJ1O8N17dq1M9StWzfL+2/atMlw9913GwICAgwVKlQwjBgxwrB8+XK1jrVr15ru99RTTxmCg4NN/z5+/Li6z/Tp0zOtE9ePGzfO9G9cthwT/o2xWsJz4LnMrV692tC4cWODr6+voVq1aobPP//c8Nprrxn8/f3v+H4cOnTI0LlzZ0PhwoUNpUqVMjz33HOGvXv3quefP39+htdXqFChTI/PauxXrlwxPPnkk4agoCBD0aJF1eXdu3dnWued/P333+ox5cuXN6SlpWW4LT093TBlyhT1fvj5+anX/9dff2X6PWT1fmMMuA6/Iw3WP2HCBPVc+F23b9/ecODAgUzvd2Jionpvtfu1bt3asGXLFvU3hMXcH3/8YahTp47B29s7w2vPaow3btwwvPLKK+pvzMfHx1C9enX1t4PXmd+/C0va32R2y7fffqvud+HCBcMzzzyj/h7wN1W/fv1Mv7eff/7Z0LVrV0OZMmXUfapUqWJ4/vnnDefOnTPdZ9KkSYa77rrLUKxYMfVe1apVyzB58mRDcnJyjuMkInKUOXPmqM9DfHZZyu3nv/ZZa/65mdW28tatW4YhQ4YYSpYsqbav999/v+H06dOZtlmxsbGmz2Rsq7t162Y4cuRIlp/78+bNM4SGhhq8vLwyfE/JahuVm8/6vHyXsTR48GB1n6ioqGzvM378eHUffO+AhIQEw1tvvWUICQlR28Jy5coZHn744QzrSE1NVePBNgXjLl26tKFHjx6GXbt2me6D9QwYMEB9BylSpIihT58+hosXL2b7/evSpUuZxhYTE2Po1auX2oZhPf/73/8MZ8+ezfJ1nzx50tCvXz81Fnwnwe8A2+qkpKRM68X3TU9PT7V+IiI9OXbsmNpXrFq1qvr8xecrtoWzZs1S20hNSkqK2q/SPssrV65seOONNzLcB7Adu/feezM9T3bb1ay2RStWrDDUq1dPjadmzZqG7777LtM2F/vKPXv2VPtZuB9+Pvroo+r1WD6H5XZw1apV6jViu499W2yrsf9sLrttSVb7nFnJbj/bXFbvgTX2S3Oqg5iv5/r16+r31aRJE/X7NYd9WGzX8NxErsgD/+foIj0R5R+O0B88eDBTXiYREREROUbjxo3VWVU4Y4CIiIiInBszyIl0BKd7mUNRfMmSJep0JyIiIiJyPESNIf7OfGJ0IiIiInJe7CAn0hFMIoLcN+SNIQsa2WuYKAM52tWrV3f08IiIiIjcFiZ1Q9b7+++/ryYijY6OzjDxOBERERE5J07SSaQjmKRqwYIFcv78eTUpFyYSwaRRLI4TERERORYmQMVEajVr1lTf11gcJyIiItIHdpATERERERERERERkVtiBjkRERERERERERERuSWHF8jnzJkjVatWVacgtmjRQrZv357j/ePi4mTQoEEqixkREzVq1FCTFGpu3Lghw4YNk+DgYAkICJBWrVrJjh07Mq3n8OHD8sADD0jRokWlUKFC0rx5czl16pTpdkx66OHhkWF54YUXrPzqiYiIiIiIiIiIiMgtM8gXLVokr776qsydO1cVx2fOnCndunWTo0ePSpkyZTLdPzk5Wbp06aJuQ8ZfxYoV1USFxYoVM93n2WefVRPkfPvtt1KhQgX57rvvpHPnznLo0CF1f4iKipI2bdrIgAEDZMKECRIUFCQHDx7MlBP43HPPqRxBTWBgYJ5eX3p6upw9e1aKFCmiCuxERES2gLQ0HCDGds/T0+HHvp0et89ERGQP3D4TERHpg0MzyFEUR+f27NmzTTuslStXlsGDB8uoUaMy3R+F9OnTp8uRI0fEx8cn0+23bt1SO7t//PGH3HvvvabrmzZtKj169JBJkyapf/ft21c9HkX07KCDvFGjRqpon18xMTHq9RAREdnD6dOnpVKlSo4ehtPj9pmIiOyJ2+fcSUx19AiIMire/GVHD4Eog1u7jfVTawpobN2/c1uM0aU7yNENvmvXLnnjjTdM1+GoOrq9t2zZkuVj/vzzT2nZsqWKWEERvHTp0vLYY4/JyJEjxcvLS1JTUyUtLS1TJziiVjZu3Ggqwv/9998yYsQI1a2+e/duCQkJUeN48MEHMzzu+++/Vx3o5cqVk/vvv1/GjBmTpy5yFOu1L0ToUi+IlJQUWbFihXTt2jXLgwPOSq/jBo7dMTh2x+DY9T3269evq4Kvtt0h+2yf+bfnGBy7Y3DsjsGx63vc3D4TERHpg8MK5JcvX1bF7LJly2a4Hv9Gh3hWoqOjZc2aNfL444+r3PHIyEh56aWX1JeYcePGqS8eKKBPnDhRateurda1YMECVXAPCwtT67h48aLEx8fLtGnTVEf5O++8I8uWLZPevXvL2rVrpV27dup+KLwjxxynw+3bt08V4RH98uuvv2b7mpKSktSiwel0WoEeS0F4e3ur4jzWo6cvmHodN3DsjsGxOwbHru+xYzsIjAvJHe19QnG8oAVy/P6wDr397XHsjsGxOwbH7hh6Hbstxs3tMxEROS0PRoA5PIM8r9D9jfzxzz77THWMIzrlzJkzKnYFBXJAbEr//v1V3jju06RJE3n00UdVt7q2DujZs6e88sor6jKiVDZv3qwiXLQC+cCBA03PW79+fTUpaKdOnVR+ebVq1bIc39SpU1WmuSV0IOQ1vzw7K1euFD3S67iBY3cMjt0xOHZ9jj0hIcFqYyEiIiIiIiI3wYO4ji2QlypVShWwL1y4kOF6/BuRJllBkRpH8fE4DTrFz58/ryJbfH19VfF6/fr1cvPmTXVKGx7zyCOPSGhoqOl50bFXp06dDOvGerQYluzy0gFd69kVyBHTgklHLU+pw+l51ohYQQEFk5TqrQNDj+MGjt0xOHbH4Nj1PXZsb4iIiIiIiIhIRwVyFLPRAb569WpT9je6u/Hvl1/OOiC+devW8sMPP6j7abOAHzt2TBXBsT5zhQoVUktsbKwsX75c3n33XdPzYmJQxKWYw3oQqZKdPXv2qJ94ruz4+fmpxRKKHtYq2lhzXfak13EDx+4YHLtjcOz6HLteXzcRERERERE5ECNWHB+xgm7rp556Spo1ayZ33XWXzJw5U3V+P/PMM+r2fv36qagURJfAiy++KLNnz5ahQ4fK4MGDJSIiQqZMmSJDhgwxrRPFcIPBIDVr1lTd3sOHD5datWqZ1gm4Dl3lbdu2lQ4dOqgM8sWLF8u6devU7YhRQSE+PDxcSpYsqTLIEceC+zdo0MDu7xMR6QvmV8Cit05mnF2TmJjIsTvp2C3PoCIiIiIiIiIinRfIUaS+dOmSjB07VsWkIAscxWpt4s5Tp06ZOsUBcSUogKNYjUI1iucolmMCTc21a9dU1ElMTIyUKFFCHnroIZk8eXKG7rpevXqpvHEU3lFcRzH9l19+kTZt2pi6zFetWmUq2ON5sZ7Ro0fb9f0hIn3BwTlMFowJhfU2GRPGjnir06dPc+xOPPZixYqp++vtdRIREREREZET4r6lc0zSiTiV7CJVtI5ucy1btpStW7dmu74+ffqo5U4wkSeWrKAgjhxzIqK8uHjxohQvXlxKly4thQsX1lURE9FV8fHxatzmByb1wB3GjkI6JuLE39id4r6IiIiIiIiIcoURK85RICcicgWIx8BEiZgIGNFMeizUYrJjf39/jt1Jxx4QEKB+okhepkwZxq0QERERERERWQEL5EREVsqSBssJg4msKTAw0PT3xgI5ERERERERFYiOzny3JRbIiYisSE+xKqQ//PsiIiIiIiIiq2HEisJ3gYiIiIiIiIiIiIjcEgvkRERkVVWrVpWZM2c6ehhERERERERElBOcpexhxUWnWCAnInLjuA5tQZ518eLF1U/tuvHjx+drvTt27JCBAwcWaGzt27eXYcOGFWgd5Fj4+zH/G8NSq1Yt0+2JiYkyaNAgNalt4cKF5aGHHpILFy7kuM6nn3460zq7d+9uh1dDRERERERErooZ5EREburcuXOmywsXLpSxY8fKkSNHxNPTeOwURUuNwWCQtLQ08fa+82ajdOnSNhox6U3dunVl1apVpn+b//288sor8vfff8tPP/0kRYsWlZdffll69+4tmzZtynGdKIjPnz/f9G8/Pz8bjZ6IiIiIiMjFMYNc4btAROSmypUrZ1qCgoJUN672bxTKixQpIkuXLpWmTZuqIuTGjRslKipKevbsKWXLllUF9ObNm2cogGYVsYL1fv7559KrVy8JDAyU6tWry59//lmgsf/yyy+q+IpxhYaGyuzZszPc/vHHH6vn8ff3V2N9+OGHTbf9/PPPUr9+fQkICFDdy507d5abN28WaDyUNRTEzf/OSpUqpa6/du2afPHFF/LBBx9Ix44d1d8Yit6bN2+WrVu35rhO/M7N14kzH4iIiIiIiCgfGLGisEBOlI0bN0QOHy4hBoOjR0J6hb8d1F3tvVjzb3bUqFEybdo0OXz4sDRo0EDi4+MlPDxcVq9eLbt371bdvPfff7+cOnUqx/VMmDBB+vTpI/v27VOPf/zxx+Xq1av5GtOuXbvUuvr27Sv79+9Xne9TpkyRr776St2+c+dOGTJkiLz99tty9OhRWbZsmbRt29bUNf/oo49K//791Wtat26d6lpGhzxZX0REhFSoUEEdxMDvXPs7we8wJSVFHZzQIH6lSpUqsmXLlhzXid9ZmTJlpGbNmvLiiy/KlStXbP46iKwl8mqkXEy+6OhhuJ39F/fLjdQbjh4GERERETkpRqwQZWPoUC/57rt7pGbNVOnVy9GjIT1KSEBMif2fNz5epFAh66wLReYuXbqY/l2iRAlp2LCh6d8TJ06U3377TXWEIyIjp+xoFKYBxeyPPvpItm/fnq/8aHQdd+rUScaMGaP+HRYWJnv27JH3339fFb5RhC1UqJDcd999qgs+ODhYGjdubCqQp6amqqI4rgd0k5P1tWjRQh20QCEb7zsOktxzzz1y4MABOX/+vPj6+kqxYsUyPAbd/rgtO/h7we8uJCREnc3w5ptvSo8ePVRRHfn52UlKSlKL5vr16+onivRY8kt7bEHW4Sgcu/1FXI2Qpp83FT/xk4dvPSyFxQEbCDd837fEbJH237SX5kHNpXdKb9Ebvb7veh67Ncett9dORERuiBErCgvkRNnYudN4asiGDR4skJPbatasWYZ/o4Mcky8iO1orNt+6deuOHeToPtegeI1Il4sX89dFic5vxLyYu/vuu2Xu3LkqJx0FfRS/0bWMgioWLd4FxX0U11EU79atm3Tt2lXFrzCmw/pQuDb//aNgjt/Ljz/+qOJt8gNnDWjwO8R6q1WrprrK8XvNztSpU1WB3tKKFSvU30VBrVy5UvSKY7efydGTJTE1UfC/j/78SBoVaSR6pLf3/YszX4hBDHIs4Zjuxm6OY9fnuBPQLUFEROTMdByLYk0skBNlIS1NJDraeHn3bn5YUP6g7oZubkc8r7WgmG3u9ddfVzuM7733nurcRqETBebk5OQc1+Pj45Ph38glT09PF1tA1/i///6riqYogCKCBUX9HTt2qI5ljB9Z17ht1qxZ8tZbb8m2bdtUVzLZDt77GjVqSGRkpDqIgb+ZuLi4DF3kFy5cULniuYWDIMg1xzpzKpC/8cYb8uqrr2boIK9cubI6QIKDNQXpDMTfE16P5d+4s+PY7WvV8VWyY88O078vF7ss4d3CRU/0+L7DiLkj1M+41Dhp076NBAXm/795R9Dr+67nsVtz3NoZS0REROTcWCAnykJMjEhysoepQI46nifPOqF8HIi1VtSJs9i0aZOKS0FHttZRfuLECbuOoXbt2moc5jCxI4qvWswGJodEvjWWcePGqSLsmjVrVDwHivOtW7dWC4rn6GpGTIx5AZWsD38riEV58skn1aScKDogy/6hhx5StyMvHmcitGzZMtfrjImJURnk5cuXv+PEnlgsYQzWKNpYaz2OwLHbXmp6qgxfNVxdrl2qthy+fFhWHF+hi7Hr+X2H6NhoOXb1mOnfZxLOSMmiJUWP9PS+u8rYrTFuPb5uIiJyM4xYUVggJ8pCRMTty9eve6hu8rAwR46IyDlUr15dfv31VzUxJwrNyAG3VSf4pUuXVLa4ORRCX3vtNWnevLnKP3/kkUdUsfzzzz+X2bNnq/v89ddfEh0drSbmRHTKkiVL1BiRhY1OcRRl0TmMiR7xbzwPiu5kXTjbAH8nOABx9uxZdaACBzCQRV+0aFEZMGCAOiiBXHt0cQ8ePFgVxxGXYz5xJ+JRcEAGBXbEpKCgji5zFNtHjBihzmRAXA6Rs/p056dy8NJBKRlQUv7o84fU+riWKtqieBtaPNTRw3NpSyOWZvj3ibgT0qD87cgvIiIiIrfHArnCd4EoC5GRGf/977+OGgmRc8EEmSg6t2rVShU/UZhs0qSJTZ7rhx9+UJNrmi/z5s1Tz4cc64ULF0q9evVUfAoiNNDZDugWRxG/Y8eOqvCNbPIFCxZI3bp1VSF2w4YNEh4erjrOR48erSb3NM/LJutAdzeK4Tgw0adPHylZsqTq9C9durS6fcaMGWoiVRS8cTADRW/83syhq/zatWvqMorr+/btkwceeED97lBgRyf6P//8k2V3OJEzuHrrqoxdN1ZdfrvD21K1WFWpXah2lsVbsr4lkUsy/PvktZMOGwsREREROS92kBPdoYMcdu0S6dPHUaMhsj0UlxE/omnfvr0YDIZM96tataqKKjE3aNCgDP+2jFzJaj3Ins4J8sNzgqKqFs2B7nDzjM82bdpk+3gUzJctW5bjusk6cAAjJ/7+/jJnzhy1ZMf8bwd598uXL7fqGIlsbcK6CapIXq9MPRnYdKAY0gzSJKiJHLx5UJZGLpVBd2X8/CTruZVyS9YeX6sud6zaUdacWKM6yImIiIjIjCfn3VNvg6N/D0TO3EEeEmIs4rGDnIiIiPLi8KXDMmeH8QDQjG4zxNvT2JfSNKip+rnm+BpJTE106Bhd2fqT6+VW6i2pWKSi3Bt2r7rueNxxRw+LiIiIiJwQC+REOXSQt2lz1tRBnkUTLBEREVGWXlvxmqQZ0uSBmg9I59DOpuuD/YNV0RbF2/Un1jt0jK5Mi7DpEdZDRdsAI1aIiIiIssgg97DiolP6HTmRjaSliURFGS/fffc58fExSGysyEnuUxEREVEui7OIUPHx9JH3uryX4TZMcNytmnFi2SURGTOyyfr54z2q3y6Qn7jGiBUiIiKiDDw8rLvoFAvkRBZiYkSSk0UVxsuVi5e6dcXURU5ERESUk5S0FHl1xavq8tAWQ6V6yeqZ7tMt1FggRxGdrC/yaqRaEGuD7v2qRY0FcuTBX0+6PWcFERERERGwQE6Ubf64iJeXSJMmxmwV5pATERHRnXy842M5cvmIlA4sLaPbjs7yPp1COqnibcTVCFXIJdvEq7Sp0kaC/IKkiF8RKeJVRF3HiTqJiIiIzDBiRdHvyIlsnD8eFmYsjDduzAI5ERER3dnlhMsyfv14dXlyx8lS1L9olvdD0RbFW/NiLlk/XiU8LNx0XVnfsurn8VhO1ElERERkwogVhQVyolwWyDlRJxEREeVk3NpxEpcYJw3LNpT+jfvneF+teMuYFetKSEmQdSfWmfLHNWX8yqifx+NYICciIiKijFggJ8omYiUszPizfn2Dilq5dEnkzBmHDo2IiIic1IGLB2Turrnq8ofdPxQvT68c768Vb9eeWCu3Um7ZZYzuAMXxxNREqRxUWeqWrnu7QO5rLJAzYoWIiIjIDCNWFP2OnMjGHeTVqhnbxQMCROrUMV7HiTqJiIjIksFgkFeWvyLphnR5qPZD0q5quzs+BsVbFHFRzNU6nqngtMiaHmE9xMPsNF9TxAo7yImIiIjIAgvkRGbS0kSiojJGrEDTpsafzCEnyqx9+/YybNgw07+rVq0qM2fOzPExKFr8/vvvBX5ua62HiKggFh9bLKuiV4mfl59M7zI9159fKOLCkghjZjYV/ECFKX+8+u38cWAGOREREVEWmEGusEBOZCYmRiQ5WcTHR6Ry5dvXN2li/MkOcnIl999/v3Tv3j3L2/755x9VvNm3b1+e17tjxw4ZOHCgWNP48eOlUaNGma4/d+6c9OhxO2PWFr766ispVqyYTZ+DiPQrKTVJXlvxmrr8astXJaR4SK4fqxVxUdRFcZcKJuJqhETHRouPp490DOmY4TbziBW+10RERET/YcSKot+RE9kwfzw0VMTb+/b17CAnVzRgwABZuXKlxODIkIX58+dLs2bNpEGDBnleb+nSpSUwMFDsoVy5cuLn52eX5yIiysqs7bMk8mqklCtcTt5o80aeHosiLoq5KOqiuEsFo3Xitw1uK0X8imRZIL+RfEOu3rrqkPERERERkXNigZwoi/zx6tUzXt+woYinJ7pVjQuRK7jvvvtUMRsd0ubi4+Plp59+UgX0K1euyKOPPioVK1ZURe/69evLggULclyvZcRKRESEtG3bVvz9/aVOnTqqKG9p5MiRUqNGDfUcoaGhMmbMGElJSVG3YXwTJkyQvXv3qq52LNqYLSNW9u/fLx07dpSAgAApWbKk6mTH69E8/fTT8uCDD8p7770n5cuXV/cZNGiQ6bny49SpU9KzZ08pXLiwBAUFSZ8+feTChQum2zHuDh06SJEiRdTtTZs2lZ07d6rbTp48KX379lXjKFSokNStW1eWLGHUApFeXLx5USZumKguT+00NVNR9k5wfxRzzbOzKf+WRt7OH7fk6+kr5QuXV5eZQ05ERET0H0asKCyQE2XRQR4WlvH6QoVEatUyXmYXOeUaTuG+edP+Sy5PHff29pZ+/fqpYrP56eYojqelpanCeGJioiro/v3333LgwAFVcH7yySdl+/btuXqO9PR06d27t/j6+sq2bdtk7ty5qhhuCcVjjOPQoUPy4Ycfyrx582TGjBnqtkceeURee+01VTxGpAoWXGfp5s2b0q1bNylevLiKecHrWLVqlbz88ssZ7rd27VqJiopSP7/++mv1vJYHCXILrw/F8atXr8r69etV8T86OjrD+B5//HGpVKmSGtOuXbtk1KhR4oMcJxE1tuTkZFm3bp0q7r/zzjuq0E5E+jB6zWi5nnRdmlVoJv0a9svXOkw55P9lZ1P+3Ey+aZrs1DJ/XBNcNNgUs0JEREREjo9Y2bBhg4p/rVChQpZzjGlNcpbL9OnTMzTpWd4+bdq0PI3DLESCiLLrINdyyA8dMhbI773X7kMjPUpIEHFEsRMd0ziqkwv9+/dXGxYUd5v8F7aPeJWHHnpIihYtqpbXX3/ddP/BgwfL8uXL5ccff5S77rrrjutHgfrIkSPqMdjgwZQpUzLlho8ePTrDxg3PuXDhQhkxYoTqBkfRGAV9RKpk54cfflAF/W+++UZ1Y8Ps2bPVxhaF57JljRO0oYCO6728vKRWrVpy7733yurVq+W5556TvMLjUNg+fvy4VP5v4gI8P4r5KIg3b95cdZgPHz5cPRdUN/uAOX36tHp+dOZ7enqq7nki0oc95/fI5/9+ri7P7DZTPPOZuYhi7usrX5f1J9arIm8h39x9flNGa0+sleS0ZFUEr1Xqv64GC1WLVZWtZ7Zyok4iIiIiJ3Hz5k1p2LChqk2guc4SGuTMLV26VJ3tjpqFubfffjvDPj2a8PKCHeREWRTILTvIgRN1kitC0bZVq1aqKA6RkZFqgk5scACd5BMnTlQF3BIlSqhCNYrdKPrmxuHDh1XhWCuOQ8uWLTPdb9GiRdK6dWtVAMdzoGCe2+fQoBCPDatWHAesE13eR48eNV2H4jWK4xpErVy8eFHyQ3t9WnEcECODST1xG7z66qvy7LPPSufOndVRbHSva9BBjriXe+65R8aNG5evSVGJyP5w1s2wZcPEIAbpW6+vtK7SOt/rQjEXRd2ktCRV5KWC5Y/jgAO6hnLqIGfEChEREZFzRKz06NFDJk2aJL169crydtQIzJc//vhDRZhaNpehIG5+P/O6QG6wQE70n7Q0Ea1ulVUHOSfqpDzDRJXo5rb3kscJMlEM//XXX+XGjRsqaqRatWrSrl07dRu6yxF5glgURJLs2bNHxZggFsRatmzZomJIwsPD5a+//pLdu3fLW2+9ZdXnMKfFm2hQSEER3VbGjx8vBw8eVJ3ia9asUQX03377Td2GwjleL14/OtExMeqsWbNsNhYiso5fD/8q60+ulwDvAHmn8zsFWhc+g7RIEOaQ5/+ARU7545qQYiHqJyNWiIiIiJwjYiUvMNcX4l+1hj5zaEbD3F6NGzdWdYzU1NQ8rZsFcqL/xMSIoB6H2plZM6hJo0bGn6dPi1y6ZPfhkR7h6CmOWtp7yeNRW0wqiXiPn3/+Wb799lt1apPWfbdp0yaVsf3EE0+o7mwcpT127Fiu1127dm0VI2J+WtTWrVsz3Gfz5s0SHBysiuIoECOCBJNXmkOGObrZ79QNjwkxcYqWBuPHa6tZs6bYgvb6sGiQox4XF6cK4RpMQPrKK6/IihUr1GljWsc+IJ/8hRdeUAcpkLWO/HUicl6JqYkqEgWGtxouVYpWKfA6zXPIzeeEoNw5cvmIKnr7evlKx5CO2d6vatGq6ic7yImIiIhsIykpSa5fv55hwXXWgDnE0CluGcUyZMgQFdGKpr7nn39exboirjUvWCAnspigE2dpeGeRzh8UhCKX8TK7yMmVINIERXJkdqGQ/fTTT5tuQ7EaE0+iiI3IEGxscNQ2txArguLwU089pYrXiG9BIdwcngNxKtigIX7ko48+MnVYm+eSI+cbHeyXL1/OcgOLLmx/f3/1XJhQFBtHZKZjUlEtfzy/UJzHc5sveD/w+hA/g+f+999/1eSlmPgUHfgo9t+6dUvFqGASThT9UbBHNjkK64CiOXLM8drweIxZu42InNOMLTNUMbZikYoyonXevnhnB0VdFHex3qNXbkdCUe5o3ePtgtvlmOEeXOz2JJ08EEFERERk/Q7yqVOnmuYz0xZcZw1ffvmlab/fHGJN27dvLw0aNFDNZ++//746MzsvhXkWyIlykT+uYQ45uSp0jaPruWvXrhnywpEFjsk7EauCDQ6yvB588MFcrxfd2yh2o1CMST0RKTJ58uQM93nggQdUoRiF5EaNGqli/JgxYzLcBxNwdO/eXWWNlS5dWhYsWJDpuQIDA1U++tWrV9XkmA8//LB06tRJTchZUPHx8epULfMFk3+i0x4ZaJj4s23btqpgji57ZKoDss6vXLmiiuY4UIADEchYmzBhgqnwjgk8kYuO14f7fPzxxwUeLxHZxrkb52TyP8bPsGmdp1ltQk2sB8Vd8yxtyl/+eE6qBFVRk6niLIALN3N/sJeIiIiIcueNN96Qa9euZVhwXUGh2Q5zi6GmcCctWrRQESsnTuQ+Vi+LPlki9+4gzyp/3DyHfOFCdpCT68HEmbGxsRKEUyXMYGLO33//PcfHojvanOVGCEVfbMzMWXbuvfvuu2oxN2zYMNNlPz8/FQFjCetBfjhO2wJ0cyPnOzvIWLc0c+ZMyQk66s276i1VqVJFFcmzgmiYrIr5GnTLY0ISvO84mEBEzu3NNW/KzZSb0qJiC3ms/mNWXTeKuyujV6pu6FdbvmrVdbuy+OR42XBywx3zx8HHy0cqBVWSU9dOyfHY41KucDk7jZKIiIjISeVjYs2cYN8di7V98cUX0rRpUxX9eic44xv712XKlMn1+h2+Nz5nzhx16jza41Hhx+npOUGH46BBg6R8+fLqDUfhZcmS2502mGQORRXk2QYEBEirVq3U6eyWcGo8uhbR6o+ZTdFtiFP8NYmJiep5EPCO+AF0L+YlVoD020GeU4Fc6yBngZyIiMi97Dy7U77aYzzI9mH3D1UnsjVpxV0Ue1H0pdxZHb1aUtJTJLR4qNQo+V8WXg6qFmMOOREREZGzTNIZHx9vijEFLVrVvEaLhriffvopy+7xLVu2qKY3RLpGR0fL999/r85QxzxqONNbFwVynIKOnJhx48ap7FUcBcBp/BcvXszy/snJydKlSxfVnYhOQrTWYzKzihUrmu6DNwt5uZhobv/+/SouAKe8nzlzxnQfZNy2adNGTeiGzsd9+/ap0/nNM2zwZi5evFj9AtavXy9nz57NFAJPrtlBnpuIlePHRa5etc+4iIiIyLFwtsqwZcazWp5o8IS0qNTC6s+B4m5IsRBJTkuWNcezPxOGss4fxwEGbYLpnOA91nLIiYiIiMixdu7caYoxBdSJcXns2LGm+2C+Mnwff/TRRzM9Hs3TuB3zgCG6FJGuqOl+9tlneRqHQyNWPvjgA3nuuefkmWeeUf+eO3eu/P333yp0fdSoUZnuj+uRLYt8Wh8fH3Udus81yLj95Zdf1KnuyIKF8ePHq0L3J598ok5jB0wQFx4enuF0/mrVqpkuIx8Hrfs//PCDdOzYUV03f/58NXHa1q1b5e6777bZe0KOkZ6OAyd37iAvVsw4iWd0tMju3SKdOtltiEREROQgiw4ukk2nN0mgT6BM6zTNJs+B4i5iVubsmKMytR+o+YBNnseVYEdJK5DfKX/cskCOiBUiIiIit2fliJW8wlxnd5o8feDAgWrJCuZMQ622oBxWIEc3+K5duzIEtSMfBt3eaI/Pyp9//qlychF9giI4Jmp77LHHZOTIkWoiNASwY8Izy9lMEbWyceNGdRlZtSjCjxgxQnWr7969W0JCQtQ4tInnMK6UlBQ1Fg26zZEzi7FlVyDH7KjmM6RqmbhYF5aC0B5f0PXYm17GffIkfn8+4uNjkHLlUgXDzW7sjRp5SXS0p2zfniZt26aLM9LL++5KY8d4tQ91LRdbTzh2fYwd98F98feG7Z5Gb/+9EOlJQkqCjFg5Ql0e1XqUVAy6feaitaELGgVyFH3x33puOqLd2aFLh1SeuJ+Xn7Sv2j5Xj2HEChEREZEZK8cG6pXDCuSXL19WxeyyZctmuB7/PnLkSJaPQZYMJl97/PHHVe54ZGSkvPTSS6owgJiWIkWKqAL6xIkTVbc31oXJ0VDUDvsvNwPxLci3mTZtmuoof+edd2TZsmUqPmXt2rWqJf/8+fNqYrViaBe2GBtuy87UqVNlwoQJma5fsWKFBAYGijUgPkaPnH3ce/eWEpHWUqZMvKxYsSbHsRcqhBbzOrJkyTmpU2eXODNnf99daeze3t5Srlw501wIesWxO/fYcXAZZ0tt2LBBHRTWJCQk2HB0RO7t/c3vy+nrp6VK0SryeqvXbfpcHUI6qGIvir4o/tYtU9emz6d3Wvc43jd09+dGSHFGrBARERGRE0Ws5BU65zADKXJk0DmH2UuRLT59+nRVIAdkj/fv31/lkuM+aLVHRg26wrV1QM+ePVUmDTRq1EjFtiDiBQXy/EIXOrJyzDvIK1eurHLQg4KCCvTacRAABUNksGvxMnqgl3HHxBiPmDVsWEjF7+Q0dh8fD/n2W5Hz5ytKeHjGAzzOQi/vuyuNHWePnDx5UnX84WCd3rr+MG4UaTl25x47CuE4KwrbKvOZwbUzlojIus5cPyPTNhkjVd7t/K4E+ATY9PlQ5EUn9PKo5ar4ywJ5zhBFYz7BaV4iVnAQIi09Tbw8b5+NQ0REROR2dLYP7XIF8lKlSqkC9oULFzJcj39rXZiWypcvrwpm5qeVo1McXd3oqkPXN7LEManmzZs3VcEAj3nkkUckFMHR/z0vOj3r1KmTYd1YjxbDgufH+uLi4jJ0kec0NkCxwrxgocGYrVXos+a67MnZx41JN6FGDU/x8fHMcex33WX8GRnpIQkJPlK0qDgtZ3/fXWns+FzCcunSJdNngZ6KtTh4iM89FPoRd6Un7jB2FNJxP/x94e8MZyWZ319P/60Q6cmo1aNUxEqbKm2kT90+dnlOZGmjQI7ir6071vXsetJ12XhqY57yx6FCkQri4+kjKekpcubGGXVmABEREZG70lPdwiUL5ChmowN89erVpuxvFArw75dffjnLx7Ru3VpNnIn7aYWBY8eOqSI41meuUKFCaomNjZXly5ebJuTE/Zo3by5Hjx7NcH+sJzg4WF3GuFBswFgeeughdR3uf+rUKRXhQq4nIsL4878knhyVKiVSpYrIqVMie/aIFOCkA3Ih+EzCPAU4WwWX9baRQQEW0R3oTubYnXfsKIzj70xvBwKI9GhrzFb5bt934iEeMrPbTLt9vqAbeqgMVcVfFIGD/Ap2FqKrWh29WhW5w0qEqSW30DGOonhUbJSKWWGBnIiIiIgcGrGCOJKnnnpKmjVrJnfddZfMnDlTdX4/88wz6vZ+/fqpqBRke8OLL74os2fPlqFDh8rgwYMlIiJCpkyZIkOGDDGtE8VwFBxq1qypMsqHDx+uJtjU1gm4Dl3lbdu2lQ4dOqgM8sWLF8u6devU7UWLFpUBAwao8ZUoUULFo+D5UBzPboJO0rfISOPP6ogXz4WmTY0FciT3sEBOGhxYu3r1qvpM01uhFtE2yLXG56LeupHdZezoHMcZUHr72yLSo3RDugxbNkxdfrrR09K0QlO7PXf1ktVVwTfyaqQqAveq3ctuz63H/PHwsNx3j5vnkKNAfjz2uLQNbmuD0RERERHpA/cvnaBAjiI1ThcfO3asiklBFjiK1drEnejYNu+SQ543CuDIDm/QoIEqnqNYPnLkSNN9rl27prLAY2JiVHEbHeCTJ0/OUHjo1auXyhtH4R3FdRTTf/nlF2nTpo3pPjNmzFDPjcfj1Pdu3brJxx9/bLf3huwHsfRRUXkrkDdpIvLbbyL//mvToZFOoYipt0Itiq+Y9NHf359jtyM9j53Ilf2w/wfZdmabFPYtLFM6TbH786OLfNb2WaoIzAJ5ZmiGMeWPV899/rimatGq6ufxuP8y9oiIiIjIrTl8kk7EqWQXqaJ1dJtDF/fWrVuzXV+fPn3UcieYyBNLdlCsmDNnjlrItcXEYIJFdP/iIEzuC+Tw39yvRERE5CJuJt+UUatGqctv3fOWlCuc/fwztoJMbRTIUQRGMZidPRkduHhA5Yf7e/tLu+B2+eogB0SsEBEREbk1fs1UGGJKbk/LH8c8rt7euY9YAUTZx8fbbmxERERkX+9sekcVX0OKhciwu40xK/aGoi+KvxgHisGUkdY93jGkowT4BOT58fjdAjvIiYiIyN2hEcPDiotesUCuA4cPi3z1lYccOVLc0UNx6fzx3EzQqUEKUIUKOMXXOFEnERER6d/JuJMyffN0dfm9ru+pIrUjoOiL4q95MZgy548jiiY/qhb7L2IllgVyIiIiImKBXBc+/1xk4EBv2bixoqOH4tId5LnNH7fsImcOORERkWsYuWqkJKYmSvuq7aVXLcdmf2vFX60YTEbXEq/JxlMbTVE0+aFFrKBDPzkt2arjIyIiItITdpAbsUCuA3XqGH+ePl3E0UNx6QJ5XjrIgTnkRERErgNF10UHF4mnh6fM7DbT4V/wteLvptObVFGYjFZFr5I0Q5rUKFlDQouH5msdZQuVVWcHpBvS5fS101YfIxEREZFesEBuxAK5jgrkMTEskNsyYoUd5ERERO4JhdJhy4x54882flYalmvo6CGp4i+KwKnpqaooTJIhciY8LH/d44CdN1PMCnPIiYiIiNweC+Q6ULu28eeVKwFyjQ1EVpWeLhIVVbAO8kOHRBISrD82IiIiso+v93wtu87tkiC/IJnYcaI4C60IzJgVI4PBcDt/vHr+8sctJ+o8EXfCKmMjIiIi0iN2kBuxQK4DxYqJlC9vUJePHNHvH5sziokRSUoS8fERqVIlb4/FJJ2YrBNF9n37bDVCIiIisqUbSTfkzTVvqstj246VMoXKiLPQisAoCqM47O72Xtgr5+LPSaBPoLQNbmuVAjkn6iQiIiIiFsh1onZtrUDu6JG4Zv54aKiIt3feHosDY1oXOWNWiIiI9GnKP1PkfPx5qV6iugxuMVicCYrAKAafvXFW9l3g0filEcbu8Y4hHVWGeEFoESsnrrGDnIiIiNyYh5UXnWKBXGcF8sOHdfzX5sT543mNV9Fwok4iIiL9io6Nlg+2fqAuv9/1ffH18hVngiIwisHm2dvubElkwfPHNSHF2UFORERExIgVIxbIdZZDzgK5bTrI8zpBp4YTdRIREenX8JXDJTktWTqHdpb7atwnzog55Eaxt2Jly+ktVskfzxCxwkk6iYiIiNweC+Q6UasWO8iduYP8wAGRxETrjYuIiIhsa92JdfLr4V/F08NTZnSb4bQdL1oxePPpzRKXGCfuamX0SkkzpEntUrVN8SgFoa0D8Tq3Um5ZYYRERERE+sMOciMWyHUWsXLypMjNm44ejesoaAc5JvYsWVIkNdVYJCciIiLnl5aeJsOWDVOXX2j6gtQrU0+cFQq5KAqjOLwyaqW4K62DvkdYwbvHoURACSniW0RdPnntpFXWSURERKQ3LJAbsUCuE6VLiwQFJYnB4CFHjzp6NK4hPV0kKqpgHeScqJOIiEh/vtj9hey9sFeK+ReTCR0miLPTisJaBre7STeky7LIZepyePWC548DduCYQ05EREREwAK5jlSufEP9PHTI0SNxDTExIklJIj4+xk7w/NJyyDlRJxERkfO7lnhNRq8ZrS6PbzdeSgWWEmenFYVRJEax2N3sOb9HRaEU8ikkbaq0sdp6tZiVE3EnrLZOIiIiIj1hB7kRC+Q6UqkSC+S2iFcJCRHx9s7/ethBTkREpB8TN0yUSwmXpFapWvJS85dED1AURnEYRWIUi93N0ghjvAomU/Xz9rPaejlRJxEREbk9DysvOsUCuY5Urhyvfh4+7OiRuNYEnfnNH7cskO/bJ5KcXPBxERERkW1EXImQj7Z9pC5/0PUD8fHyET1AUbhTaKcMxWJ3okXLWCt/XMMCOREREREBC+Q6wogV55qgUxMaKlK0qLE4zt8NERGR83ptxWuSkp6iCq09qlu32Gpr4WHhbplDfvXWVdkas1VdtvbvjBErRERE5O4YsWLEArkOC+TofEZ2Nlmngzy/E3RmNVEnc8iJiIic08qolbL42GLx9vSWD7p9IHqjFYdRLEbR2F2siFqhctfrlq4rVYoWYNKYLHCSTqKC++eff+SJJ56Qli1bypkzZ9R13377rWzcuNHRQyMiIso1Fsh1pHjxRAkKMkh6usixY44ejf5Zq4PcfKJO5pATERE5n9T0VHll+Svq8qDmg1T+uN6gOIwiMYrFKBq7i6WRSzNMVGqLDvIrt67IjSRjIwoR5d4vv/wi3bp1k4CAANm9e7ck/dfFde3aNZkyZYqjh0dERLnADnIjFsh1BH9ntWsb1GXmkBcMDjJERVmngxzYQU5EROS8Ptv1mRy8dFBKBpSUce3GiV5pGdxa0djV4WCAlrlu7fxxCPILkhIBJdRlxqwQ5d2kSZNk7ty5Mm/ePPHxuT2nQ+vWreVfdg4REekCC+RGLJDrTO3axp/Mui6YmBhjTA2+x1WpYr0O8r17RVJTC74+IiIiso7YW7Eydu1YdfntDm9L8YDioldaFzWKxigeu7p/z/0rlxIuSRHfItK6SmubPAcn6iTKv6NHj0rbtm0zXV+0aFGJi4tzyJiIiIjygwVyndE6yFkgt068SkiIiLd3wdeHLvQiRUQSE0WOHCn4+oiIiMg6JqyfoCI06pWpJwObDhQ9Q5G4sG9hVTRG8djVLYkwTkjaObSz+Hr52uQ5tJgV5pAT5V25cuUkUpvYyQzyx0NDQx0yJiIiyiMPKy86xQK5zrBAbh3a9zhr5I+Dp6dI48bGy4xZISIicg5HLh+ROTvmqMszus1QE3TqGYrEXUK7ZCgeuzJb5o9bdpAzYoUo75577jkZOnSobNu2TZ1Wf/bsWfn+++/l9ddflxdffNHRwyMiolxgxIoRC+Q6U6uWsUCOSToZ5VHwDnJr5I9b5pAzbo+IiMg5vLr8VTVB5wM1H1BdyK7AXXLILydclm0x29Tl7mHdbfY8IcUZsUKUX6NGjZLHHntMOnXqJPHx8Spu5dlnn5Xnn39eBg8e7OjhERER5Zq+22jcEPKyAwNFEhKMk0zWrOnoEemTtTvIgRN1EhEROQ/kdKOI7OPpI+91eU9cRY/qxgI5iscoIpcKLCWuaEXUCjGIQRqUbSCVgirZ7HlMESsskBPlGToF33rrLRk+fLiKWkGRvE6dOlK4cGFHD42IiHJJz13f1sQOcp1BlAcn6rReB7k1C+TaRJ179oikpVlvvURERJQ3KWkp8uqKV9XloS2GSvWSVtzgOxiKxfXL1FfFYxSRXZUWIaN1zNsjYsVgMJ6pSUS5891330lCQoL4+vqqwvhdd93F4jgRkc4wYsWIBXIdqlPH+JMF8vxJTzd231s7YgXd/Ojuv3nTGIFDREREjvHxjo9V/njpwNIyuu1ocTVaJrer5pCnpafJ8qjlNs8fN+8gv550XWITY236XESu5pVXXpEyZcqomJUlS5ZIGruEiIhIp1gg1yF2kBdMTIxIUpKIj48xssZavLxEGjUyXmYOORERkWMgdmT8+vHq8uSOk6Wof1FxNVpXNYrIKCa7mp1nd6rfY5BfkLSs1NKmzxXgEyBlC5VVl4/HMmaFKC/OnTsnCxcuVB2Dffr0kfLly8ugQYNk8+bNjh4aERHlEjvIjVgg13EH+eHDjh6JvvPHQ0JEvK2cws+JOomIiBxr3NpxEpcYJw3LNpT+jfuLK2pVuZUqHqOIjGKyq9EmIO0S2kV8vHxs/nzaRJ2IWSGi3PP29pb77rtPvv/+e7l48aLMmDFDTpw4IR06dJBq1ao5enhERES5xgK5zgvkPIvNOfLHLXPIOVEnERGR/R24eEDm7pqrLs/sPlO8PL3EFaFojOKxeTHZlWjRMbaOV7HMIedEnUT5FxgYKN26dZMePXpI9erVVaGciIh0wMPKi06xQK5D6Hz28xNJTBQ5edLRo9Fvgdya+eOWHeS7dxuzzomIiMg+MMHiK8tfkXRDuvSu3VvaV20vrkwrHrtagfzizYumrvjuYd3t8pxaDjkjVojyDpN0ooM8PDxcKlasKDNnzpRevXrJwYMHHT00IiLKBUasGLFArkOIBalRw3iZOeT5j1ixRQc58uFx8OL69dsTgRIREZHtLT62WFZFrxJfL1+Z3mW6uDqteLzjzA65dPOSuIrlkcvFIAZpVK6RVChSwa4d5CeuseOVKC/69u2rJunEZJ2hoaGybt06iYyMlIkTJ0qtWrUcPTwiIqJcY4Fcp5hD7pwd5Jj4s2FD42XmkBMREdlHUmqSvLbiNXX51btfldDioeLqUDxGERnFZEzW6Sq0jnhtIlJ70DLI2UFOlDdeXl7y448/qsk6Z8+eLS1b2nZSXSIisj52kBuxQK7zAjk7yPMGsSdaZ7ctOsjNY1aYQ05ERGQfs7bPksirkVKucDl58543xV1oRWQts1vv0tLTTMV+e+WPm0esYJJORPUQUe5o0SoolBMRkT6xQG7k/d9P0hkWyPMnJkYkKcnY6V2lim2eQ5uokx3kRERE9smsnrhhoro8peMUKeJXRNwFishTN05VRWUUl/U+Ken2M9vl6q2rUsy/mNxd6W67PW+VolXEQzzkVuot9fdUtnBZuz03kd589NFHMnDgQPH391eXczJkyBC7jYuIiKggWCDXKWRdaxEraHTR8UEah+SPY6JTZLnbsoMcBXL+boiIiGxr9JrRcj3pujQt31SeavSUuBMUkVFMRlEZxeWWlVu6RLxK12pdxdvTfrspyK2vFFRJTl8/LcfjjrNATpSDGTNmyOOPP64K5LicHXQRskBORKQDDq5ZbdiwQaZPny67du1SkV2//fabPPjgg6bbn376afn6668zPKZbt26ybNky07+vXr0qgwcPlsWLF4unp6c89NBD8uGHH0rhwoVzPQ5GrOgU4kFwJtuNGyJnzjh6NPrLH7dVvArUq2fsUI+NFTnBuZ6IiIhsZs/5PfL5v5+ryzO7zxRPD/f6aosiMorJ5sVlPdOiYuyZP24Zs8IccqKcHT9+XEqWLGm6nN0SHR3t6KESEZEO3Lx5Uxo2bChz5szJ9j7du3dXxXNtWbBgQYbbceD24MGDsnLlSvnrr79U0R1nO+WFU+xF4E2oWrWqOgrdokUL2b59e473j4uLk0GDBkn58uXFz89PatSoIUuW3M5evHHjhgwbNkyCg4MlICBAWrVqJTt27MiwDhyBsMzJwRtuDmOyvM+0adPEGfj63i7yMmYl7x3ktpig0/x3U7++8TJjVoiIiGwDWdHDlg1Tk1Q+UvcRaVOljbgjV8khvxB/QXadM07g0j0s43dye07UiRxyIsqdt99+WxISEjJdf+vWLXUbERE5P0dnkPfo0UMmTZokvXr1yvY+qP2WK1fOtBQvXtx02+HDh1U3+eeff65qym3atJFZs2bJwoUL5ezZs/opkC9atEheffVVGTdunPz777/qqAFa5S9evJjl/ZOTk6VLly5y4sQJ+fnnn+Xo0aMyb948qVixouk+zz77rDpq8O2338r+/fula9eu0rlzZzlj0Wp9pyMQgA27+X3Qsu8smEPunB3k5jnknKiTiIjINn47+pusP7le/L395d0u74q70orJKC6jyKxXyyKNp8k2Kd9ETbZqbyHFjAVyRKwQUe5MmDBB4uPjM12PojluI/v5ZM4saVi3Zoal5332P9hI7qN1k2ry88znJXrFZLm1e7bc375BhtvLlCgin014Qt1+ZfMH8sfsl6RaldIZ7rN83lD1WPPlo7f62vmVkLUL5ElJSXL9+vUMC64riHXr1kmZMmWkZs2a8uKLL8qVK1dMt23ZskWKFSsmzZo1M12HGjCiVrZt26afAvkHH3wgzz33nDzzzDNSp04dmTt3rgQGBsqXX36Z5f1xPbJlfv/9d2ndurXq8m7Xrp0qrGtHq3/55Rd59913pW3bthIWFibjx49XPz/55JNcH4HQFClSJMN9ChUqJM6CBfL8F8ht2UFumUNOROSOsO21/LJUq1Yt0+2JiYnqbDCcpo1sOOTEXbhw4Y4dw2PHjlVnkOEMMXzxidA+2MmtJKcny6jVo9Tl4a2Gq0kW3RWKySgqmxeZ9UiLiAkPC3fI85siVlggJ8o1bJez6hbcu3evlChRwiFjcmfVwqrL6nUbTctX3/7g6CGRCysU4Cf7j52RYVMXZXn7jzMGSkilUvK/YZ/K3Y9Ok1PnrsqSuYMl0N83w/2++GWTVO38hml5a+bvdnoFZCtTp06VokWLZlhwXX6hufmbb76R1atXyzvvvCPr169XXedpaWnq9vPnz6viuTlvb2+1HcJtupikE93gCGF/4403TNehwo8dXhwByMqff/4pLVu2VDvVf/zxh5QuXVoee+wxGTlypHh5eUlqaqp6kxDXYg470hs3bszyCAQK4x07dlQt/VqemgaRKhMnTpQqVaqo53nllVfUG50VHBExPyqCoySQkpKiloLQHm++nurV8WXEWw4dSpeUFOMfhrPJatyOkp4uEhWF352HVK2K34ntxt6ggfF3s2uXQZKTU+0+Uaczve95xbE7Bseu77E762uvW7eurFq1yvRv8+0ntqd///23/PTTT+pL08svvyy9e/eWTZs2Zbs+HPz+6KOP1CQtISEhMmbMGHXW2aFDhzJt98m1/XnpTzlx7YRULFJRRrYeKe4OMSv/nvtXFZn1OFFpanqqLI9ari73qG7//HHzDnJGrBDdGfaftYPfiDs1L5JjXxxd5S+88IJDx+iOvL28pFTpjB26RLayYtMhtWQlrEoZadEgRJo8NEkORxsLlEOmLJITq6ZInx5N5avfbtf7biUmy4UrN+w2bsosP7EoOUGNF0khlg3K+dW37+2zCurXry8NGjSQatWqqZpup06dxFocWiC/fPmy2oCWLZtxpnj8+8iRI1k+BpN9rFmzRgWwI3c8MjJSXnrpJVUcQEwLOr5RQEdRu3bt2mpdiE5BwR1d5OZHILAjjh3sqKgoefPNN9URCNwPhXbArNtNmjRRRx02b96sfsmIWUHXe1ZwRCSrU8lWrFihuuKtAdExmitXgkSkg+zdmyp//73U7kXY/I7bUS5dCpCkpK7i5ZUuBw8ulSNHDDYbe3Kyp3h63iuXL3vKN9+skdKlE8Vd3/f84tgdg2PX59izyv90BiiI4+wrS9euXZMvvvhCfvjhB3WAGubPn6+221u3bpW77747yy61mTNnyujRo6Vnz57qOnQSYDuPs8rMvziRazsXf05+vvCzujyt8zQp5Os8Z/c5Snj1cJn8z2RVZEaxGZN36sm2mG0SlxgnJQJKSIuKLRwyBi2D/GTcSUlLTxMvT+P+ABFlhu0xtsv9+/dX+7840K3x9fVVZ3ljn5zs6+Spk9K5fRvx9fOThg0byZBhr0n5ChUcPSxyQ36+xu8hicmppuvwmYHmwVaNqmUokD8S3kz6hjeXC1euy5INB2TqvKVyK9E5m39clbUL5H5+fgUqiN9JaGiolCpVStWDUSDH/qZlTDeap5E+ktW+aHb09e1ZdQGnq67vzz77TBWymzZtqrLFp0+frgrkgOxxbKyRS477oMj96KOPqm71vByBMD/igduxsX/++edVITyrX7blURJ0kFeuXFlloAcFoZidfzgAgAIK8td9fHzUdbduibz2mkHi432lWbNwsTjO4BSyGrejrF1r/I8+NNRD7r+/h83HXreuh+zfL1KsWCcJD89dMd4V3/e84tgdg2PX99i1M5acDeJPKlSooLq7saOM7SfOyML2GK8dZ4xpEL+C23CgOqsC+fHjx9UpcuaPwQ45JmLBY3IqkNvqDK+3178tG09ulEW/L1JnwOnt+xQO+utx7IcvH5bE9ERpXr65/K/W/5z2DAp7nvHSpEwTKe5fXGITY2XTiU3SqnIr0dPZOouPLlY/O4d0lvS0dLXYe+xl/MuoAwsp6SlyMvakVA6qLM5Ar2dJXb11VaZvni61kmvpbuzWfM/19tpz66mnjGeqoNmsVatWuvv+5YrqN2ggEydPlapVQ+TSpUvy6Sdz5Jl+j8svfyyWQoUKO3p45GaOnjivIlUmDn5AXp60QG7eSpYhT3SQSuWKS7lStw+oLVq6U93v3KVrUr96BZk0tKfUCC4jfV//3KHjJ+cWExOjMsgRuwnYz4yLi1P7mKgRAxqrsb+DfUVdFMhR8UcB2zJzFP/OrsqPNwAbYK3LG9Bxhp1mRLagiI1CNzJpbt68qXaC8ZhHHnlEHWXI7RGIrOCNxVEITBCKYPjcHiXBeK31pcF8XfiBlxQVhSKEj1SqJE7Lmu9Bfh3/L1KyRg2PPI0lv2PH/AAokO/b5y0PPyxu+77nF8fuGBy7PsfujK8b28yvvvpKbS9RiEWH2T333CMHDhxQ22xsrzGZijl0g2eXE6ddn9VZZ3fKlrPVGV4/HftJjiYcFYkV/dLx2B8u/LAsW6rPzG1bnPFSz7+e/JP4j8xeMVviyseJnsb+09Gf1M/y8eXVGaKOGntJ75JyIfmCLFy2UOoWrivORG9nSS04t0AWXVgkrYu1ltIr9Rn5YI333FnP8LIWzAVmPrcI9sfN5dQkZnnwGgxetu06dGVt7rn9u6hRs5bUb9BQenTpIMuXLZXeD/3PoWMj95Oami59X5snn4x7XM5tmC6pqWmyZttRWbbxYIbkgy9/vR2teDDyrJy7fF2WfTZEZZcfj7nsmMG7IwenUcTHx6tarHlj1J49e1SaBxbsx2G+KtSJkQAyYsQIlRCCqE2tJoyUEMxviXktcXAa8Z1ooEKzli4K5Ng5RnUfQesPPvigug4VfvwbLyYrmJgTp2TjflrH07Fjx1QRHOszhwk1scTGxsry5ctVdmluj0BkBb8gPKdl+Lsj1a5tLJBjos4OHRw9Guem/fdm6wk6zSfqnD+fE3USkXtCbJn5WVgomAcHB8uPP/6o5gWxJ1ud4RVbKVbW/7te5a+aH7jXA0Tc4fuTXseedCpJXn7wZac8OOSoM16u7L8i/yz+RyIlUsLDw3UzdkTmRO+JVpeH9xouZQqVcdjY68bVlQsnLki52uUkvL5jJgt1lbOkvvz5S5ELIruv75YOnTpIgJ99P/ed5T131jO8rAUHAFCowLYd+9KWtAnUcnvw+q0x42T02PE2Gau7wfeb4OCqcvrUKUcPhdzU7sOn5e6+0ySosL/4+njL5dh42fDN67LrUPZ/kzv2G+cBqVa5NAvkOo5YyaudO3dKB7OCprbfhrOVPvnkE9m3b5+agwpd4ih4Yx8OsdrmB1S///57VUdGwzPqtiioY+6qvHB4xApeOF50s2bN5K677lJ5Zuj8fuaZZ9Tt/fr1U1Ep2oynL774osyePVuGDh0qgwcPVqdvT5kyReWFa1AMR74RutZwFGL48OHq1G1tnTg6cacjEDhde9u2beqXhFxz/BsTij3xxBNqUhJnUaeOyF9/iRw+7OiROL+ICOPP6tXt83z/ndkhZsk+RERuC93iKMZiu4yiA7rM8CXHvIs8pzPItOtxH/OD2fh3o0aNcnxuW53h9XiDx6V4THEJbxWuq8KVVgBaErdE12N357NGsnJfzftEFovsubBHLidelvJFsm/6cKaxrz6xWv1sXqG5VCxWUWzpTmNXOeQnRE5fP+10f1t6+3s/csU4n1RCeoLsurBLOlTTXyePNd5zPf3O8gP72WvXrlUFjCeffFLmzJmj4k8//fRTmTZtWp4ncUMHOVlHws2bcvr0abn3AX2ewUGu43q8cT62alVKS5M6VWTCx39le9+GNY2xCOcvX7Pb+Mjx2rdvr2q42UGN907QaY5m6oJweIEc0SfIyBo7dqw6RRo7ucuWLTOdQn3q1KkM2Zjo+MKbg2I1OtJQPEexfOTIkRkm/8IGF13heJNQCJ88ebLpCwo6pe50BAI/Fy5cKOPHj1enfiFfDc9puRF3hgI5oIOcnKuDvGFDEfzp4sz/c+cQD2Sf5yUickY4OI0D0tiBxtlj2CbjjDFso+Ho0aNqm5/dpF7YDqNIjsdoBXF05uFgNg6eE7k7dF43q9BMdp7dKcsil8kzjY2NIc5uSaQxUqVH2J3nh7G1kGLGiTpPXDN2sFH+JKUmSeTV26dKL4tepssCOd3Z4sWL1YTZKG6gGQ1Ramg6wxlj6OZ7/PHH83TwOvH2fH6UR+9Pf0fate+gJuW8dPGifDJnlnh5eUqP8PscPTRyUYUCfFWnt6ZqxZLSoEZFib2eIKfPx0rvzo3lUmy8nD5/VepVryDvDX9YFq/bJ6u3Gg+gIkblkR7NZPnGg3Il7qbUr1FR3n2tt/yzK0IORJx14CtzP47uIHcWDi+QA9rgs4tUwaSZlrDzvHXr1mzX16dPH7VkB6d23+kIBCb2zOk5nAUL5LmTnm6MorFnBzlibRGBc/CgsYv8Pn43ISI38vrrr8v999+vdpLPnj2rJtLGAWpMmo3JNQcMGKAOOuNANk4Dxllh2L6bT9CJs79wBlmvXr3UF7dhw4bJpEmTpHr16qpgPmbMGHWQW4tpI3J34WHhqkCOorMeCuQpaSmyMsqY8xxe3fGRJqqDHNmXsf9NXEP5cuzKMUk33J5oFQds3unyjkPHRLZx9epV0zxf2Jbj39CmTRsevLazCxfOy6jhr6oGwOIlSkjjJk3l2x9+VN+ziGyhSZ1gWfH5UNO/333d2PTy7Z9bZeC476Rc6SB557XeUqZkETl/+bp8/9c2mfrZ7bljUlJSpWOLmvLyYx1UsT3mQqz8vnqPTPv8zt3CRC5bIKf8q1XL+BPznOL7CLd/WYuJwcQxIt7eIlWq2O95kUOOAjlyyFkgJyJ3grO4UAxHJmnp0qXVzjIOPOMyzJgxw5QPhzO1EHH28ccfZ1gHuspxVpgGcWiIYRs4cKDaAcQ6cdaZv7+/3V8fkTPqUb2HvL3hbVV0RvHZx8u54x22xGyRa0nXpGRASdX97mhVi1VVP4/HsUBeEIcuGTt3qpeorjrJ913cJ2dvnJUKRXI/URbpA4rjmEytSpUq6qA2ssgRm4rOcsuJuMm23n1vhqOHQG4Gnd4BjbNudIWPF6xXS3ZiLsRJ12c/tNHoKC/YQG7EArnOFSmC2BmR06eNOeStWzt6RM4dr4IGBxTJ7Vkg//Zb5pATkftBTFlOUNRGVimW7Fhm0aGL/O2331YLEWWGHG8Um6/cuqKKz22D24ozWxqxVP3sHtZdvDy9nCZiJeZ6jC4OMDh7gbxN5TYiiSIRCRGqi7x/4/6OHhpZGWJV9u7dK+3atZNRo0apM8cwXxjmivjggw8cPTwiIsoFRqwY3Q73Jt1izEruJ+i0V/645USd6CAnIiIisiUUmbuFdctQfHZmzpQ/DuUKlxN/b38VD4KJOil/Dl027pTULlVbmgYZvwwviTD+rsm1YI6uIUOGqMudO3eWI0eOqEnSdu/ereYJIyIi0gsWyF0AC+S57yC3V/64BvPI4WAcIl4uXrTvcxMREZF75pCbF5+d1ZnrZ2TfhX3iIR6mor4zdFAFFw1Wl0/EcaLOgnaQo0DepEgTdXlltDH2h1wb5h3p3bu3NGjQwNFDISKiXELNysOKi14xYsUFYCJIYIH8zh3k9i6QIwKnRg3k6Bq7yLt3t+/zExERkXtBsRlFZxSfUYSuGFRRnNHSSGOH+10V75JSgaXEWWCizqNXjhon6jQmrlAeoAiOSTq1AnlKYIqUDiwtlxIuyebTm6Vd1XaOHiJZ0UcffZTtwSZEqYWFhUnbtm3VJN1EROScGLFixAK5C3WQI4Occu4gt3fEipZDzgI5ERER2QOKzSg6bzuzTRWhn23yrDhzgTy8urHj3VloOeScqDN/MClnanqqFPYtLJWDKssBjwPSJbSL/HDgB/U7Z4HctWDC7UuXLklCQoIUL15cXRcbGyuBgYFSuHBhuXjxoprIc+3atVIZE2cRERE5KUasuFAHOSbqvH7d0aNxPunpIlFRjukgN88h50SdREREZA9aprdWhHbGLuOVUSudKn9cU7VYVfWTESsFj1fROtK6VzN2iDCH3PVMmTJFmjdvLhEREXLlyhW1HDt2TFq0aCEffvihnDp1SsqVK6eyyomIyDkxYsWIBXIXUKKESLlyxstHjjh6NM7nzBmRxEQRb2+RKlUc00EOnKiTiIiI7EHrykYROjktWZzNptOb5EbyDRW90bTCf50EToId5NYpkNcp/d8priLSJaSLeHp4yv6L+yXmeowDR0fWNnr0aNVFXq1aNdN1iFV577335I033pBKlSrJu+++K5s2bXLoOImIKHuenh5WXfSKBXIXwRzyO+ePh4Yai+T21rix8eeJEyJXrtj/+YmIiMi9oOiM4jOK0Mh9djZLI4yd7d3DuqvCqTNBBjmoDHLKs0OXMxfISwaWlBYVW2T43ZNrOHfunKSmpma6HtedP39eXa5QoYLcuHHDAaMjIiLKPef6Rkr5xhzyOxfIHZE/DsWKiWhNFbt3O2YMRERE5D5QdEbx2VljLZZELnHKeBXziJVz8eckMTXR0cNxiQ5yPcT+UP506NBBnn/+edlttpODyy+++KJ07NhR/Xv//v0SEsIZb4mInBUjVoxYIHexAjk7yLOfoNMR+eOWMSvMISciIiJ7cNaC5Olrp+XAxQOqiN+1WldxNiUDSqoJJuFk3ElHD0dXMDnn0ctHsyyQm2J/op0z9ofy54svvpASJUpI06ZNxc/PTy3NmjVT1+E2wGSd77//vqOHSkRElCMHBE6QLbBA7rwd5NpEnT/9xBxyIiIisg8Un1GERjEaRenKRSuLM9AK9ojcQPSGs8HEkugix/uGHPKapWo6eki6gViapLQkCfAOkOCiwZKelm66rXH5xlKmUBm5ePOibDq1STqEdHDoWMk6MAHnypUr5ciRI2pyTqhZs6ZazLvMiYjIeWmTars7dpC7WIH8+HGRW7ccPRrn4kwd5CyQExERkT1kyH12oi5ybSxaR7Ez0ibqPBF3wtFD0WW8Sq1StcTL0yvDbThYo53V4IyxP1QwoaGhqigeHh6eoThORETOjxErRiyQu4jSpUVKlBAxGESOGs9sJBFJTxeJinKeAjmK9deuOW4cRERE5D60IrSzFMgRrbEqepXT5o9bFsg5Uad18sedPfaH8i8hIUEGDBgggYGBUrduXTl16pS6fvDgwTJt2jRHD4+IiCjXWCB3EThKw5iVzM6cEUlMFPH2FqlSxXHjKFlSJDjYeJkTdRIREZE9aAVJFKWdIfd546mNEp8cL2ULlVWRG85Km6gTESuUe4cu51wg12J/Dl46KKeuGQuppG9vvPGG7N27V9atWyf+/v6m6zt37iyLFi1y6NiIiCj3ESseVlz0igVyF8ICefb546GhxiK5IyGHHDhRJxEREdkDitAoRqMojeK0o2nRGt3DuqtCqbMKKc6IFVt0kBcPKC4tK7VUl5dGsIvcFfz+++8ye/ZsadOmTYaiCLrJo7TTeImIyKmxQG7kvN9MKc9YIM8+f9yRE3RqmENORERE9oQiNIrRzpL7rIf88QwRK+wgz7V0Q7ocvnQ4xwI5mHLIIx3/90gFd+nSJSlTpkym62/evKnrIgkREbkfFshdSO3axp8skGfuIHdk/rhlgZwd5ERERGQvzpL7fDLupOowRtG+S2gXcWZaxMrlhMuq+55y9/u9lXpLfL18JbR4aLb30w6OrI5eLUmpSXYcIdlCs2bN5O+//zb9WyuKf/7559KypfFsASIicm6cpNPIwaETZIsOcnRNJyeL+Po6ekSO54wd5MeOidy4IVKkiKNHRERERK5Oy31GcRpFzOBi/02KYmdagb5V5VYqasOZFfUvKsX9i0tsYqyKWalXpp6jh6SbeJWaJWuKt2f2u5iNyjWScoXLyfn48/LPqX+kc2hnO46SrG3KlCnSo0cPOXTokKSmpsqHH36oLm/evFnWr1/v6OERERHlGjvIXUjFisaia1ra7c5pd+dMHeRlyxp/RwaDyJ49jh4NERERuYMMuc8O7CLXIl60jnZnp+WQH49lzIo18sfNO4xNZzUwh1z3kD2+Z88eVRyvX7++rFixQkWubNmyRZpqEzAREZFTYwa5EQvkLgR/h8whvy09XUSbG8YZOshB+57IHHIiIiKyFy3WwlE55IjSWH18dYaxODstZoU55Llz6HLuCuTAHHLXUq1aNZk3b55s375ddY9/9913qlhORET6wIgVIxbIXQxzyG87c0YkMVHE21sk2DFnE2fCiTqJiIjI3rSCJIrUjsh93nBygySkJEj5wuWlYdmGogfaRJ2IWCHrdZBDl2pdxMvDS45cPsL3V6c8PT3Fy8srx8UbO2FEREQ6wa2Wi9E6yA8bJ5F3a1q8SmiosUjuTB3knKiTiIiI7AW5zyhOn4s/p4rVKFDakxbtgkK9Xk691Qrk7CC/M4PBkKcCeTH/YiqLHhnkiFl5sfmLdhglWdNvv/2W7W2IV/noo48kHafzEhGR09PLdzNbYwe5i2HEinNO0GnZQY4DGAkJjh4NERERucuOT/ew7g7LITflj1fXR/54hogVZpDfUcz1GIlPjleTc4aVCMtb7A9jVnSpZ8+emZZatWrJV199Je+9957873//k6NHjzp6mERElAuMWDFigdxFC+T4PpKaKm7NmSbo1JQvb5ysEw0Ve/c6ejRERETkLhyVQx4dGy1HrxxVkRpdQu3buW6NSToZAXJnWvd49RLVxdfLN0+xP2uOr5HE1ESbjo9s6+zZs/Lcc8+p3HFM1olJO7/++msJdpaMSyIiolxggdzF4HtIQIBIcrJIdLS4NWfsIMfRNE7USURERPbWObSzKlKjWI2itb0gQgNaV2ktRf2Lit46yK8lXZPYW7GOHo5Ty0u8iqZB2QZSoUgFlU2P2B/Sn2vXrsnIkSMlLCxMDh48KKtXr5bFixdLvXr1HD00IiLK45mGHlZc9IoFchfj6SlSq5bxsrvnkDtjB7l5zApzyImIiMhekPuMIrV50doetEiX8DBjB7teBPoESplCZdRl5pBbv0COHWiti9yef49kHe+++66EhobKX3/9JQsWLJDNmzfLPffc4+hhERFRPjBixYgFchfEHHJjhElUlPN1kAM7yImIiMgRTAVJO+WQIzoDERp6yx+3nKiTMSs5O3Q57wVyYA65fo0aNUoSExNV9zjiVHr37p3lQkREpBfejh4AWR8L5CJnzogkJop4extjZ5yxg/zgQeMY/f0dPSIiIiJyByhIvrH6DVPus7+3bb+ErD+xXm6l3pKKRSpK/TL1RW+QQ77tzDZO1JkDg8GQrw5yLfYHE3seu3JMoq5GSbUS1Ww0SrK2fv366fo0eiIiuo2f50YskLsgFshvx6uEhBiL5M6kcmWRUqVELl8W2b9fpHlzR4+IiIiI3AGK1ChWn7lxRhWvu4V1s+nzaZ3q6FzX485X1aLGHHJGrGTvfPx5iUuME08PT6lRskaeHhvkFyRtqrSRdSfWqb+Vl+962WbjJOv66quvHD0EIiIiq2LEiguqXdv488gRY9SIO0/Q6Wz544D9Q62LnDErREREZC/muc9LImwfa6E9hxaloccOcmDESva07vFqxavl64wEe8f+EBERUUbMIDdigdwFVasm4uMjkpAgcuqUuCVnnaDTMoecE3USERGRPWlZ4LYuSEZejZSIqxEqQqNTaCfRIy2DnB3k2ctvvIpGO3iC2J9bKbesOjYiIiLKXQOFhxUXvWKB3AUhUqRmTfeOWdE6yJ1tgk4NO8iJiIjIEbTcZxSvUcS2laURxgL8PVXuUVEaelS1WFVTBzmytsn6BfK6petKpaBKKhN//cn1Vh4dERERUe6wQO6i3D2H3Nk7yLUCOTLIk5MdPRoiIiJyF1rus3kR29b543pVpWgV8RAPSUhJkEsJlxw9HKd06HLBCuToNAsPC7db7A8RERFlxIgVIxbIXTyH3B0L5Mhdj4py7g5yTB5arJixOH7woKNHQ0RERO7EVJCMtE1BElEZa0+s1XX+OPh5+0nFoIrq8vFYxqzYooPcnrE/RERElBkjVoxYIHfxDvLDh8XtnDkjkphojJoJDhanZD5RJ3PIiYiIyJ60guS6E+tUd7S1Yb2IzKgcVLlAhVNnillhDnlml25ekssJl1WXfa1StfK9nk4hncTH08eYW3/lv9NAiYiIiOyIBXI3iFhxt8hELX8cXdookjsrbaJO5pATERGRPSH3GcVrFLFRzLY2LSoD8Sp67iQyn6gTOeSUdfc4DiIE+gTmez1F/IrIPcH3qMvsIiciIrIvRqw4UYF8zpw5UrVqVfH395cWLVrI9u3bc7x/XFycDBo0SMqXLy9+fn5So0YNWbLk9imiN27ckGHDhklwcLAEBARIq1atZMeOHRnW8fTTT2c6DaB79+4Z7nP16lV5/PHHJSgoSIoVKyYDBgyQ+Ph40QNkb3t5iVy/LnL2rLgVZ88f13CiTiIiInIEfO/VssGtnUOOySy16BY9x6tYFsgZsWKbeBUNc8iJiIjIrQvkixYtkldffVXGjRsn//77rzRs2FC6desmFy9ezPL+ycnJ0qVLFzlx4oT8/PPPcvToUZk3b55UrGjMB4Rnn31WVq5cKd9++63s379funbtKp07d5YzyN4wg4L4uXPnTMuCBQsy3I7i+MGDB9W6/vrrL9mwYYMMHDhQ9MDPT6RaNffMIdcK5M6aP27ZQb53r0hqqqNHQ0RERO5EK16jmI2itrVEXI2Q6NhoFZnRMaSj6B0jVuxTILd17A8RERFljRnkTlIg/+CDD+S5556TZ555RurUqSNz586VwMBA+fLLL7O8P65HZ/fvv/8urVu3Vp3n7dq1U4V1uHXrlvzyyy/y7rvvStu2bSUsLEzGjx+vfn7yyScZ1oXu83LlypmW4sWLm247fPiwLFu2TD7//HPV1d6mTRuZNWuWLFy4UM7qpCXbXXPItYgVZ+8gxwGMIkWMeenu9jsiIiIix0LxGkVsFLNR1LYWrSO9bXBbFZ2hdyHFGbGSnUOXrVcgr12qtgQXDZaktCRZe9w4wSsRERHZHgvkRg5NaEY3+K5du+SNN94wXefp6am6vbds2ZLlY/78809p2bKlilj5448/pHTp0vLYY4/JyJEjxcvLS1JTUyUtLU3FtZhD1MrGjRszXLdu3TopU6aMKox37NhRJk2aJCVLllS34fkRq9KsWTPT/TEujG/btm3Sq1evTGNLSkpSi+Y68k1EJCUlRS0FoT0+L+upWRPHP7zkwIE0SUlJF0fIz7gL6tgx/Fl7SEhIqqSkGJx67I0be8mGDZ6yfXuq1Kpl0PX7bi0cu2Nw7Poeux5fOxE5ForXKGKvPr5aFbVrlKxhlfVq8SpahIurRKycvHZS0g3p4unh8P4il+wg12J/5u6aq3LI761xrxVGSERERM5uw4YNMn36dFUfRrrHb7/9Jg8++KBpP3f06NEqVjs6OlqKFi2qarPTpk2TChUqmNaB5umTJ09mWO/UqVNl1KhR+iiQX758WRWzy5Ytm+F6/PvIkSNZPgZvyJo1a1T8Cd6gyMhIeemll9SbhpiWIkWKqAL6xIkTpXbt2mpdiE5BwRtd5ObxKr1795aQkBCJioqSN998U3r06KHuh0L7+fPnVfHcnLe3t5QoUULdlhW8+RMmTMh0/YoVK1RXvDUg7iW3kpMrIchDNm2KlSVLNokj5WXcBZGejg7y+9SBgdOn18qSJQlOPfZixeoiDEZ+++2UlCq1X7fvuy1w7I7Bsetz7AkJPB2diPIOBUkUyFHUHnr30AKv72byTVl/Yr3L5I9DxaCK4uXhJclpyXL2xlmpFITv13T11lU5H3/e1P1tDYhZQYEcOeSI/dFzFxoREZFeOHpze/PmTZUK0r9/f1WntdzPRRz3mDFj1H1iY2Nl6NCh8sADD8jOnTsz3Pftt99WCSUa1IfzwqEF8vxIT09XhevPPvtMFbKbNm2qssVxtAEFckD2ON5Y5JLjPk2aNJFHH31UHY3Q9O3b13S5fv360qBBA6lWrZrqKu/UqVO+xoZOeOSpm3eQV65cWWWgY6LPgsABABRQkL/u4+OTq8eULy8yY4bIhQslJTzcMTsp+Rl3QZw+jQMDXuLtbZCnnmov3t7OPfbYWA/5809MCFtVwsMr6/Z9tyaO3TE4dn2PXTtjiYgorwXJ11e+roraKG4X8i1UoPWtPbFWRWQgKqNWqVriCrw9vaVK0SoqgxwxKyyQGx2+ZMwHrBxU2WpROoj98fXyVe/1sSvHpGapmlZZLxEREWXP0Qeke/TooZasoGPcspls9uzZctddd8mpU6ekSpUqGQriiM/OL4cWyEuVKqUK2BcuXMhwPf6d3YsqX768KiLgcRp0iqOrG5Etvr6+qtC9fv16dRQCRQM85pFHHpHQ0NBsx4LbMB50pKNAjue3nCgU8S3IP89ubMg0x2IJ47VW0SYv66pXz3gk6MoVD4mL85HSpcVhrPke5EQ7oyIkxEMCAuz/nudVixbGn3v3eqr4HrM/a12977bAsTsGx67Psev1dRORY2m5z4gPQXH7vho4C6/g+ePoHnf0zpa1c8hRtD0ee1zaVGnj6OG4XLyKprBvYRX7syp6leoiZ4GciIhIf5Is4qdzqpfmx7Vr19T3TMRim0PsCtJEUDRHFPcrr7yikkByy6EheihmowN89erVGTrE8W/EpGQFE3OiiI37aY4dO6aK4FifuUKFCqnr0YK/fPly6dmzZ7ZjiYmJkStXrqj7A54/Li4uQ9c5ol3wvJi0Uw+Q6lK1qvHyIeN3WJcXEaGPCTo1NWrg7xSnjeDv2NGjISIiInei5T6bF7fzC5EYrpY/rqla1PiFGkVysl2BHMLDjGe9IoeciIiIbA89DR5WXBA/jc5v8wXXWUNiYqKagxIpIeZJHUOGDJGFCxfK2rVr5fnnn5cpU6bIiBEj8rRuh88yg0iSefPmyddffy2HDx+WF198UXV+P/PMM+r2fv36ZZjEE7ejixuZMyiM//333+qFY9JODYrhy5Ytk+PHj6tW/A4dOkitWrVM64yPj5fhw4fL1q1b5cSJE6ogj+I5Msq7detm6kpHTjnya7Zv3y6bNm2Sl19+WUWzmAfBO7s6ddyrQB4ZafxpFjfv1NAx3qiR8bLZsRgiIiIiu9CywlHcRpE7v45eOaoiSBCRgagMV4IOcsDrI6NDl21TIEfsD6w/aYz9ISIiIts3THhYcUENF13e5ot5Xbcg8aR9+vRR31c/+eSTTLXl9u3bq/jsF154Qd5//32ZNWtWpk52py6QI/rkvffek7Fjx0qjRo1kz549qritTdyJTBnMYqpBpjcK4Dt27FAvHEcJUCw3n5kUbz4K5iiKo8Depk0b9RjtFHTEs+zbt0+FuteoUUMGDBigOtn/+eefDC3/33//vVoHIleQ4Y31IPtcT9ytQK63DnJo0sT4899/HT0SIiIicjda7jOKvyhy5xciMaBdcLsCZ5k7m6rF2EFurw7ymiVrSkixEDUp6prja6y6biIiIrI9Pz8/1d1tvhQ0XkUrjp88eVI1Qt9pnkckfyAmG03RupqkE53ZWLKCSTMtIf4E3d/ZwZuGJTsBAQGqYH4nJUqUkB9++EH0rPZ/k8ofNs6j4zYFcr10kEPTpsaf7CAnIiIie0MxG0XtldErVZE7v5NrapEYWke6K0HBFpBBTiLXk65LzPUYU469LWJ/Pt75sfqbur/m/VZdPxEREWXk7NPGpPxXHI+IiFARKiVLlrzjY9B8jXn+ypQpo58OcrItd+ogRyx9VJQVO8hPn5Yqq1aJpKWJPTrId+82vgYiIiIiezLlkOcz9zk+OV42nNyQYV2uGLGConBqeqq4u8OXjJ035QuXl+IBxW0X+xNRsNgfIiIicn7x8fGqoI0FEJeNy0gUQXH84Ycflp07d6qUj7S0NDl//rxakpOT1f23bNkiM2fOlL1790p0dLS6HybofOKJJ6R48dx/T2GB3MVpHeRIqYmNFZd25gwC+0UwSW1wcAFXdv26eHfpIo1nzxaPr78WW/+O/P1Fbty4naFOREREZC9aQRJFbhS78wpRGIjECC0eKjVK1hBXU65wOfHz8pM0Q5qcvnZa3J2t4lU0HUI6qPf75LWTcuTyEZs8BxERERl5enhYdckrFL8bN26sFi1PHJcRxX3mzBn5888/JSYmRsVyly9f3rRs3rxZ3R/xLZigs127dlK3bl2ZPHmyKpDnNSKbBXIXh1ieSpXcI2ZFKy6HhBiL5PmGTpXnnxeP6Gj1T89ffxVbwlgbNjReZg45ERER2RuK2gXJfV4asdTUPY6IDFfj6eEpwcWM3RecqNP2BfJAn0BpX7V9hmx7IiIisg18dfOw4pJXmFwTZ4xZLl999ZVUrVo1y9uw4HHQpEkTFcMdFxcnt27dkkOHDqlJQfOae84CuRtwlxxyq03QOX++yMKFYvA0/ufhsXYtZn4Ve8SsMIeciIiI7A1FbfNYi7zADsqSyCUumz+eKYecE3XKocu2LZBbI/aHiIiIKC9YIHcD7pJDrnWQF2iCThxFGDxYXUyfMEFuVKokHikpIkuX2mWiTnaQExERkSOYFyTzkvt8+PJhOXXtlIrE0Lp+XVHVYlXVT07UafsOcsvYnxtJN2z2PERERO4OjRIeVlz0qiBBFKQT7lIgL3AHOQLM+/YVSUgQ6dRJ0ocPl3N79kiRmBiR334z3mbjDnIUyLFPquPPFCLSqfT0dFm/fr38888/cvLkSUlISJDSpUur/LfOnTtL5cqVHT1EIrIhLfcZxW4UQOuWqZurx2kd53g8ojFcvYP8xDX3jli5mXzTFDNjywJ59ZLVpVrxahIVG6Vif3rW6mmz5yIiInJnnqw/KewgdwPuUiAvcAf566+L7NsnUrq0yLffinh6yrkWLYy3LVkikpQktlK3roivr0hcHGbstdnTEBFlgpy2SZMmqQJ4eHi4LF26VOW3eXl5SWRkpIwbN05CQkLUbch2IyLXZJ77nJdYC+2+Wge6qwop/l/Eipt3kGuTZpYOLC2lAkvZ9LnyG/tDRERElFcskLtRBvmpUyLx8eKS0tNvF8jz1UH+++8ic+YYL3/zjUj58upiXFiYGCpUML5xa/I+aVVuoThev77xMmNWiMieatSoIfv27ZN58+bJ9evXZcuWLfLLL7/Id999J0uWLJFTp05JVFSU3HPPPdK3b191PyJyTXktSCL64p+T/2R4rMtHrLh5BjkidWzdPV7Q2B8iIiLKPUasGLFA7gZKlhQpU8Z4+Yix6cPlnDljTEjx9hYJDs7jg3HkoH//213k3bvfvs3TU9Lvv/92Ed0OOeScqJOI7GnFihXy448/qg5xHx+fLO8THBysZgKPiIiQjh072n2MRGQfWkFy46mNcj3p+h3vv/r4aklJT5GwEmFqcWVaxMrZG2clKdV2ZxU6O3vkj2twRoO/t7+cvn5aDl46aPPnIyIickeoaXtYcdErFsjdhKvHrGjd4yEhxiJ5rqWmijz+uEhsrEjz5iKTJ2e6i+GBB4wX/vjD2KpuhxxyIiJ7qa2dZpQLKKBXq1bNpuMhIsdB7jMK3Sh6r45efcf7a53m4WGu3T0OiBMp5FNIXT557aS4e4G8dqncbzvyK8AnQDpU7aAuL43IfewPERERUV6xQO4mXL1Anu8JOt9+W2TjRpEiRUQWLDBmnVgwtGsnUrSoyIULIjbM39UK5Ogg51mkRORIqampMmfOHPnf//4nvXv3lvfff18ScZoOEbk881iLnCDywpQ/Xt2188cBpwybYlbcOIfcnh3kGWJ/IplDTkREZAseVv6fXrFA7ia0BkFXLZDna4LOtWtFJk0yXv70U5HsuiJRNL/3XpvHrCCDHN3vV66InD5ts6chIrqjIUOGyG+//SYdOnSQdu3ayQ8//CDPPPOMo4dFRHbOIc8p9/nAxQMScz1GArwDpF1wO3EH2kSdJ+JOiDtKTE2UqNgouxbI8xr7Q0RERJQfLJC7WQf5YeO8Oi4nzx3kly+LPPGEsVUb+eOPPprz/R980Pjzt99s1t7t7y9St67xMmNWiMieUAy3zCVfvny5vPTSSzJ06FD5/vvvZelSnt5O5A5Q7Ebu85kbZ1QRPDta93iHkA4qCsMdaDnk7jpR57ErxyTdkC7F/ItJucLl7PKc1UpUkxola0hqeqqsil5ll+ckIiJyJ54e1l30igVyNyuQR0eL3Lol7t1BjgL300+LnD0rUquWyEcf3fkxmLjTz8/4RDY8ysCJOonIEb788kt58MEH5Sw+F1XkUxN54YUXZNmyZbJ48WIZMWKENMc8DUTk8lDs7hjSMUPGuLvnj2tMEStuWiA3j1dB5IzdY3+YQ05ERGR12KZ7WHHRKxbI3UTZsiLFixvnmDx2TFwKXpNWIM9VB/mHH4r8/bex4L1woUgh44RLOUJGeefOxssWnZbWxIk6icgRUAR/9NFHpX379jJr1iz57LPPJCgoSN566y0ZM2aMVK5cWcWsEJF7uFMO+bXEa7Lp9Ca3yR+37CB314gVU4G8lH3iVSxjf/D3mFPsDxEREVF+eef7kaQrOIiDLvJNm4w55A0bistAwyPmjkN+d3DwHe6MyvOIEcbL77+ftzcCMSsorCOH/K23xNYd5Pj+r+ODb0SkM4888oh069ZNdYvj59y5c9XknETkflCQHLx0sMp9RjG8qH/RDLcj6gKRFzVL1pTQ4qHiLrQMcnedpNPeE3Rq2ga3lUCfQBX7s//ifmlQtoFdn1/P9u3bl+v7NmjA95WIyB2x7mTEArmbTdSJArmr5ZBr+eMhIcYiebZu3BDp21ckJcVY7H7ppbw90f33Gz85du40zqJZubJYG76XenqKXLggcu6cSIUKVn8KIqJsFStWTHWPb9iwQfr16yfdu3eXiRMnij8mSSAit4GiN3KfkTmNYvhDdR7KcLvWWa51mrtbxMqlhEsSnxwvhX0LiztxVIEcmfiI/fnr2F8q2ocF8txr1KiROt09u8577Tb8TEtLs/v4iIjI8TxZIVcYseKGOeToIHfFAvkd88cHDTLeGYXtL77I+2Ey5NS0amW8/OefYguBgcYDGcAcciKyl1OnTkmfPn2kfv368vjjj0v16tVl165dEhgYKA0bNuQEnURuSMsWt8whRzHNVCB3o3gVwOSUWOBk3ElxJ8lpyRJxNcIhBfLcxP5Q1o4fPy7R0dHqZ1aLdht+EhERuTMWyN2IqxbIc5U//s03It9+a2zP/v57kRIl8vdkvXoZfyJmxUa0mBXmkBORvaBb3NPTU6ZPny5lypSR559/Xnx9fWXChAny+++/y9SpU1UBnYjch1b8Xha1LEP36b6L++TsjbMq8gLRF+5GyyF3t4k6I69GqlgddM1XCqrksAL5plObVOwP5U5wcHCuFyIick/oHfWw4qJXLJC7YYEcTdRIGXG1DvJsC+SYlVSLUxk/XuSee/L/ZD17Gn+uWycSGyu2nKiTHeREZC87d+6UyZMnq0iVDz74IENmae3atVXkSmdtomIicgta7jOK4fsu3P5MQMEcEHmB6At3o8WsuFsOuXm8CuI4HJH/XqtULUkzpMnK6JV2f35X8e2330rr1q2lQoUKcvKk8SyImTNnyh9//OHooRERETkUC+RupFIlkcKFRVJTb3dduwLttWQZsZKUZMwdv3lTpH17kTffLNiT4Unq1TO+iZiw0wbYQU5E9ta0aVMZO3asrFixQkaOHKmiViwNHDjQIWMjIsfQcp8tY1aWRy3PEMHirh3kJ+JOiDtxVP54ljErEYxZyY9PPvlEXn31VQkPD5e4uDhT5jjmH0GRnIiI3BMOfHtYcdErFsjdCP5OtXxrV4lZSU+/Q8TKyJEiu3eLlCwp8t13Il5eBX9STPBpw5iVRo2Mv6szZ4yTdRIR2do333wjSUlJ8sorr8iZM2fk008/dfSQiMgJWOY+x6fGy5aYLW6ZP27eyeyOESumAnkpxxXIw6uHm/4es5t0krI3a9YsmTdvnrz11lviZbZP1KxZM9m/f79Dx0ZERI7DiBUjFsjdjKvlkJ89K5KYKOLtjYw9ixsXLxb58EPj5a++EqlY0TpPqhXIly0TuXVLrA1d/jVrGi+zi5yI7AHZoz///LMcPHhQvv/+e3XqNRGRViDffHqzxCXGyd74vSrionap2qaoEbeNWHHXArkDO8jvqXKPFPIpJOfiz8neC3sdNg69wmScjRs3znS9n5+f3MTZtkRERG6MBXI342oFci1/PCTEWCQ3Qfv1M88YLw8bJnLffdYNCa9c2RjbsmqV9dZr8RTAAjkR2Vped4q5E03kPsxzn1cdXyX/Xv83Q+HcHbljxAom5zx65ajDC+R+3n7SKbRTptgfyp2QkBDZs2dPpuuXLVum5hshIiL35OnhYdVFr1ggdzPad5/Dh8V188eRp/f44yJXroigS2LaNOs+Kf6Dt3HMipZDzok6icjWwsLCZNq0aXLu3Lls74NT2VeuXCk9evSQjz76yK7jIyLH0rLGEWuhFci1qAt37iBHRz0WdxAdGy3JackS4B0gwcUsT9l0bOwP5R7yxwcNGiSLFi1S2/Xt27erCbrfeOMNGTFihKOHR0REDuJh5UWvWCB30w7yI0eMdWRX6SDPkD8+ZYrI+vXGrJJFi3DeoPWfWCuQ//mnTd5IdpATkb2sW7dOduzYoTrLWrRooXaescP8/vvvy+jRo6V3794qcqV///5y//3353snGkV4TNoyDGf1/CcqKkp69eolpUuXlqCgIOnTp49cuMPkC+PHj880EUytWrXyNSYiujMta/zHQz9KbGqsirhoU6WNuKtCvoWkdGBpdfl47HG3ilepXbq2eHp4Ok3sT+ytWIeORW+effZZeeedd9S2PSEhQR577DE1ceeHH34offv2dfTwiIiIHIoFcjdTtaqIv79IUhJy6MT1Osj/+QfVE+Pljz/OZuZOK7jnHpHixUUuXxbZvNnqq9fiAU+eNDbCExHZSs2aNeWXX36RY8eOqQI1JulEHjkm8kLxvGLFiuryiRMn5KWXXsowsVduoQCPiT8bNGiQIaqla9euqsC9Zs0a2bRpkyQnJ6sifDpmYM5B3bp1Vce7tmzcuDFfr52Icp/7nJSWpP7dMaSjirpwZ9pEne4Ss+IM+eMadLBjHOmGdFkZvdLRw9Gdxx9/XCIiIiQ+Pl7Onz8vMTExMmDAAEcPi4iIHMiy+cijgItesUDuZlDX0BrtXCGHPEMH+dWrIo89JoLCypNPGhdb8fERuf9+4+XffrP66osWvV30Zxc5EdlDlSpV5LXXXpPff/9ddu/eLUeOHFGF51mzZsl9992Xr8I4YCccO+QoshfHgcX/oCCOovtXX30l9evXV8vXX38tO3fuVAXznHh7e0u5cuVMS6lSpfI1NiLKW+4zdA/tLu5OyyF3l4k6TQXyUo4vkJvH/jCHPH8uXrwou3btkqNHj8qlS5ccPRwiInIwTw/rLnplPq0huVEOOeZnQYH8gQdEt1AH1zrIq4cZRPr3F4mJMVbL58yx/QAQs/LNN8Yc8vffN2aTWzlmBa8PBfIuXay6aiIiu0Fky7333iudO3eWSZMmma5PSkpSHQZ+ZjFY/v7+4unpqQrzuH920P2G2Bfcv2XLljJ16lRV4M8OnguL5vr16+pnSkqKWvJLe2xB1uEoHLtj6HXs3UK6yZ9H/1SXOwV30t34rf2+Vw6qrH5GXYmy+XvhDH8zBy8eVD9rlKiRp3HYauxdQrrIe1vek2WRyyQpOcnqsS/WHLcz/bdy48YNdSbYggULTGdq4eD3I488InPmzJGi6NAhIiJyUyyQu3EOud4n6jx7ViQxEZ2EIlWXfCzyxx/Gzu6FC0WKFLH9ALp2NebVIKtm/34Rs+gAa03U+eOPnKiTiPRr4cKF8u+//6qIFUt33323FCpUSEaOHClTpkxRE4aNGjVK0tLScpwwFDnp6DpHNAzuN2HCBLnnnnvkwIEDUiSbz34U0HE/SytWrJDAwMACvkpRE5jqFcfuGHobe2BKoAR5BUloYKgc2XZE8D93ft9vXr6pfm6P2C5L0pa49N9MmiFNDl00dpBfPHhRlkQucfjYU9JTxN/TXy7cvCCzf5ktYYFa1qJ1WWPcyPp2pgxynCH2999/q4PLsGXLFhk6dKg8//zzaptNRETuR8+xKNbEArkbF8j1HrGixav0qLBXvEa8ZvzH9Om3Z7i0tUKFjEVyTNSJLnIrF8g5UScR6dnp06fVTjcKDOj0toSJOX/66Sd58cUX5aOPPlKd448++qg0adJEXc5Ojx7GCdoAmeYomAcHB8uPP/6YbY7qG2+8Ia+++mqGDvLKlSurDHRMDlqQzkC8vi5duogPDtDqCMfuGHoe+wNdH5C1a9bqcuzWft99on3kk4WfSIJvgoSHG+M+XPVvJjo2WpL3Joufl5883fNp8fb0doqxd03sKn8e+1Piy8VLeBvr/g6sOW7tjCVn8Ndff8ny5culTZvbk+x269ZNRaB1787oJCIicm8skLt5BznOrsuhDuHUED8SKDdlzpVHjLOO3nefyJAh9h0EYla0AvnYsTYpkEdFicTFiRQrZtXVExHZFPJNkXOKgrcG3eEbNmyQ2bNnq8gTFKijoqLk8uXLKle8WLFiKlM8NDQ018+Dx9SoUUMitcytLCDGxTzKRYPCh1WKZVZajyNw7I6hx7EXkSLi7eGty7FrrDX2sFLGjuUT106ozy57dF456n2PiDN2pNQsVVMC/AKcZuz31bhPFciXRy+XcR3GiS1YY9zO9N9KyZIls4xRwXXmc4QQEZF7YQO5kU5Lo1QQ1aoZY0lu3kSHn+i6g3yWDJbKN4+KVKggMn++/f/LxkSdOMKwe7fIiRNWXXWJEiJVqxovY/VERHrSqVMn2b9/v+zZs8e0NGvWTE3Yicvmk35ikk0UujE5J4rqD+RhggxMAooie/ny5W30SoiIMgouGiwe4iEJKQlyOeGyuMUEnaWdY4JOTY/qxrOJtp3ZJlcSrjh6OLowevRodTbV+fPnTdfh8vDhw2XMmDEOHRsRETkODvR7WHHRKxbI3RAaGWrU0H8Oebm1C6S/zBcD/gP8/ntUWOw/CDznPfcYLyMD3cq0xkvmkBORPVStWlXefvttOXXqVIHXhTzwevXqZViQOY4ONlyG+fPny9atW1WB+7vvvpP//e9/8sorr6h8cfNCOzrONa+//rqsX79eTpw4IZs3b5ZevXqpYjviWYiI7MHP208qFKmgLh+POy5uUSAv5VwF8kpBlaR+mfqSbkiXFVErHD0cp9W4cWN1JheWuXPnqm0uJrUOCwtTCy5jW/rpp586eqhEREQOxYgVN45ZQQY5Fl1GzkVFycB/nzdefHSMhLVv77ixIGZl/XpjzMrQoVafqPPXX5lDTkT2MWzYMDUBJorkHTp0UJneKEBnFU9iDUePHlX54FevXlXF+bfeeksVyM1pESyamJgYVQy/cuWKyjFHlip2+HGZiMheqharKmdunJHjscflrop3iaty1g5y6BHWQ/Zf3C9LI5fKo/V5kDQrD2I/hYiIKAee+m36tioWyN2UrifqTE4WQ9++Ujj9hmyQe6SCo08JxBdPFHQ2bBC5cgUBf1ZbNTvIicjeBXIs//77ryqUDx48WF566SV57LHHpH///hnyxPNj3bp1Gf49bdo0teQEneLmFi5cWKAxEBFZQ0jxENl0epOciLNuxJ4zMRgMTl0gD68eLu9ufleWRS5TneSeHjw52tK4cbbJZyciIteh51gUa+K3CDel6wL5W2+Jx86dclWKy1Ne30vVMAcf50FQeKNGxhlPFy+26qq1WtSxYyLXr1t11URE2UIh/KOPPpKzZ8+qnevPP/9cmjdvLo0aNZIvv/xSFU2IiNxZ1aJVXT5i5fT103Iz5aZ4e3pLWAnjxKTOpFXlVhLkFySXEi7JrrPsJiEiIiKdF8jnzJmjTq329/eXFi1ayPbt23O8f1xcnAwaNEhNyIXTvmvUqCFLliwx3X7jxg3VARccHCwBAQHSqlUr2bFjR7bre+GFF9QRk5kzZ2a4HmOyDJu/U6ebXtSufTuDXFd1jqVLRd57T118RuaLT2hlNeGow2mnLyJmxYrKlBGpVMl4ee9eq66aiChbKSkp8uOPP6rJMl977TU1uSaK5A899JC8+eabaqJNIiJ37yB39QK51j1eo2QN8fHyEWeDMXUJ7aIuL4m4vS9IWUtLS5P33ntP7rrrLilXrpyUKFEiw0JERO7Jw8qLWxXIT58+rTJANShooyD92Wef5XldixYtUrNpo0MNp3Q3bNhQunXrJhcvXszy/snJydKlSxd1yvXPP/+s8kvnzZsnFStWNN3n2WeflZUrV8q3334r+/fvl65du0rnzp3lzJkzmdb322+/qezSChWME+1YQg7ruXPnTAtON3cFmKTT0xMHGzB7uejDuXMiTz2lLh5sP0j+lJ4S5izNLFqBfMUKkYQEq+eQA2NWiMjWsB3Gdg4HoF9++WWpW7euHDhwQDZu3CjPPPOMjBkzRlatWqW2nURE7iykmLFA7soRK84cr2KeQw7IIaecTZgwQT744AN55JFH5Nq1a2ofvHfv3uLp6Snjx4939PCIiMhBPD08rLq4VYEcWaRr165Vl8+fP68K1iiSY3ItFJTzAhvp5557Tu1416lTR82uHRgYqE7hzgqux2Rev//+u7Ru3Vp1ebdr104V1uHWrVvyyy+/yLvvvitt27ZVs3Njg4+fn3zySYZ1oWCOQsD3338vPj5Zd0UUKVJEHWHXlkKFCokr8PcXqVZNRzEriC958kmRS5dEGjSQ7xsbu8irVxfn0KCBMWrl1i1jkdwGMSucqJOIbA0xKhEREWp7iW0kOs1q1aqV4T4hISHSt29fh42RiMhZJunUCuTIv3bpAnkpJy6QVzcWyLef2S6Xbl5y9HCcGvZ50ViGM8O8vb3VhNc4O2zs2LGqYYyIiMid5SucAt1kODULcAp2vXr1ZNOmTbJixQoVV4KNbG6gG3zXrl3yxhtvmK7DEWx0e2/ZsiXLx/z555/SsmVLFbHyxx9/SOnSpVXBfuTIkeLl5SWpqanq9DHEtZhD1Ao64DTp6eny5JNPyvDhw1WHXHYQqTJx4kSpUqWKep5XXnlFfaHISlJSklo01/8Ljcap6lgKQnt8QddjrlYtL4mI8JT9+9OkbVvbfLG31rg933lHvFavFkNgoKR+950cGuOrrg8JSZOUFOcYu2fPnuL14YeS/uuvknbvvVYbR8OGOALnLTt3GiQlJdVhfy/2wrE7Bseu77Fb67VHR0ereLKc4EDx/PnzrfJ8RER6VbloZfHy8JLktGQ5d+OcVAy6fTarq9BDB3mFIhWkYdmGsvfCXlkRtUIeb8AIsOygsa1+/frqcuHChVUXOdx3333qDDEiInJPOm76dnyBHDviyP4GnGqNjFJAlxliSHLr8uXLqphdtmzZDNfj30eOHMl2533NmjUq/xS545GRkfLSSy+pMSGmBR3fKKCjqF27dm21rgULFqiCO7rINe+8844qdA8ZMiTb8eE2TFSGTLbNmzerQj5eH7reszJ16lR16polHDhAV7w1IDrGWnx9EUReQ5YvPyUhIfvElgoy7uJHjkib/2Zg3zNggJyKjpbdu1HACZLY2O2yZEnWcTz2HnvJMmWkjYik/v67LHvwQTF4eVnl+a9exX9r3eXoUZFff10u/v5pDvl7sTeO3TE4dn2OPcFK0U6IN8MONOYDMbdt2zZ1EBpZ5EREJGriShTJ0UGOxdUK5JiMWQ8FcgivHq4K5IhZYYE8e5UqVVL7smj8qlatmtpHxb4u5urS9u2JiIjcVb4K5Oi4RhTKvffeq3bqUYyGs2fPSsmSJcWW0PldpkwZlXeOnfWmTZuq08CnT5+uCuSA7PH+/furXHLcBxt+nEKGbnXAzw8//FBlrWLizewgl03ToEED8fX1leeff14VwrP6EoECuvlj0EFeuXJllYEeFBRUoNeNAwB4rxFnk10cTF5dveohv/yCwkqwhIf/NxOklRV43HFx4j10qHikp0v6I49IvffekzoGD7l0yfin27dvM5vlkOd57F27imHGDPG9fFnCixQRQ/v2VhvLm28a5Px5Dylfvru0bGlwyN+LvXDsjsGx63vs2hlLBYWzs0aMGJGpQI7tLA4so1BORES3Y1ZQHMdEna2rtBZXci7+nFxLuiaeHp5qkk5nhhzyqRunyrLIZZKWniZentZpUnE1vXr1ktWrV6ttPGJGn3jiCfniiy/k1KlT6ixpIiJyTznVRd1Jvgrk2EnGBhZF6aeeesqU/434Ey16JTdKlSqlCtgXLlzIcD3+jbzvrGDiMBQR8DgNOsXR8YbIFhSxcUR8/fr1cvPmTVU0wGMwGUloaKi6/z///KO65HD0XINOduSxzZw5U00AmhV8mUCEC26vWbNmpttRNM+qcI7xWqtoY811ITYbDh/2FB+ffMXR23bcBoPIiy+KnDwpEhoqnp99Jp6+voL5YRH1jaSb6tV91E+nGDvuc//9IvPni/dff4l06WLViTr//ltk3z5vadvWMX8v9saxOwbHrs+xW+t1Hzp0SB1UttS4cWN1GxERZZyoc52sk+Oxx8XVaN3jYSXCxM/bubuLW1ZuKUX9isqVW1dk59md0qJSxoO8dDs6VIN9Y0Sq4Szp6tWry/3YhyEiIrfE+rhRvqqi7du3V/EoWMwn0xw4cKDqLM8tFLPRAY4j2eYd4vg3YlKygok5EauC+2mOHTumiuBYn2VOKq6PjY2V5cuXS8+ePdX1yB7ft2+f7Nmzx7RUqFBB5ZHjftnB/ZCRjg52V6DNu4Z5Ly9fFufz2WeiWtxRAV+4UOS/LvzISOPNmBPT1sXxPHvwQePP3383FvithBN1EpE94CCv5UFrwCnZ2c2/QUTkzgVyQBe5q9FLvIoWd9O1Wld1eUnEEkcPRzfuvvtudfYzmsCmTJni6OEQERHpr0B+69YtNRll8eLF1b9PnjypOq+PHj2a5+IxNsqYTfvrr7+Ww4cPy4svvqg6v5955hl1e79+/TJM4onbr169KkOHDlWF8b///ltt0HFauAZF7mXLlsnx48fVqesdOnRQ+ejaOhEDg4lFzRd036FrXesMR2Y5XtPevXtV7jlm/capZzgVTXvdeleokIg2F9vhw+JcDhwQGTbMeBndDs2bm26KiDD+rF5dnA+6xpE3f+qUyO7dVu0gh/9SgoiIbAKRYNjmahN3QVxcnLz55psqBoaIiDJGrAAiVly2QF7K+QvkWswKIIec8gYHwTlJJxGR+/L08LDqklcbNmxQZzKhcRlxL7+j4dRiXpSxY8eqBuiAgADp3LmzRGiFwf+gToy5KhFvXaxYMRkwYIDEx8fn7X3I88hFVCf2N998Y9pxxlHn999/Xx588EH55JNP8rQunN713nvvqRfbqFEj1aWN4rY2cScy0cwn/kSmNwrgmEwEueCYSBPF8lGjRpnugx17FMxRFEeBvU2bNuoxeTkFHV10CxculHbt2qnM9cmTJ6sCObLPXUmd/77zOtWZ85hs7pFHRBITRbp3F7HIxHPqAnlAgHHMYPEftTU6yA8eNL4tRES2gO3x6dOn1WnXOLiMJSQkRMWYYTtPRES3hRQPcf0CuQ46yKF7mPH7946zO+TizYuOHg4REZFuoKbtYcUlr9AkjejuOXPmZHn7u+++Kx999JFKLMGcWEgL6datmySaFcdQHD948KBqkv7rr79U0R0pJ3mRr/OlMbnljBkz1OWff/5ZFbN3794tv/zyiyp0o8s7L15++WW1ZGXdunWZrkP8ytatW7NdX58+fdSSF5a548hgzek5XKlAvnSpkxXIURDHgJBD//XXIp4Zj+NoESu2mpzTKjErv/5qLJC//bZVVlmpkkjp0sY4nH37RPIQ9U9ElGuY3BoRZDhrCmdQ4Qg9zr7CRNd6zXcnIrJ1xMrpa6clNT1VRX24AnRqHbx0UFcF8vJFykvjco1l9/ndsjxyuTzZ8ElHD4mIiIhyoUePHmrJ7jsJ0j1Gjx5tis1Gwzbq0Og079u3r0ojQaM1GqmbNWum7jNr1iwJDw9XDWDoTLdZB3lCQoIUKVJEXV6xYoX07t1bZXMjxwxxK6QfTtdB/tNPxuxxHHb67juRLCJ7nLqDHO69VwSTyO7fLxIVZZVV4u1gDjkR2QOOyONoO47g4wsFzsRicZyIKOuirK+Xr6QZ0iTmeoy4iksJl+TqraviIR5Ss5QxflIPwquHq59LIplDTkRElFuINfGw4mJNiM7G2cyIVdEULVpUJZkgGhvwE7EqWnEccH/UqdFxnlv5anMICwtTlfpevXqp6BJEj8DFixdV3gvpR+3aTlQgP35c5LnnjJcRmdOpU6a7YG5WrebstB3kJUpgJlsRTD77xx8I2rdaDjnmkGUOORHZ2qFDh1TEWXJycobrH3jgAYeNiYjI2Xh6eEpw0WCJuBqhJurUMsldJV4FETKBPoGiF8ghn/zPZNVBnpaeJl6eXo4eklPAnF85uYRTVImIiKwEc1ZisYyxxpJXKI6DFsOtwb+12/DTcj5Mb29vKVGihOk+NiuQI0blscceU4Xxjh07qsgTrZu8cePG+VklObhAfvYssttxJMZBA0lJEXn0UeMg8Pc0YUKWd8M4b93CH7tIVWfeB0HMCgrkv/1mtQI5O8iJyNYwKTUOfu/fv18d/ccpbaB1AqSlpTl4hEREzgVFZBTIj8cel/ZV24sr0Fv+uKZFpRZS3L+4xCbGyrYz26RV5VaOHpJTQBTqnbRt21acQfp/3zuInAYPtJEbyFe0SA6mTp0qEyxqeuPGjZPx48eLM8tXgfzhhx9WE19i8kwEqWs6deqkdqxJP4oVE0EcDwrPhw+L3H23gwYydqwITn1Ahf6HH0SyOZ1fyx9HcRxFcqeFbKTBg0U2bcKpFVlGxeS3QI7kFhyMy8fBNyKiHGHSa0zKuXr1avVz+/btcuXKFXnttddU3AoREWVUtWhVl5uo01QgL6WvAjky4LtW6yqLDi6SpRFLWSD/z9q1ax09BCIicmLWjkV54403Mp29lJ/ucSiHuQlF5MKFC1K+fHnT9fh3o0aNTPdBoom51NRUuXr1qunxNj1QgCdBt/jZs2clJsaYuXfXXXdJrVq18rtKctcc8pUrRd55x3j5889zbA13+vxxTeXKxkwUdEEsXmyVVeJtKV7c2Gx/0DhvEhGRVSG/7e2335ZSpUqpzDYsOCCOLoAhQ4Y4enhERE7ZQQ6IWHEVeu0gB+aQExEROZafn5+K3zZf8lsgR9MW6s9o4NJcv35dZYtraSb4GRcXJ7vM8ojXrFkj6enpKqvcpgVyPAl2oBGMHhwcrBYEok+cOFHdRvri0AL5hQsiTz5pLCQ//zxOT8jx7loHudPmj5vTzqb4/XerrI4TdRKRrSFCRZuEG0VyHAQHbOePHj3q4NERETmfkGIhrttBrsMCebdq3dTPf8/9K+fjc587SkRE5K48Pay75FV8fLzs2bNHLdrEnLiMObHQ3T5s2DCZNGmS/PnnnyoKtF+/flKhQgV5ENHGKjq6tnTv3l2ee+45dQb0pk2b5OWXX5a+ffuq++X6fcj70EXeeustmT17tkybNk1lmmGZMmWKzJo1S8aMGZOfVZIT5JAjYsWucDDlqaeMRfJ69URmzLjjQ3TTQQ7//ceqOuRv3LDKKtGUDpyok4hsoV69erJ37151GUfb3333XfUFAwfFQ0NDHT08IiKno03MiQxyV3Al4YpcuHlBXa5VSn9nBpctXFaaVWimLi+LXObo4RARETk9RxfId+7cqRJKtDktEc+Cy5j/EkaMGCGDBw+WgQMHSvPmzVVBfdmyZeLv729ax/fff68STRD9HR4ers6C/uyzz/I0jnylOH/99dfy+eefywMPPGC6rkGDBlKxYkV56aWXZPLkyflZLblbB/n774ssXy4SECCycKHxpysVyPHGotUdbe94nXfojs8NdpATkS2NHj1abt68qS6jKH7ffffJPffcIyVLlpRFixY5enhERE4bsXL2xllJSk0SP299TxJz+LKxY6ZK0SpSxM94RpHe9AjrITvP7pSlkUvl6UZPO3o4RERElIP27duLIYdJmtFFjn1TLNkpUaKE/ID5DAsgXx3kCDrPKmsc1+E20meB/MQJkf/qIra3fbvIm28aL3/4oUjdurlqOI+K0lHECjJRtC5yK8WsaB3kaPBEFjkRkTV169ZNevfurS6HhYXJkSNH5PLly2rSk44dOzp6eERETqd0YGkJ9AkUgxjk1LVTond6jlexzCFfEbVCUtNTHT0cIiIip4YCtIcVF73KV4G8YcOGKmLFEq5DJznpS6lSIqVLGy8fOWKHJ7x2TaRvX0wrK/K//4k8+2yuHoYo3Fu3RLy9c5zH07loBfK//rJKRRsJB0FBIklJDojEISKXlpKSIt7e3nLgwIFMR+P1/EWHiMiW8PloillxgRxyU4G8lH4L5M0rNJeSASUlLjFOtsZsdfRwnMo///wjTzzxhJrQ7MyZM+q6b7/9VjZu3OjooRERkZtGrOi6QI5M0i+//FLq1KkjAwYMUAsuf/XVV/Lee+9Zf5TkOjnk2mScx48bq9zIBMpl4UWboBMPQ5FcF+6+W6RsWeNBgXXrCrw6T0+R/2KZmENORFbl4+MjVapUURN1EhFR3ifqPBF3QvTOFTrIvTy9pFuYcbLOJRFLHD0cp/HLL7+oM8UCAgLUHGJJ6LhRvUvX1HxiRERE7ixfBfJ27drJsWPHpFevXhIXF6cWnJJ98OBBdQSa9MduOeRffimCHFsvL5EFC0SKFcv1Q3WVP67B69Sy+q0cs8IcciKyNkzC/eabbzIujYgoHwVyV5io0xUK5FoOOSCHnIwmTZokc+fOlXnz5qmD4prWrVvLv9yxICJyW+hZ9bDiolf57sOtUKFCpsk49+7dK1988UWeZwolNymQoz198GDj5UmTjN3VeaB1kOsif9wyZmXePJE//hCZNcvYBl4AnKiTiGwFUWmRkZFqGx8cHCyFChXKcDt3oImIMnOViJVridfkzA1j7Ebt0v+dXqpT3ap1Ew/xkD3n96gJVCsUqSDu7ujRo9K2bdtM1xctWlQ1vBEREbkzvQRVkN4L5AgPR+44fnbuLDJiRJ5XocsOcsDEdoULiyDnD7kozZtbpYN8zx4RJCGgSZ2IyBoe1OZNICKiXAsp7hoRK4cvG7MWUUwu5p/7szydUelCpaV5xeay/cx2WRa5TPo37i/urly5cuogeFWLyZyQPx6KiY6IiMgteeq57duKWCCnDBnkUVHGCSD9/Ky7fs+RI0X27RMpUwYzweSri1q3HeT+/iLh4SI//miMWSlggRwHCNDUefMmOkFuH9wgIiqocePGOXoIRET6jVjReQe5q8SraMLDwlWBHDnkLJCLPPfcczJ06FA1lxgmlz179qxs2bJFXn/9dRkzZoyjh0dERA5SsIwD18H3gZTy5XF6nUh6usixY1Ze99at4jV3rvEf33yD9oU8rwPj0grkuusgB60r87ffCrwqdIxzok4iIiIi54pYuXjzotxMvim6L5CXco0CeY/qxhzyldErJSUtRdzdqFGj5LHHHpNOnTpJfHy8ilt59tln5fnnn5fBWgwmERGRm8pTBzkm4swJs8v0C2dUoBN5yxZjzEr9+lZa8alT0gi52zB8uEg344zyeXX2rDGdxdtbxOKsQH1ABzkmw0EOO9q+a9YscA75xo3GHPInn7TaKInIzXl6eqqusuykIdeJiIgyKB5QXIr6FZVrSdfk5LWTuu3AdrUO8mYVmknpwNJyKeGSbInZIm2DM+dvuxNs3zEZ9/Dhw1XUCorkderUkcKIgiQiIrfFhJV8FMgxgcedbu/Xr19eVklOxLxAbi1ew4aJ582bkt68uXhiYs580rrHURxHkVx38N9Ohw4iK1YYJ+vMRwZ7Vjnk7CAnImv6zeIsl5SUFNm9e7d8/fXXMmHCBIeNi4hIDznkmBDyeOxx3RaYXa1A7unhKd3Cusl3+75TMSvuXiDX+Pr6qsI4ERERMIPcKE+lxvnz5+fl7qTTHHI0OVvF5s3i+ddfYvD0lLTPPxdPX998r0q3E3RaxqygQI4c8gIWyNFBDrt3G+Nn8hHpTkSUSc+ePTNd9/DDD0vdunVl0aJFMmDAAIeMi4hIDzErqkCu0xzy+OR41f3uSgVyLYccBfKlkUtlWudp4s46dOiQ41lia9asset4iIiInAnLamSiNRJYpYPcYEDQnbp4slOn29X3fNLtBJ3mtMIT2vTPnSvQqmrVEgkIEImPv33wgIjIVu6++25ZvXq1o4dBROT0E3WeiDshenTk8hH1s0yhMlIysKS4iq7VuqpO8n0X9knM9RhxZ40aNZKGDRuaFnSRJycny7///iv1rZavSUREeoNjpx5WXPRKj2EVZOMCOSbpTEkxRmbn25IlIv/8IwZ/fzn6yCNSsYBjc4kO8goVRFq0ENm2TeTPP0Wefz7fq0LMTMOGIlu3GnPICxhpTkSUrVu3bslHH30kFSsW9JOciMj1C+R67SB3tXgVDYr9LSq2UBnkyyKXybNNnhV3NWPGjCyvHz9+vMojJyIi9+Sp46K2NbGDnEwqVxYpVMhYHI+KKsCKMInbG2+oi+kvvSSJpUoVeGwu0UGuxawAYlYKSItZQYGciMgaihcvLiVKlDAt+HeRIkXkyy+/lOnTpzt6eERETh2xAsgg13WBvJRrFcihR1gP9RM55JTZE088obbzRERE7owd5GSCHGskoezcaYxZQYxHvixYILJ/v0ixYpKOrG20ORcAMra1ArmuO8i1AjkOHiCq4Pp1kaCgfK+KE3USkS26y8zzST09PaV06dLSokULVSwnIqLsJ+nUc8SKq3aQQ4/qPWTsurGyKnqVJKcli69X/udFckVbtmwRf39/Rw+DiIgchJN0GrFAThloBfJ8T9SZlCQyZozx8siRIiVKFHhMiOu+dUvEy0skOFj0DUcdsBw5IrJ0qcgjj1ilgxyR7/xMI6KCevrppx09BCIiXXeQxybGyrXEa1LUv6joiSsXyJuUb6Ky1S/evCibTm2SDiEdxB317t07w78NBoOcO3dOdu7cKWO0/TciIiI3xYgVsu5EnZ9+KnLihEj58iJDhlhlTFr+eEhIAXPRnS1m5bffCrSaunVFfH1Frl0TiY62ztCIyL3Nnz9ffvrpp0zX47qvv/7aIWMiItKDwr6FpVRgKV3mkN9KuSXRsdEuWyDHJJ3dw7qry0sjl4q7Klq0aIYFUWrt27eXJUuWyLhx4xw9PCIichBO0mnEDnKyXoH8xg2RSZOMl/ElKzDQGGheQC4xQadlgXzaNONEpui49/PL12pwsKBBA2PHP7rIq1Wz+kiJyM1MnTpVPsWBTgtlypSRgQMHylNPPeWQcRER6WWizssJl1XMSqNyjUQvjl45KgYxSImAEqrT2hWFh4XLN3u/UTnk73Z5V9xNWlqaPPPMM1K/fn1GphERUQacpNOIHeSUZYEcCSCYazNPPvhA5NIlYyW7f3+rjcllJujUNG9u7LDHAYW1awu0Ki1mhTnkRGQNp06dkhCcrmMhODhY3UZERK43Uad5vIr5PBSupEu1LqqT/OClg3Lqmvttz7y8vKRr164SFxfn6KEQERE5JRbIKQPURdDQnJgocvJkHh548aLIe+8ZL0+ebNUsFJfrIMdsqFrMyu+/F2hV2kSd6CAnIioodIrv27cv0/V79+6VkiVLOmRMRER66iDXY8SKqUBeyvXiVTTojm9ZqaW6vDTCPWNW6tWrJ9HMZSQiIgseVv6fXrFAThlgIsyaNfMRs4KieHy8sWL70ENWHZPLdZCDViD/4w+R9HSrdJBjok4iooJ49NFHZciQIbJ27Vp1OjaWNWvWyNChQ6Vv376OHh4RkVMLKW4skCNiRU9ceYJOcz3Cerh1DvmkSZPk9ddfl7/++ktNznn9+vUMCxERuW/EiqcVF71igZwKnkN+/LjIJ58YLyNbGx3SVoLasVYgd5kOcmjfXiQoSOT8eZFt2/K9mvr1Rby9Ra5eRTSCVUdIRG7o/+3dB3gU1dcG8Dc9oQVCKKEldBAEBKRLkSYoXVBAQUQQBAUpUlRA+EMQGwoI6qegAoLSpHdpKkUQBYFQQw09lBBI3e85d9hlE1LJ7s5O9v35jFsze7NZdmbOnHvOhAkTULt2bTRt2hR+fn5qkSnZTz/9NCZNmqT38IiIjFFixagZ5Nk8QN66bGt1ufHkRsTEx8BVjB8/Hnfu3EHr1q3VjLC2bduiWLFiqha5LHnz5mVdciIicnls0klZD5BLQ05pxtmsmbbYUEQEcPeultkeHIzsw9sbePZZ4KeftDIrdbUpn5kl5XAqVwb279fKrGSr94iIHM7b2xsLFy5UWWb79+9XAXJp6CU1yImIKIMlViJPwWQyGaKed2xCLI5fP+4SAXJpnFo4V2FcjLqIHWd2oGmppnAFH3zwAfr166dmhxERESVn5KxvW2KAnB5SsaJ2efhwBp4stWrnztWuh4bafCzm+uNSG92GZc2dp8yKBMiXLtUy7x/xIEqq2kiAXMqsdOhg81ESkQsqW7asWoiIKOOC82onE+/E3cG1u9cQmCMQzu7YtWNIMCUgj08eFMldBNmZnLCQMiuz98/G6mOrXSZALidrRKNGjfQeChERkdNiiRVKM4M83brWo0drT+rcGahZ0+ZjyZb1x81atdIyyeUswJEjWa5Dzkad+pJyQPKnjIz00XsoRI+sU6dO+PDDDx+6f8qUKegs3/NERJQqX09fBOUKsmSRG4F1eRUjZLxnlavWIXeFvy0RET36NsLNhotRMUBOD5FgtNS1lp6b586l8cTt24FVq7T6J//7n13GYs4gz5aJjLlzPyhJI1nkj0gyyAUbdTrWpUvAihXA++8DLVsC+fMDlSp5YcCAphmbfUHkhLZt26ZqlCbXqlUr9RgREWWsUadR6pBbAuSB2bu8ilnz0s3h4eaBw1cPG66ZalaUK1cOAQEBaS5EROSa2KRTwxIr9BBJapaAtAT5JIu8ePEUniSR2JEjteuvvSZ7XXYZS7Zs0Jm8zMrq1VodcsnGfwRVqmjnKC5fBi5cAIoWtfkoXV50tHYCYvduraeqXJ4+ndpzvdC5swl79mh9WImMJCoqStUhT87Lywu3bt3SZUxEREarQ/7H2T8ME3w9dNU1GnSa5fXNi3rF62H7me1Yc2wN+j/ZH65Sh9zf31/vYRARETktBsgp1TrkEiCXRbJjHyKps3/8Afj5AWPG2G0c5gzybFliRbRtC7z+OlQ0VdL1ixXL9CrkTyB/r4MHtSAuA+RZk5CgnRiyDobLeyv3W5OZQ/K+16oF1K6tXebPH4caNeJx9KgfevQAliwB3DlPhwxEGnJKk84xyb7XFyxYgMfM9beIiChVIXlDDFtixVW0LttaBchXH1/tMgHyF198EQULFtR7GERE5IQMXBXFphggpxRJHESCexIofIhECs3ZzoMGAUWK2K2mc7bPIC9UCKhXD/j9d2D5cuCNNx65zIoEcaUOucTcKWNkIoSclzAHwmX56y/gzp2Hnysfc3MgXBYpuZ88QzwuTiZW7Ma77zbEr7+6qd6rjzgxgEgX77//Pjp27IgTJ07g6aefVvdt2rQJP/30E3755Re9h0dEZIgMcqOUWIlPjEfY1TCXC5BLHfJRm0Zh86nNuBd/T9WOz86MXA+WiIjsz53bCcUpchtnzJiBkJAQ+Pr6onbt2tgtUao03LhxAwMGDEBQUBB8fHxUTbXVUqbivtu3b2Pw4MEIDg6Gn58f6tWrhz2SoZuKfv36qR2HqVOnJrn/+vXr6N69O/LkyYO8efOid+/eavq5qzXqfMjcucB//wH58gEjRthtDBERwN27WvmQ4GBkX1JmJYt1yNmoM2Nu3AA2bgQmTQLatdOC3iVKaD1mP/oI2LpVC47nygU0aaJ9vOVEkQTRz5/XrktlIYkbplY+pWzZG5g2TUs3f+89YN06x/6ORFnRpk0bLFu2DMePH8cbb7yBoUOH4ty5c9i4cSPam7+riIgo3RrkRiixcuL6CcQlxiGnV04U90+ppmL2VKVQFRTJXQTRcdHYfno7sjsTmxQRERE5fwa5TOUeMmQIZs2apYLjEqRu2bIlwsLCUpwGFhsbi+bNm6vHFi1ahKJFi+L06dMqgG322muv4eDBg/jxxx9RpEgRzJ07F82aNcOhQ4fU860tXboUO3fuVM9LToLjERER2LBhA+Li4tCrVy/07dsX8+fPhysFyGWfynJC6d69ByVVRo0CrN53e5VXKVlS6t8i+5JI7fDhwJYtQGSkduIhC406SRMbC/z7b9Ls8CNHHn6enICROu7WpVIqVNDuf1S9epnU3+Lrr4GuXbW/i3yOiYzg2WefVUtysl2tXLmyLmMiIjJaiRUJkCeaEuHu5hT5SGmWV6lYoKJTj9PWJDFKssi//ftbrD62WjXuzM4SZVouERFRKozcWNOWdN8T+vTTT9GnTx8VfJb6phIoz5EjB7777rsUny/3S2a3ZLjVr19fZZ43atQIVatWVY/fvXsXixcvxpQpU9CwYUOUKVMG48aNU5czZ85Msq7z58/jzTffxLx581QDMmuHDx/G2rVr8X//938qcN+gQQNMmzZN1WG9IJ0QsznpuSlBcYnXXrpk9YC8h2fOaIWuBw606xjM5VWybf1xM6kfU6kSEB+vNex8BPLxl7+XfDQvXoTLkZM4ckJl3jyt6k+dOkDu3MCTT2of0x9+eBAcl0D1Cy/Idw+wYwcgfQcl837WLAlsa3+KrATHzb74Qgu2y7+hjh21Rp9ERiMzsr7++mvUqlXLsp0lIqLUFc9TXAWbYxJicDHKuXfKXLH+uHUdcrHm+Bq9h0JERKQriSW52XAxKl0zyCUbfO/evRglmcj3ubu7q2zvP//8M8WfWb58OerWratKrPz6668oUKAAunXrhhEjRsDDwwPx8fFISEhQ5VqsSamVHRINszqT/vLLL2P48OGoJBGxZOT1JSu9phQavk/GJePbtWsXOnTo8NDPxMTEqMXslkTeVF3iOLVkhfnns7qejPL0BEqV8sSJE244cCAe+fObgJs34TlxIuTzHv/++zDJk9IZT1bGfeSInL/xQOnSCYiLc3zmgyPfc/c2beDx339IXLIECV26ZPrnfXyA8uU9ceSIG3bvjkezZo79vDj6fb9yRfqauiVZIiMf/iYOCDDhySdNqFlTu5SlQIGUXtP2Y5dzbgsWSFa6J/bvd0OfPomYPTvBaTcYjv6OsSWO3fa/+7Zt29QJ4iVLlqgZVlKXXMqhERFR2rw8vFSQ/PTN0yqLXEp5OKtDV+8HyANdL0DerFQzeLp7IuxaGE5GnkSpfKX0HhIRERG5aoD86tWrKphdSBoVWpHbR1KqhQDg5MmT2Lx5syp/InXHzXVSJTgwduxY5M6dWwXQJ0yYgIoVK6p1SXMxCXhLFrnZhx9+CE9PT7z11lspvs7FixcfKvEizw8ICFCPpSQ0NBQffPDBQ/evX79eZcXbgpR7cZSAgFo4cSIIixYdQnT0KVSYPx/lr13D7WLF8FuBAjBlItv5Ucb9++9PSmtExMQcwurVJ6EXR7zn/oGBaCwnblavxtply5Do7Z3pdRQqVB1HjhTHwoXHYDIddfjnxdbMY4+J8cDJk/44ejQfjh3Li2PH8uHSpZwPPd/LKwGlSt1E2bKRqg54uXKRKFz4TpKAdBqtCOwydjFoUH6MGVMP8+e7I0eOg3juOedu2pUdPjOuOPZoG0xRkG3bnDlz8O2336oTvF26dFEnfWXGlszwIiKijJdZkQD5qchTqFe8HpyVK2eQ5/HJgwYlGmBL+BasObYGA2oN0HtIREREunBXabCkew3yzJLMbwlcy5RvyRivUaOGKpXy0UcfqQC5kNrjr776qqo3Ls+pXr06unbtqrLVhVx+/vnn2Ldvn027eksmvNRTN5MAQ/HixdGiRQvV6DMr5ASABFCk/nrycjD2smOHuwoourtXQusaAfDs3l3d7/fJJ2jVpo3dx/3ee9rHs23binjmmQpwNIe+5yYTTFOnwvPcObTy8oKptTbtMzOOHXNXTSajosqjefNgh39ebFUq5dCheHz77RHcvVsZf/3liYMHgYSEh/+dli+vZYTXqqVdPv64Cd7euQHIUkKX8af0mZE/pa+vCcOGAXPmPI5u3R5DgwbO1yxJj+8YW+HYH8xYykpzTskal9rj0gvkmWeeUdtPKXtGRESZb9S59fRWnLrhvCfFExITcOTqEZcNkAupQy4B8tXHVzNATkRE5OJ0DZAHBgaqA/BLSYpcS83rSyhcuHCKPxMUFKSCCPJzZpIpLplvUrLF29sbpUuXxtatW3Hnzh0VNJCfeeGFF1CqlDZ1bvv27bh8+TJKlHgQRJNM9qFDh6rAQHh4uHp9eY41Kd8i9c9TG5uPj49akpPx2ipoY8t1pefxx7XLI0c84DV5MnDnjiqq7Nm5c6YLC2V23BIoPXFCu16xoqeuTTod9p63bw9Mnw7PlSu165kk9bbF/v3ulvE68vPyKOTvfOoU8NtvwObN2mVEhIz3iSTPk39y5gaaskjlo7x55TPonGc6k7/vct5Mzs/99JMbunb1VDXPU+gL7BSc/TOTFlcee1Z/7zVr1qgZVf3790dZ6YtARESPrGRerTO3lFhxVjK2e/H34Ovpa2ks6op1yEdsHIHfTv2Gu3F34eflp/eQiIiIHM5Zy8C6VJNOCWZLBvimTZuSZIjLbSmTkhJpzCllVay7cR89elQFwWV91nLmzKnuj4yMxLp169CuXTt1v9Qe//fff7F//37LIjVWpR65PE/I69+4ccOSdS6ktIu8rjTtdAUVK2qX0QdOAF99pd2QQLkD/vVIs8m7d7VmicHBcA3moPjy5XLGJtM/Xq2adik9VK9ehdM6e1ZrmikNMUNCgNKlgddeA+bPl+C4nGgy4bHHrmLIkAT88ov2+8jnYdkyYPRo6QUgwXEYivyT+eYb7aSTnA98/nnpwaD3qIgekB4d0pBTtsmyjZs+fboqg0ZERJlnDjg7cwa5ubxKhcAK8HC3QXdyA6pUoBKK5SmGu/F3VcY/ERGRK3J3s+1iVLoGyIWUJPnmm2/w/fff4/Dhwyp7TTK/e0n0DECPHj2SNPGUxyWLe9CgQSowvmrVKkyaNEk17TSTIPfatWtx6tQpNXW9SZMmqFChgmWd+fPnR+XKlZMskn0nmeHly5e3ZKXLFPM+ffpg9+7d+P333zFw4EC8+OKLKpjuCircr2ry1rUxkj4PtGwJNGnikNc+dky7LFlSMiPhGho2BPLl0zpQptKkNi3+/oA58fPvv53nW0lK9kuzyr59tfHJxI2ePaXciBb8ll6v9etLSR1AzpVdvhyPSZN+x+TJiSqQXLx49jijmTMnsHSpFtyXP+/bb+s9IqIH6tSpo7bFEREReP3117FgwQK1rZOTwrIdleA5ERFlLoNcapA7K1euP24mpTZbl9HKGkodciIiInJdugfIpfTJxx9/jDFjxqBatWoqm1uC2+bGnWfOnFEH7GZS01sC4Hv27EGVKlXUlHAJlo8cOdLynJs3b6qAuQTFJcDeoEED9TOZnYI+b948tY6mTZuidevWaj1S+9xV5M4NPFN4P7pjvnZHaKjDXvv4ce3Sqq9q9iefz+ee065LJPURVK+uf4D82jVg8WJg4EBA+voFBQFdu2oZ1PJ3dXfXysGMGAGsXQtERkr2KjBhAvD004BfNp7dKtny8+ZpAf8vv9ROEhA5E5l5JT08JKP8wIEDqvTY5MmTVe+Ptm3b6j08IiLD1CAXZ2+dRXxiPJzRoav3A+SBrhsgF63KtlKXUoeciIjIFbm7udl0MSqnaNIpmdmypGTLli0P3SflT3bu3Jnq+rp06aKWzJC648kFBARgvtR9cGHj47Xs/eNPdkWZJ5LWhXZEBrnLlcKVMis//qjVE/n440ynTteoASxcCOzb54bKleEQN28C27Y9qCH+zz9JH5dfoWpVbfKBBMCfekrLdndV0rRz3DhAegr366eVXZG/G5GzkRlVU6ZMQWhoKFasWIHvvvtO7yERERlCUK4geLl7IS4xDudvnUdwXuerF8gMck3Tkk3V3+r49eM4du0YyuZ3tYMPIiJydQaOaWevDHJyYlu24MmraxEHTyysNN6hL+2SGeRCytj4+gInTwIHDz5yBvn+/fb7houK0jK/JQNcMsEDAgBJLJ069UFwvFIlLYNcMsmlYszffwOffqolyLtycNxMysm0aQPExAAdOzp3zXgiaYrdvn17LJf+CERElC6p6W0Oijtjo85EUyIOXzmsrrt6gDy3T248FfyUur7mOMusEBERuSoGyCllJhNwv2zN1+iLbRccG6l22QxyKVTdooV2XbLIHzFAfvKkG6KibFO8XZqlSm1wCepKrXApk96qFTBlCvDXX9JYV/s7vf66Vmtcao5LbH/aNC34mz+/TYaRrUiZGZkoIO+b1GF/8UWtzD8RERFlszrkTtio8+zNs7gTd0dlTpcOKA1X16qMVmaFAXIiInJFLLGiYYCcUibB2V27kOCbAxPwPg5pszAdFpt32Qxyc5mVR6xDLsFraWwqTp58tFTt2Fhg+3Zg/HigcWOtqWSzZsDEicAff2iB3JAQQHreSpD37Fng6FFg1izpKQDcbx9A6ZBM+iVLtHMi5hMQRERElD2E5A1x2kad5vIq5QPLw9PdKSpu6qp1Wa1R52+nfkN0XLTewyEiInIoiWm72XDJjJCQENU0O/kifSVF48aNH3qsn9SqtQPuEdHDJAI6erS6GjtgCC59Uhg4B9y6BeTJY/+Xv3BBy1r28NACsS5H6pBIirHUJTl9GggOznQW+alTwIkTeTP855ZMcKkfLos0zJT331qRIlr9cKkjLos5CE9ZI3XipayznFj48EOtZE2nTnqPioiIiGyVQR5+0/lKrLD+eFIVAyuihH8JnLl5BlvCt6B5SHO9h0REROQS9uzZg4SEBMvtgwcPonnz5ujcubPlvj59+mC8ZHDelyNHDruMhRnk9LAffgCOHFG1MfzeH4bChbW75S5HMGePSxDWyzZVQoylQAGgQQPt+q+/ZvrHzQ0fU8sgl++effu0HqDPPqvVEK9bVzsnsmGDFhyXIUifW8kKDwsDzp3TssVffZXBcVuT93nYMO36K6/AobM1iIiIyD5K5ivp9BnkjwUyQC4kG611GS2LfPWx1XoPh4iIyKHcbbxkRoECBVC4cGHLsnLlSpQuXRqNGjVKEhC3fk4eO2XuMkBOSUl0dOxY7bpETP398dj9fWdHBe7M9cddsrxK8jIrWahDbs4glxrhBw4AX3yhrTYwUAuiDx8OrF4N3L6tlWbp0EF7jtQPv3QJWLhQqyterhy7GttbaKiWmS8NUOXvcPOm3iMiIiIim5RYccIa5IeuMoM8uVZlH9QhN0m9RyIiInKo2NhYzJ07F6+++qo6eW02b948BAYGonLlyhg1ahSio+1TDo0lViipGTO0dOHixYE33lB3SYB882bHB8hdrkGnNYlkDxkCbNsGXLuWqU6X5gD5hQu58OKLiaqe+JUrSZ+TOzcgJ+TMJVOqVtWqupA+PD21ExJy4kLquffsqdUn59+EiIjI2CVWzt86j9iEWHh7eMMZSPCXJVYe9nTJp9Xf6GTkSRy9flTv4RARETmMdTDaFmJiYtRizcfHRy1pWbZsGW7cuIFXZGr9fd26dUNwcDCKFCmCf//9FyNGjEBYWBiWSMDExhh+oQdu3AAmTdKuS30fX1911dEZ5C7doNNM6phI1FrqoaxcmakflfIoxYtrmS9Llrir4LiUaGrRApg8WfVexfXrwIoVWgz+iScYiHUG8neT73jZZkhlHckqJyIiImMqmLMg/Dz9YIJJ1bZ2FhduX8CtmFvwcPNA2fyunI2SVC7vXGgY3FBdX3dind7DISIichg3Gy+hoaHw9/dPssh96fn222/RqlUrFQw369u3L1q2bInHH38c3bt3xw8//IClS5fixIkTNn8fGBajBz76CIiM1CLiL79subtiRe3y8GHHDIMZ5FkvsxIamoAnn4zA2LEJqumm/FnXrQNGjABq1dIylsn51KwJfPmldv3994G1a/UeERERET1qNpalzIoT1SE3Z49LcNxZstqdhbkO+doT3AEjIiJ6VFIG5ebNm0kWuS8tp0+fxsaNG/Haa6+l+bzatWury+PmzFobYoCcNBERwGefadcli9zDw/KQOYP81CnATqV+LKTkHzPIkwXIJbKdyTe+SxcT3n13N959NxH16wPePP4xDGmEKrXf5d9Ct27SbFXvEREREVFWGnWG3wiHswXIKwbez4Chh+qQbzuzDfcS7uk9HCIiIodwd3Oz6SKlVKSRpvWSXnmV2bNno2DBgnj22WfTfN7+/fvVZVBQEGyNAXJ6UFJFGnTWrQu0bftQ6QcpgS0Bu7Aw+w7jwgVtGBKfD9GSblyXlFiRN0HekA0b9B4NOdDnn8uZUS3zv2NH+5+YInKEyZMnq4zKwYMHW+6TqXEdOnRQ3ctlx6lLly64JF2C0zFjxgyEhITA19dXZRHs3r3bzqMnInr0OuTO1KiT9cdTVz5/efU3k5rx/0b9q/dwiIiIDFliJbMSExNVgLxnz57wtCp3IMeKEyZMwN69exEeHo7ly5ejR48eaNiwIapUqQJbY4CctJom33yjXZci1ckK9MtNR9UhN2ePS1zYywuuTd54cxb50qV6j4YcSE6uLloEFCwI/PMP0KePdoKKyKj27NmDr776KsmOzJ07d9CiRQsVNN+8eTN+//131bm8TZs2aicpNQsXLsSQIUMwduxY7Nu3D1WrVlV16S5fvuyg34aIKGMsJVacKUB+lQHy1Mj2qFUZLYt83619eg+HiIjIJWzcuBFnzpzBqzKd3oq3t7d6TI4ZK1SogKFDh6JTp05YIQ317IABctKKHUszyNatgYZac5rkHBUgZ/3xZMwBcvkCiI/XezTkQMWKAT//rM2mmD8fmDZN7xERPZqoqCjVUOWbb75Bvnz5LPdLQFwyAebMmaOarsjy/fff46+//lIB89R8+umn6NOnD3r16oXHHnsMs2bNQo4cOfDdd9856DciIspcBrmzlFgxmUz47/J/6joD5ClrXVarQ77v9j71fhEREblCbqabDZfMkgC4bHPLlSuX5P7ixYtj69atuHbtGu7du4djx45hypQpauaxPTBA7ur27pV0PO1TnEZXWUc16jRnkDNAfp8UEJf6NtevQ3XbJJfSqBHwySfa9aFDgW3b9B4RUeYNGDBA1ZJr1qxZkvtjYmJUtp51PTopmeLu7o4dqXzfSYa5TLGzXpc8X27/+eefdvwtiIgevQa5szTpvHznMiLvRcINbqqcCD2sSckm8PHwweXYyzhy7YjewyEiIiIHeVDchVyTuZNs9+5AGjV8HJ1B7vINOs2k/lKbNsCcOcCyZUDjxnqPiBzsrbcAKa8sWeRdumjntIoW1XtURBmzYMECVQZFSqwkV6dOHeTMmRMjRozApEmTVNbAyJEjkZCQgAhpHJ2Cq1evqscLFSqU5H65feRI6oEMCcbLYnbr1i11GRcXp5ZHZf7ZrKxDLxy7Pjh21xp70ZzaBvvSnUu4GX0TObxy6Dr2fyO0utql8pWCJzzt/n4Y8TPjBS88VfwpbAzfiNVHV2e5mamRfnciInJNkrREDJC7tk2btOaPUuxbmnSmwRwglwxviTGk04D2kbHESgo6dHgQIP/ss0ebs0KGJX/ur78GDh4E/v0XeP55YMsW+/0bJLKVs2fPYtCgQdiwYYPKDE9OGnP+8ssv6N+/P7744guVCd61a1dUr15dXbel0NBQfPDBBw/dv379elWeJavkdzQqjl0fHLtrjF1O/OVwz4HoxGj8uOJHFPctruvYV19ZrS4DEgKwerV23RGM9pkJjgtGIe9COHXsFFbfyNr7FM1O60RE5ORYWkTDALmrkpp6I0dq1/v1A0pqU0BTU6QIIGV+JOlOgtiVK9tnSOYSK8wgt9K8OSABnNOngf37gSee0HtE5GA5cwJLlgA1awI7dwKDBwMzZ+o9KqK0SSkUaZwpAW8zyf7etm0bpk+frjK6pd6cdCeXzHDpWJ43b14ULlwYpUqVSnGdgYGB8PDwwKVLl5LcL7fl51IzatQo1djTOoNcatrJ62elhp1kBkrgp3nz5vAyWGdpjl0fHLvrjb10RGkcuHwAJaqUsDSA1Gvsa9euBc4DjSo1QusmWq1tezLqZ6ZJTBM8t/E5tY3I6rjNM5aIiIjIuTFA7qoWLwb++gvIlQt4770MZbFKHfJdu7Q65PYIkF+4ANy9qzUlDAmx/foNy88PaNkSWLpUyyJngNwllS6tlVl59llg1izgySeBZE2eiZxK06ZNceDAgST3SWNN6UAuZVUk0G0d+BbSnFOC6m3btk1xndLJvEaNGti0aRPa329inJiYqG4PHDgw1bFInXPrWudmEviwRdDGVuvRA8euD47ddcYu5UwkQH729tksvbYtxn7kulaK6vFCjzv0fTDiZ0amm9ti3Eb7vYmIyPWwxIqGmfSuKD4eePfdB53/ChbM0I/Zuw65OXtcguPcl0zmfiBIBcjJZbVqBZirRLzxhnaOi8hZ5c6dG5UrV06ySM3x/Pnzq+ti9uzZ2Llzp8oinzt3Ljp37oy3334b5cuXTxJol4xzM8kE/+abb/D999/j8OHDqkTLnTt3VPCdiMjZlMyrzdIMvxGu91Bw6Iq2E/9Ygfs79UREROTy3Gy8GBUzyF3R7NnA0aOSsieRhgz/mL0D5Kw/nobnntNS66UI9cmTQCrlByj7k3NbEhhfvhzo2FFr2lmggN6jIno0YWFhqvzJ9evXERISgnfffVcFyK2ZS7CYvfDCC7hy5QrGjBmDixcvolq1aqpsQPLGnUREziAkrzYt8tSNU7qO42r0VVy+c1ldrxBYQdexEBERETkbBshdjTSKGTdOuy6lVTJRe9VRGeSsP56CgACgUSOpP6BlkWfixAZlL9K78IcftBIrclKpa1epKQp48tucDGCLdJi1MnnyZLWkJTz84axLKaeSVkkVIiJnUTJfSacIkB++clhdBvsHI5d3Ll3HQkRERM6DJVY0LLHiaqZN04p9Sx0Tac6ZCVKDXEjyuVRpsTVmkKeDZVboPn9/rSS9NO/ctOlBxSQiIiJyLs5SYoXlVYiIiCi1wLC7DRejMvLYKbMiIyVdT7s+frx0LcvUjwcHa/0iY2O1Kh/2yiBngDwV7dppl7//DlzWpsiS66pUSauWJKZMAX75Re8RERERUWolVq7fvY5bMbd0GwcD5ERERESpY4DclXz4IXDjBiDN0bp1e6TSDuYscluXWTGZWGIlXSVKADVqAImJwMqVeo+GnEDnzsDw4dp16U/43396j4iIiIis5fbJjfx++dX1U5H6lVk5dJUBciIiIkq5xIqbDRejYoDcVZw/D3z+uXY9NFRr+PgI7FWHXKq+SHl0GZZUf6FUsMwKJTNpEtC0KXDnDtChA3Dzpt4jIiIiopTqkOtZZoUZ5ERERESpY4DcVXzwAXDvHtCgAfDss4+8GnMG+WGtz4/NmLPHJTju5WXbdWfLAPn69UBUlN6jIScgzTl/+kmbYCB1/Hv00CYZEBERkXOVWdGrUeeNezdw4fYFdb1i4P2deSIiIiLJILfxYlQMkLuCsDDgu++061KDPAtTHuyVQc4GnZkoPF26NBATA6xbp/doyEkUKAAsXqy1FVi+XMsqJyIiIudq1KlXiZXDV7TMlqK5i8Lf11+XMRAREZFzkhChmw0Xo2KA3BW89x6QkAC0aQPUr5+lVZkD5JJBbsssVdYfzyD5tmGZFUpBzZrAzJna9TFjgDVr9B4RERERWQfIw2/qU2KF5VWIiIiI0sYAeXa3Zw+waJEWWLVBWmmpUoC3N3D3LnD6NGyGGeSZIIWmhTTqjIvTezTkRKRRZ79+WtNb6cN74oTeIyIiIiJLiRWdMsgZICciIqLUuMPNpotRMUCenUmUbORI7boUJq5c2Sb1jsuXt30dcmaQZ0KdOkDBgsCNG8DWrXqPhpzM1KnaR0Q+Hh07as07iYiISP8mnVKD3CT75w526CoD5ERERJQylljRMECenW3YAGzerKV8S5NOGzE36rRVHXI5TjAHyJlBngEeHkDbttp1llmhZKQOuUwakXMo//4L9O2r/RsjIiIifQT7B6vLqNgoXL973eGvzwxyIiIiorQxQJ5dSYHwUaO062+8AQRrO+a2YOtGnRERQHS0FvcN0WagUnqs65Az+knJFC0K/PKLNuNj/nzgiy/0HhEREZHr8vPyQ+FchS1Z5I50O+Y2ztw8o65XDLyf5UJkQ9u3b8dLL72EunXr4vz58+q+H3/8ETt27NB7aERElAFuNv7PqBggz64kOrZvH5A7N/DuuzZdta0D5Ob64xIc9/KyzTqzvaZNgVy5ANkJ3btX79GQE2rYEPjkE+360KGsxkNEROQMjTodXYf8yNUj6rJQzkLInyO/Q1+bsr/FixejZcuW8PPzw99//42YmBh1/82bNzHJBv2viIiIHIUB8uxIGje+9552ffhwIDDQbgFyWyQvs0HnI/D1BVq10q4vXar3aMhJvfkm0L07kJAAdOminU8hIiIi/eqQh98Id+jrsrwK2dP//vc/zJo1C9988w28rDKd6tevj32SrEVERE6PNcg1DJBnR99+qxX1liLEb79t89VLIFvKody+DVy4kPX1sUGnDcqsEKVANk5ffw1UrQpcvgw8/zxwP7GHiIiIHCjEP0SXEisMkJM9hYWFoaFMW0zG398fN6RjPBEROT13uNl0MSoGyLObO3ceNOR8/32tDIeNSc9PczDbFmVWmEH+iFq31opMyx/h6FG9R0NOKkcOYMkSIG9eYOdOYNAgvUdERETkuhnkDg+QX2WAnOyncOHCOG7OdrIi9cdLlSqly5iIiIgeBQPk2c3nnwMXLwKyQ9K3r91expZ1yJlB/ogk4tmkiXb911/1Hg05Mfk6kGadklH+1VfaJBMiIiJyfA1yllih7KRPnz4YNGgQdu3aBTc3N1y4cAHz5s3DsGHD0L9/f72HR0REGcASK04UIJ8xYwZCQkLg6+uL2rVrY/fu3Wk+X6ZrDRgwAEFBQfDx8UG5cuWwevVqy+O3b9/G4MGDERwcrBqG1KtXD3v27EmyjnHjxqFChQrImTMn8uXLh2bNmqkNuzUZk2zorZfJkyfDaV27Bnz4oXZ9wgQt1dvJA+RSw9wcIGcG+SPo0EG7ZJkVSoeUrB8/Xrs+YACQ7CvRkKRcTFgYsGGDGyIjffQeDhERUapC8oZYAuQmWzTxyYDouGhLU1AGyMkeRo4ciW7duqFp06aIiopS5VZee+01vP7663hTmuEQEZHTY4Bc4wmdLVy4EEOGDFHNPSQ4PnXqVNUJW+qZFZQa2snExsaiefPm6rFFixahaNGiOH36NPJKNu19slE+ePAgfvzxRxQpUgRz585VAfBDhw6p5wsJqk+fPl1N/bp79y4+++wztGjRQk0RK1CggGVd48ePV2fGzXLnzg2nJcH7W7e0gsMvvmjXl6pYUbs8fDhr64mIAKKjtZrmIdpxA2VG27bAG28Af/6pzRwoXFjvEZETGz0a+OsvbcJBp07A3r2A1dedU5JeBydOPFjkhJr58uxZc6NgTxQtWh8vvABY9YciIiJyGiX8S8DdzR334u/hYtRFBOUOsvtrhl0Ngwkm5PfLjwI5nHyDT4YkCWTvvvsuhg8fro6jJUj+2GOPIZcdynwSERFl6wD5p59+qgLQvXr1UrclUL5q1Sp899136ox0cnL/9evX8ccff1g6ZUumt5kEuxcvXoxff/3V0jBEssVXrFiBmTNnqk7bQs50Jx/Ht99+i3///VedAbcOiEttNacnkaJp07TroaGAu30nB5gzyP/7TwtQPepZInP9cfkTMrD1COSET61agMy6WL7crmV1yPjka+H777WPjJStl/No69Zppez1It8fV68mDX5bX5fmomnJmROIjzfh/PncWLw4Hi+95KiRExERZZyXhxeK5SmGMzfPqCxyRwTIrcurSCCTyNYkEa1jx47IkSOHCowTEZHxuBm4sWa2CZBLNvjevXsxatQoy33u7u4q2/tPyYhNwfLly1G3bl1VYkWC4JLtLcHuESNGwMPDA/Hx8UhISFDlWqxJqRVpFpLaOL7++mvVbbuqZF9bkZIqEyZMQIkSJdTrvP322/BMJZoUExOjFrNbks0NIC4uTi1ZYf751NbjMWYM3GNikNiwIRIkwJ/F18tITWM3N09cvy615uKQQrJ/hsYdFib/ED1Rpkwi4uIS4EzSG7uzcG/TBh67dyNx6VIk3D/RZJSxp4Rjt3/Tzp9/BurX98TmzW4YMSIBkycn2nXsiYnAuXPAyZNuOHlSgt9yqS0SBL99O+0NcmCgCaVKyQKULq1dL11auy7fPRMnmjB+vDcmT3ZHly5xhprWZav33Zk/c0RE9KDMigTIpVFn3eJ17f56rD9O9ibHxv369UPbtm3x0ksvqZngckxORETG4W6g4+dsGyC/evWqCmYXKlQoyf1y+8iRIyn+zMmTJ7F582Z0795d1R2XqVxvvPGGCg6MHTtWZXxLAF2C2hUrVlTr+umnn1TAvUyyLpArV67Eiy++iOjoaFXPfMOGDQgMDLQ8/tZbb6F69eoICAhQGesSyI+IiFDZ5ikJDQ3FBx988ND969evV2fVbUHGmFzus2fR5Icf1PUdzz6LyDVr4AgFCzbDpUs5MXv2Ljz++LVMj1usWyc77GXh4RGO1asPwBmlNnZnkStfPsicB9PGjVi/aBHirT5rzj72tHDs9jVgQBCmTKmFTz/1gLv7PjRocCFLY4+Lc8Plyzlw8WJORETkVJfm5dKlHIiLS/tgKX/+uwgKikLhwtEoXPgOgoLuqEtZcuaMf+j5N25oJWJEuXJe8PNrjv/+88L48bvx5JOX4GqfGdmOERGR8zfq3HZ6m6UuuL0dusoAOdmXHBuvXbtWHW936dJFHfN27txZHatLHzAiIiKj0L3ESmYlJiaq+uOS8S1np2vUqIHz58/jo48+UgFyIbXHX331VVVvXJ4jQe6uXbuqbHVrTZo0wf79+1Wg/ptvvlEbdWnUaa59LrXRzapUqQJvb2/VcEQC4dIcNDkJoFv/jGSQFy9eXNU2z5MnT5Z+bzkBIAEUqb9uLi1j5tG5M9wSE5HYti3qvv02HKVGDQ9Ib9S8eeuidevETI9bzJmjBc2aNQtG69bF4UzSG7szMX3xBTyOHkXLxESYWrc21NiT49gdo3VrqBOUn3zigZkza6JLl3u4cGF9mmOPitLKnlhnf5uvnzkj38+pn3r29DSpUkqS9a1lgctMFO16yZKAr69sjqSXxIN+Epl53xcvDsfSpWWxaVMtjBmTYJgsclt9ZswzloiIyLkD5EJKrDgCM8jJ3mRm9XPPPacWOVm/dOlSzJ8/Xx1nFytWDCdkZ5GIiJwaS6w4QYBcsrUlgH3pUtJsP7mdWt1vyfSWIIL11C3JFL948aIqlSJB7NKlS2Pr1q24c+eOChrIz7zwwguqIae1nDlzqqxyWerUqYOyZcuqOuTWJV+sSRNRKeESHh6O8uXLP/S4BM1TCpzLeG0VLHtoXTt3ah333N3hPnky3B0YlKtUCSpAHhbmAS+vtLNDU3sPpNyCKF8+/XXoxZZ/P7vp0AH48EN4rlwJdO9urLGngmN3TF/f/fuBTZvc0K2bL8aN88TNm144c8YrxZrgyb6qHyKTF6T0iUzW0UqgPLhevLjb/Vrn9tn4tm17AqtXl8HOne748093NGoE57dvHzw+/BClcuWCV+vWWfrMGOHzRkTk6qTEipASK/YWEx+D49ePq+sMkJMjSPa4lFiJjIzE6dOncfjwYb2HREREZIwAuQSzJQN806ZNaN++vSVDXG4PHDgwxZ+pX7++Oistz5N65eLo0aMqCC7rSx4Al0U20uvWrcOUKVPSHI+s07qGeHKSbS6vac4w1510tzM3Mn3lFTlT4NCXN/dhOaQlpzzS8CXoJsqWtd24XJL8+/nwQ2DVKimGb/cmrZQ9SMB6wQKZDaLVBX/llVaIj0/7s5M//8PBb/N1qZalV+Z2vnwx6NUrEbNmeWDSJDhvgFy++DZuBGR7tHEj5N0uI2/q9OnsVExElM2VzOe4DPKj144i0ZQIfx9/BOWyf0NQcl3mzPF58+ap43iZQS2ztxctWqT30IiIKAOMMvs625dYkZIkPXv2RM2aNVGrVi1MnTpVZX73ut9ssEePHqpUipQ1Ef3798f06dMxaNAgvPnmmzh27BgmTZqk6oWbSTDcZDKpLG+pUT58+HBUqFDBsk5Z/8SJE1UzEQmsS4mVGTNmqFItUjNNSM1yKbci08OkrrncliYk0nwkX758cApr1wJbt0rqOjBunMNfPqsB8ogI2aECZDKAlF6gLKhVS6ZXaG/qli3A00/rPSIyCGm7sGQJ8NRTJty9qwXHixZNOQtclryZr4DiMEOGJOKbbzywfj3w119AzZpwHvHxgBwoSmD877+1+zw8kNilC3bWqoUGqTR/JiKi7FdiRRp1JiQmwMPdwyHlVdx45Et2Iv28pK+XZI9LudL3339f9QMjIiLjYIkVje5H5FL65MqVKxgzZowqk1KtWjXV6MPcuPPMmTOWTHEhZ6QlAC7BaqkLLsFzCZaPGDHC8pybN2+qMinnzp1TDTY7deqkAuLmKehSnkWagH7//fcqOJ4/f348+eST2L59OypJ3ZD75VIWLFiAcePGqazykiVLqte0rjGuq8REKXquXZds++KOr99doYJ2efEiEBkpGZyZ+/ljx7RLCY4zcTKL5N9Iu3bArFnAsmUMkFOmSAb5oUPxWLFiO3r2fAp58hjzH6R8l3TrJn0opGkysHix3iNSZ2SB2bOBTz4BwsMf1KLp0wd4+20kFCmCW1KrioiIsr0iuYvAy90LcYlxOH/7PEr4l7Dba7H+ODmCHFf//PPPqrSKdQlUIiIio9E9QC6knEpqJVW2SDZsMnJWeqfU3k6FnL2WJTW+vr5YIimTaZDGnmm9hu6kLsI//wDS/DOVmun2Ji9drBhw7hwgJeYy26jcXF5FslPJRmVWJEAuNemnTtV7NGQwkjVeosRt+PnB0KTqlATIly7VvpccXHnqgatXtbIpsly7pt1XoAAgs53699dq1Yi4OJ0GSEREjiYZ4xIUPxF5QpVZsWuA/CoD5GR/UlaFiIiMzZ0J5M4TIKdMio0F3n9fuy6Z8+ZAiw6kzIoEyKXMSmYD5OYMctYft5EmTbSzFhERcNuzR+/REOn2nSQ9ayVALmX558xx8ABOnQI+/RT49lvg7l3tPmkQPWyY1ivC6GcgiIgoy3XIJUB+KvIUGgY3tNvrMIOc7OWLL75A3759VdKZXE+LdRlUIiJyTiyxomGA3Ii+/ho4eRIoXBgYNEj3YJTU+32UOuRs0Glj0qS2dWs1u8BNssgbNNB7RES6kEk1EiCfO1drz+CQHgdSV1zqi//8s1YCy1y7Rk5iduyoNVsgIiKXF+KvbZRO3Thlt9eIS4hTTToFA+Rka5999hm6d++uAuRyPTVS+54Bcsdq3eJpRFy48ND9XV7shlHvjdFlTJR91X+iNN7u8TSqVyyOoAL+6DL0/7BiywHL4wUDcuN/b7VBszoV4J/bDzv2ncCQKYtx4uwVy3Omje6Cp2uXR1BgHkTdjcXOf07hvWnLcTT8sk6/FbkyBsiNJioKmDBBuz5mDJAzp67DMTfqlFIGmWXOIGeJFRuS1NkFC+C+fDkD5JSye/ekuQNw+nSSxeP0adRMSIDbzZtaPXt/fxjVk08CzZoBGzcCH3+sVTmxC5MJ2LRJC4xv2PDg/pYtgXfe0WZ1sDEaERElyyAXUmLFXo5fP474xHjk8s6F4nkc36eIsrdTMlsuheukv7kLFiExMcFy+/ixY+jf51U0b9FS13FR9pTTzxsHjp7HD8t3YeHHvR96/OdPeiMuPgGdh/wfbt25h7e6N8bqmW/giedDEX0vVj3n78NnsWDNXpy9GIkA/xx4t+8zWDnjDVRo8wESE006/FauiYesGgbIDcb988+By5e1qPJrr+k9HEt938xmkEtciRnkdvDMMyqT3O3oUeQ6e1bv0ZAebt9+EPiWppDJAuGqq24KpBVyUbny++9a11xp9ConXNq2BYKCYDSjR2sBcql0IhWp7vd9to34eGDRIi0wLpnjQjLEX3wRGD4cqFrVhi9GRETZSUhe+2eQm8urVAysqLJ4iexl/PjxGDZsGHJIA3Ird+/exUcffYQxktBFDhMQEJDk9uz/+wbFi5dAjSdr6TYmyr7W/3FYLSkpU6IAalcpieqdQ3H4pHb8+VboLwhfPwFdnqmOOcu0fn/fLf3T8jNnIq7jgy9XY8/CEQguEoBT5+73cSK7456ChgFyA/G+eRPuUttW/O9/WhDLSQLkkpAqcbncuTP2cxERQHS0FlNySPkDVyE1yJs2BdasQdCuXcDrr+s9IrIlObMkDR+TB72tA+GRkemvRw5igoO1Rf4BBgcjPigIJ1euRNmDB+F25Aiwbp22SEPJOnW0YLksBpny0bixNmzptSw9a0NDbbBS+dL67jvgk0+099z8XsrJyiFDtPeTiIgoDSXzahnkUoPcXlh/nBzlgw8+QL9+/R4KkEdHR6vHGCDXT1xcLFavXI6XerzCE2XkcD7eWqjxXmyc5T6TyYTY2HjUq1bKEiC3lsPXGz3a1sapc1dx7uINh46XSDBAbiBlFy+Gm0Shq1cHOneGM5D+oJKZeekSIDE1KW2QmfIqEptzgjh/9tK+/YMAORmL1K6WDO+UMr/Ny5076a8nX74HAfBkgXC1yD/cZDvKprg4HM6bFyVbt4aX9DiQIt7LlgHyOfrzT22RsiGVK2ufMQmWP/GE087HkmFJLXKpFjNjhlYKPG/eR1zZ1avaSqZN005QiMBA6TwFvPGGro2SiYjImCVWzt8+j9iEWHh7eNv8NQ5f1TL6GCAne5OAV0rB13/++eehbGZyrN82bcLt27fRpn0HvYdCLigs/JLKCJ8wsA0GTlyIO3djVYmVYoXzoXBgniTP7du5ASa+1Ra5cvion3t2wJeqNAs5jruTHtM7GgPkRnH6NEquXq1dl1RIdymI4BykDrkEyKXMSkYD5ObyKgZJRjWWtm1h6tcP+Y4dQ2KrVtoZDFkKFnywWN/289N7xK4jLg44dy717G8pixOr1WNLk/z9rAPeyReZSZAV5csDI0dqy/nzgDR9lYD5li3AwYPaIrNY5LXMwfL69QFP59qkPPecFs+X4X75pVZ2JVOkrqbM2pE6LXfvaveVKgUMGwb07KlljxMREWVCoZyF4Ovpi3vx93D25lmUDiht89dgBjnZW758+VRgXJZy5colCZInJCQgKipKZZanJSYmRi3WEty94ePjY7dxu5JlSxahfoOnULCgLesMEmVMfHwiXhz2LWaO6YqILZMRH5+AzbuPYu2OQw/lVy1Y8xc27QxTgfPBLzfB3Mm98PSrUxETG6/X8MlFOVc0g1LlMX483OPjkdikCdybN4czkTIrv/2WuUad5gxy1h+3g8KFYWraFG4bN8JdGgimJ1euh4PmKQXSZZFMWSc6OeNUpC71jRvIdf483Nav1wLLyQPh0lVessTTIu9vsWKpZ3+XKAH4+jrqtwKKFtWypGWR8i2rVmnB8rVrtd9L+iLIIhnVbdpowXL5jnLkGNN4KyWLvHt34LPPgMGDMxjTlrriUl/8558f/L1q1NAy6Dt2dLoTAUREZBwSSJQ65EeuHlF1yG0dIE9ITFDrFgyQk71MnTpVZY+/+uqrqpSKv1Vzd29vb4SEhKBu3bppriM0NFT9rLXR743Bu2PG2W3cruLChfPYtfNPfDx1mt5DIRf295FzqNPtI+TJ5QtvTw9cvXEH275/G3sPJe2VdivqnlpOnL2C3QfCEbElFO2aVMHP6/bpNnZXo2f++Lhx4x7aFpQvXx5HpESFlOm5dw9Dhw7FggUL1EnVli1b4ssvv0QhmzYZ0/Ao3wikJvDcuepq4sSJTjf9QTLIM9uokxnk9pXw88/Y+fnnqBUcDM/r17XGrpLmL5fmRW5LtnJUlLZIWY2MRBwLFEg7iG5925kzbOV3l5JFssjvn9Xr9+5BqgU1Te91vb1Tz/yWQLgEpJ01ACulW156SVukHveGDVqwfMUKrQzJ7NnakjMnILMXJLv82WezUNsk67p00Zp0ysf7//5Pq4qSan13OaEkgXH5vcxattQC402aOG05GSIiMl4dcglih9+438/ChiToHpMQAz9PPwT7szcG2UdPmUknn+WSJVGvXj14PULNzFGjRmGI9HBJlkFOWbd86RIEBOTHUw0b6T0UIhX8FqWLF0D1iiXwwcz7lRFSIIdbciLZ+34Nc3IQnQ9zK1WqhI0bN1pue1rFQ95++22sWrUKv/zyizoZO3DgQHTs2BG///67zcfBT50RjB8PN5MJ5+vVQ8GaNeFsHiVAzgxyO8uVC1eeeAKm1q1TL/IuAcFbt5IGzVMLpMulBNolm1Zuy5IREijNTHa6dG1Nbaz37tkmkG1epNyJHcT7+sKjVCm4SbA7pTIo8ntnhyx8OfkhBb5lkez57dsf1C2XUjGLFmmLfP4kuCyZ5fLcoCCHDlO2rRLfllm+H32kXco5CgsZu4xTAuOSOS7kc/jCC8Dw4UC1ag4dLxERZX+SQW6vRp3m8ioVAivAwz2V/SqiLLh16xby3C/n98QTT+Du3btqSYn5eSmRUirJy6lEx5lsPFrXk5iYiF+XLcVz7donCTIR2VpOP28V9DYLKZIfVcoVReStaJy9GImOzarhSmSUul65TBA+HtYRK7YcUOVU1POL5sfzLZ7Apj+PqOzyogX9MfSVZrh7Lw7rdmQiuESG5+npicKFCz90/82bN/Htt99i/vz5ePrpp9V9s2fPRsWKFbFz507UqVPHtuOw6drIPqZNQ0KBAjhSqRIKAk4bIJcMTdk3Sq+ktcQ6zRnkDJDrSE7PynRIWTLyh5CAsmQJpxVEt74tNQWloaTUcZYlPRI0DgyEZ4ECaBgbC0+pf23ObpeAdoKdGnVIKRApM5M7t7Zk4Xqcjw9Wb9qE1tLo0pW6z8rOtwTBZZFyK/v2acFyWeTMmZSckaV/f0A2YhIsl8VBXwCS5CSztqT8+7x5QK9ecgQWrWW7f/LJg8+nBP1fe01OU2snN4iIiOyUQW7O9rY11h8nR9Qfj4iIQMGCBZE3b94Um3Sam3dKPXJyrF1//oGLERfQvkNHvYdC2Vz1x0pg/ddvWm5PGao1hP1xxS70HTdf1RT/8O32KJg/Ny5evYV5q/Yg9Jt1lufHxMShfrXSGNi1MfLl8cPla7ex4+8TaPLqVBVYJ8dx0zmF/NixYyhSpAh8fX1VeS4pwVWiRAns3bsXcXFxaNasmeW5FSpUUI/9+eefDJC7pEKFkDh1KqLMTTqdjCT/SuUFKU989ChQtWraz4+I0GJTkqTJGJSBSMBXsn8zkgEsZ0EkqJ3R7PRr17Ts9MuX4Xb5MvKltW4JYmYxkG25LYstA9l2yko3FDlIknrdskgjT/lSMGeW79z5YBkxQuZSPWjyWb263UqYyDmQoUO13ppfTbyKnuEz4D5jmva5E1I/XWqvSJ11mclARERkRyXzaQFye5RYYYCc7G3z5s0ICAhQ13+TRlTkVOrWb4C/D2q1e4nsafve4/CrMSjVx79csE0tqYm4egsdBn1lp9FRZtj6MDwmhSbMKc0aErVr18acOXNU3XE5+Sr1yJ966ikcPHgQFy9eVH0t5GSsNak/Lo/ZGgPkZJN/TJJFLiWAJFk0vQC5OXtcguOulGTrch8KmVIpS0YKzUuZi/vZ6fHnz2Pvjh2o0bgxPOXMi3VgW0q2pFaGhZxTuXJaMFwWaVL6669awFwOqP77T1smTtSaj5qD5Q0a2LwO++stw5Hr3U/x0olv4T4+WruzZEktav7KK85dL5+IiLJniRVmkJMBNWrUKMXrREREqTVhHjt2rGrImVwr6V12X5UqVVTAPDg4GD///DP80itPYWPZoBAuGa0Oubn+OBt0koUEQ6XmVJUqMDVrhou1asHUuDEgNfcrVNAaV0qwncFxYytSRCuzIuVWZOaANB/u1EkLTp85A3zxhVamRT4LUgdl+XKtblNWSF3xbt2Qq1oZvB4zDTkRjUN+1WFasFDLbpescQbHiYhIhxIrF6Mu4m5cFrdzVhJNiTh89bC6zgA5OcLatWuxY8cOy+0ZM2agWrVq6NatGyJlejERETk9Nxsvo0aNUvXDrRe5LyMkW7xcuXI4fvy4qkseGxuLGzduJHnOpUuXUqxZnlUMkJNuAXLWHydyYTI7oHt3rUGmzB6QzHIJikuJEyl9MmeO1tSzQAHg+ee14uHJNoxplvjZtAlo2VIr3fLTT6qGfWyTFnjOdyMq3f0L6/y72DxLnYiIKCMC/AKQ2zu3un765mmbrffMzTOIjouGt4c3SuUrZbP1EqVm+PDhqmmnOHDgAIYMGaJ68Zw6dUpdJyIi1+Pj46OaNFsvKZVXSUlUVBROnDiBoKAg1KhRQ/V22yTH9veFhYXhzJkzqla5rTFATjZRsaJ2eVhLWslQiRVmkBORIlOn2rYFvvsOkFpiUn5FaoJL2RVp9Lp4MfDSS1qwvEULYOZMrVxLSqV6Fi7UZh5IIw/JVJdZB127qkxy783rUGFAU3Vee9IkPX5RIiIiqUTn9qDMSuQpm5dXKZ+/PDzdeRKY7E8C4Y/dz5RavHgx2rRpg0mTJqlM8jVr1ug9PCIi0iOFPBOGDRuGrVu3Ijw8HH/88Qc6dOgADw8PdO3aFf7+/ujdu7c64So9L6RpZ69evVRw3NYNOgUD5GTTDHLJDo+NTfu5zCAnolRJVreU1/n8cyA8HNi7F3jvPa2hpwTAN2zQyqJI2R05a/zhh8DBgwhZvRqelSsDL74I7NunBd3ffFP7wpk/H6hWTa1ekpm8vYHt27WFiIhIz0adtqxDzvrj5GjSPC06WuvtsnHjRrSQRAaZJREQYMksJyIi5+Zm4/8y49y5cyoYLk06u3Tpgvz582Pnzp0oIMlxAD777DM899xz6NSpExo2bKhKqyxZsgT2wNQCsolixbReilFRWoa4OWCeUuUDZpATUYabvUqJFFkmTNCC3cuWaU0+//wT2LlTLV4jR8LSGzgwUAuMSxBdrqdQBl16cn79tTQPAZ56ytG/FBER0YM65OE3wm22TgbIydEaNGigMvvq16+P3bt3Y6HM5IO0eTmKYnKASERElIYFCxak9TB8fX3VrCRZ7I0Z5GSzOFZG6pBHRACSZCBVD0pqxwVERBkj006GDwf++EMrsSKlVlq0gMnTE3cKFUKCZJ2fPg2MGZNicNzsnXcAd3dAZv7u3+/Q34CIiEixlFhhBjkZ2PTp0+Hp6YlFixZh5syZKCoz/CD7WGvwzDPP6D08IiLKYDzPzYaLUTGDnGxGAuS7d6ddh9ycPR4SAnh5OWxoRJTdBAUB/fqpJf7uXWxctw6tn30WHhn4YildWqvEIpVXJIv8frITERGRwzPIbVWD3GQyMUBODleiRAmsXLnyoftlSjwRERmDgWPaNsUAOdm8UWdaGeTm+uMsr0JENq1bnslT1SNHagHyX37RqreUK2e30REREaVag9xWJVbO3z6P27G3VXPOMgHc0SbHSUhIwLJly3D4fpZUpUqV0LZtW9VkjYiIyChYYoVsJiMlVswZ5GzQSUR6evxxoE0brS+C9PkkIiLSo8TKtbvXcDvmdpbXZ84eLxtQFt4e3lleH1FGHD9+HBUrVkSPHj1U0zRZXnrpJRUkP3HihN7DIyKijHCz8WJQDJCTzQPkYWGSSZDyc5hBTkTOYvRo7fLHH4GzZ/UeDRERuZI8PnkQ4BdgszrkLK9CenjrrbdQunRpnD17Fvv27VPLmTNnULJkSfUYERE5Pzcb/2dUDJCTzQQHA35+QEwMcOpU2gFyZpATkd7q1AEaNwbi4oBPPtF7NERE5Kp1yG1RZoUBctLD1q1bMWXKFAQEaCd7RP78+TF58mT1GBERkVEwQE42I2XmypdPvcyKlDIwl1hhBjkROVMW+ddfA1eu6D0aIiJyxTIrtmjUyQA56cHHxwe3bz9cIigqKgre3iz1Q0RkBNLOy82Gi1ExQE4Oq0MeEQFER2uB9BDteICISFfNmgE1awJ37wKff673aIiIyBUzyLNaYsVkMjFATrp47rnn0LdvX+zatUt9DmXZuXMn+vXrpxp1EhERGQUD5OSwALk5e1xKsTChgIicgZzhNmeRT58O3Lql94iIiMhVlMxnmxIrl+5cQuS9SLi7uaNc/nI2Gh1R+r744guUKVMG9erVg6+vr1rq16+v7vucmQdERIbAHp0az/uXRHYPkLP+OBE5o3btgIoVgcOHgZkzgREj9B4RERG5VImVLGaQm7PHS+crDV9PX5uMjSgtiYmJ+Oijj7B8+XLExsaiffv26NmzJ9zc3FCxYkUVICciIoMwclTbhphBTjYlQSZx5IjsOKWcQc4AORE5E3d3YORI7fqnn2rlVoiIiBxWYiXylCpN8ahYXoUcbeLEiRg9ejRy5cqFokWLYvXq1Vi2bBnatGnD4DgRERkSA+RkU6VLA15ewJ07wNmzKWeQc5+JiJxN165a+afLl4HZs/UeDRERuVIG+e3Y26pEyqNigJwc7YcffsCXX36JdevWqcD4ihUrMG/ePJVZTkRExuJm4/+MigFysikJjpcrl3KZFWaQE5Ezf3e98452fcoUIC5O7xEREVF25+flh0I5C1myyB8VA+TkaGfOnEHr1q0tt5s1a6bKq1y4cEHXcRER0aP15XKz4WJUDJCTQ+qQy6xRc4CcGeRE5Ix69QIKFgROnwZ++knv0RARkSs16sxKHXIGyMnR4uPjVUNOa15eXohjhgERERkUm3SS3eqQS8M7s4gIreyKhwcQos0mJSJyKn5+wJAhWj3yyZOBl17S6pMTERHZsw75znM7EX4j/JF+/sqdK7gSfUVNaa4QWMHm4yNKidTMf+WVV+Dj42O57969e+jXrx9y5sxpuW/JkiU6jZCIiDLKwEnfNsUAOTkkg/zECe2fnNT49fbWaWBEROno3x8IDdVO8P36K9Chg94jIiIiV6hD/qglVg5fPWxZTw6vHDYdG1Fqevbs+dB9L0lmARERGQ8j5AoD5GTXALmUVhGsP05ERpAnDzBwIDBxIjBpEtC+vbHrqBERkfNnkGelxArLq5AeZrOjORERZTOcPE42J006pSzBzZtaaRVx/LgWYWL9cSJydoMGaeVW/voL2LhR79EQEZEr1CB/1BIrDJATERFRVrjZ+D+jYoCcbE5K0ZkD4UeOuCUJkDODnIicXYECQN++2nXJIiciIrJ3iRUJkEtd58xigJyIiIgomwTIZ8yYgZCQENUJu3bt2ti9e3eaz79x4wYGDBiAoKAg1RikXLlyWL16teXx27dvY/DgwQgODoafnx/q1auHPXv2JFnHuHHjUKFCBdVEJF++fGjWrBl27dqV5DnXr19H9+7dkSdPHuTNmxe9e/dGVFSUjX/77N6o0y1JDXIGyInICIYOBby8gC1bgD//1Hs0RESUXZXwL6Gyre7G38WlO5cy/fMMkBMREVFWSElRNxsuRqV7gHzhwoUYMmQIxo4di3379qFq1apo2bIlLl++nOLzY2Nj0bx5c4SHh2PRokUICwvDN998g6JFi1qe89prr2HDhg348ccfceDAAbRo0UIFwM+fP295jgTVp0+frh7fsWOHCtDL865cuWJ5jgTH//vvP7WulStXYtu2behrTiukDNUhl0Z3kgxz4oR2myVWiMgIihcHXn5Zuy5NO4mIiOzB28MbxfIUe6QyK5F3IxERpdUzrBh4PzuFiIiIKBPcbLwYle4B8k8//RR9+vRBr1698Nhjj2HWrFnIkSMHvvvuuxSfL/dLZveyZctQv359Fdhu1KiRCqyLu3fvYvHixZgyZQoaNmyIMmXKqGxxuZw5c6ZlPd26dVNB81KlSqFSpUpqHLdu3cK///6rHj98+DDWrl2L//u//1NZ7Q0aNMC0adOwYMECXLhwwUHvTnYIkLshMtIHd+64wcMDCNFmkRIROb0RI7Qz4CtWAPc3DURERHYrs3IqMnONOg9fPawui+cpjtw+ue0yNiIiIiJX4Knni0s2+N69ezFq1CjLfe7u7ipw/Wcqc9qXL1+OunXrqhIrv/76KwoUKKCC3SNGjICHhwfi4+ORkJCgyrVYk1Irkime2ji+/vpr+Pv7WwLt8vpSVqVmzZqW58m4ZIExTjUAADocSURBVHxSiqVDhw4PrScmJkYtZhJwF3FxcWrJCvPPZ3U9jmzUCXipAHlERC51X3CwCW5u8TDIr2C499wax64Pjj17jb1kSaBTJw8sWuSOSZMS8eOPCXDWsRvx70ZERA8adW4/sx2nbmQuQM7yKkRERJRlRk77zi4B8qtXr6pgdqFChZLcL7ePHDmS4s+cPHkSmzdvVuVPpO748ePH8cYbb6jggJRpyZ07twqgT5gwARUrVlTr+umnn1TAW7LIrUnZlBdffBHR0dGqnrmUUgkMDFSPXbx4EQULFkzyfE9PTwQEBKjHUhIaGooPPvjgofvXr1+vsuJtQcZoBPfueQB4DlevuiEsLJ+6z9//Mlav3gmjMcp7nhKOXR8ce/YZe716ebBoURP88osbGjfegqCgaDjj2GU7RkRExhTi/6BRZ2YwQE5ERERZJb1QSOcA+aNITExUgWvJ+JaM8Ro1aqja4h999JEKkAupPf7qq6+quuTynOrVq6Nr164qW91akyZNsH//fhWolzrmXbp0UdnhyQPjGSWZ8FJP3TqDvHjx4qq2uTT6zAo5ASABFKm/7iWd4wwgJMSE8HA37N5dWN2uUycQrVu3hlEY8T0349j1wbFnz7GvX5+ItWvdsXfv0/jyy0SnHLt5xhIRERkzg1wwg5yIiIjIBQPkkq0tAexLl5J2bJfbhQtrQdXkJNNbggjyc2aSKS5Z3VIqxdvbG6VLl8bWrVtx584dFTSQn3nhhRdUvXFrOXPmVFnlstSpUwdly5bFt99+qwLd8vrJG4VK+Rapf57a2Hx8fNSSnIzXVkEbW67LEXXIw8OBsLAAdbt8eQ94eT34uxmFkd7z5Dh2fXDs2Wvs774LrF0L/PCDB8aN84BVT2inGbtR/2ZERASUzKsFyJlBTkRERI4mfbdI5yadEsyWDPBNmzYlyRCX21ImJSXSmFPKqsjzzI4ePaqC4LK+5AFwuT8yMhLr1q1Du3bt0hyPrNNcQ1xe/8aNG0myzqW0izxHmnZSxht1mkzav7ZkFW6IiAyhQQPgqaekX4U0ltZ7NMY1efJkuLm5YfDgwZb75OT2yy+/rE48yzZbZnxJo+20SONtWY/1UqFCBQf8BkRE9m3SefrGaSQkZqzfxa2YWzh766y6XjGwol3HR0RERJTd6RogF1KSRMqbfP/99zh8+DD69++vMr979eqlHu/Ro0eSJp7yuGRxDxo0SAXGV61ahUmTJqmmnWYSDF+7di1OnTqlpq5LKRU5eDavU9Y/evRo7Ny5E6dPn1ZBcCnJIqVaOnfubMlKf+aZZ9CnTx/s3r0bv//+OwYOHKhqlhcpUsTh75MRVUy2r162rF4jISLKGvNm6KuvgGvX9B6N8ezZswdfffUVqlSpkuR+2caHhYWpBtwHDhxAx44dVbmzv//+O831VapUCREREZYltSbcRERGUCxPMXi6eyIuMQ4Xbl/I0M8cuar1awrKFYR8flq/HyIiIqLMcrPxYlS6B8il9MnHH3+MMWPGoFq1aqomuAS3zY07z5w5ow5+zaSmtwTA5WBbDrTfeustFSwfOXKk5Tk3b95UAXMJisvBd4MGDdTPmKegS3kWaQLaqVMnlCtXDm3atMG1a9ewfft2ddBtNm/ePLWOpk2bqtrZsh6pfU6ZyyAXHh4mhGjJMUREhvPMM0C1anKCFZg2Te/RGEtUVJRqrC0nw/PlSxrE+eOPP/Dmm2+iVq1aqgzae++9h7x58z7UMyQ5aZotWefmxdxgm4jIiDzcPVDCv0SmyqywvAoRERHZBCPkztOkUzKzZUnJli1bHrpPyp9I9ndqJPtMltT4+vpiyZIl6Y4rICAA8+fPT/d5lH4GeXCwlNTRczRERFmryzZ6tGxfgC++AIYOBXLn1ntUxiAnrJ999lk0a9YM//vf/5I8Vq9ePSxcuFA9LoHxn3/+Gffu3UPjxo3TXOexY8fUbC7Znss+QWhoKEqU0IJLKZHyaeYSatZNTaVJqiyPyvyzWVmHXjh2fXDs+jDC2IPzBONk5Ekcu3YMdYrUSXfsBy4dUJcV8ldw2t/LCO+7vcdttN+diIjIVTlFgJyyJ39/oGhRE86fd0OZMiZjn0oiIpfXsSNQrpz0vQBkMpEEySltCxYswL59+9Ssr5RIQFxmkuXPn19lhefIkQNLly5VzbNTI31A5syZg/Lly6sZZh988AGeeuopHDx4ELlTOWshAXR5XnLr169Xr5lVUs7NqDh2fXDs+nDmsXvc1hrZb9izAfnP5k937NtOblOXCRcTsHr1ajgzZ37f7T3u6Ohom4yFiIjIXtwYq1MYICe7qlBBC5CXLi0BciIi4/LwAEaMAHr3Bj75RDKjZUaS3qNyXmfPnlUl0CTAIJneKXn//fdVQ+yNGzeqMinLli1TM8Ck5Nnjjz+e4s+0atXKcl1KrUnAPDg4WAXbe8sfJwXSy0R6nlhnkEvJthYtWiBPnjxZygyU36958+aWMm5GwbHrg2PXhxHG/s/v/2Dj1o3wLuitSjumN/a3v3xbXXZu3BlPlXgKzsgI77u9x22esUREROTMs6WJAXKys6efNmHTJuCppxggJyLje+klYOxY4Nw54Pvvgddf13tEzkvqiF++fBnVq1e33JeQkIBt27Zh+vTpqjmnXErmt7n/R9WqVVVwfMaMGZg1a1aGXkdKs0g/kePHj6f6HB8fH7UkJ4EPWwRtbLUePXDs+uDY9eHMYy8dUFpdnr55OsUxWo/9TuwdS63yKkFVnPZ3MsL7bu9xG/H3JiIickW6N+mk7G3YsETMnr0Wzz/PADkRGZ/0Uhg+XLv+4YdAfLzeI3Je0uD6wIEDqvm2ealZs6Zq2CnXzdPO3d2T7opII+3ExMRMNQE9ceIEgoKCbP47EBE5Ssl8JdXlqRun0n1u2LUwmGBCgRwFEJiDTYqJiIjo0bFHp4YBcrL7VI18+R40RiMiMrrXXgMCA4FTp6SGtt6jcV5SD7xy5cpJlpw5c6p643K9QoUKqtb466+/jt27d6sg9yeffKKmtbdv3z5JoF0yzc2GDRuGrVu3Ijw8HH/88Qc6dOiggupdu3bV6TclIsq6knm1APm5W+cQl5B2Y8dDVw6py8cKPOaQsREREVE2xgi5wgA5ERFRJkhPx8GDteuhoUAmkp0p2bRzaSxXoEABtGnTRtUT/+GHH/D9998nqb8rgfOrV69abp87d04Fw6VJp9Qrl4D7zp071XqIiIyqUK5C8PHwQaIpEWdvnU3zuQyQExEREdkWa5ATERFlkjTolBIrBw8CK1cCbdvqPSJj2LJlS5LbZcuWxeLFi9P8GckUt7ZgwQK7jI2ISE/ubu4IyRuiyqecijyFUvlKpfpcBsiJiIjIVtyMnPZtQ8wgJyIiyqS8ebUguZg0CTCxzQIREdmoDrm5AWdqGCAnIiIisi0GyImIiB6BlFnx9QV27ZLMaL1HQ0RERhfiH5Juo8578fdwIvKEus4AOREREdmid6CbDRejYoCciIjoERQqBPTu/SCLnIiIyBYZ5GkFyI9eO6rqlOf1zYtCOQs5cHRERESUHbFHp4YBciIiokc0fDjg6Qls3Ajs3q33aIiIyMhK5k2/xIp1eRU3I6dpERERETkRBsiJiIgeUXAw0L27dj00VO/REBGRkUmTTiFNOtMNkAeyvAoRERHZAFPIFQbIiYiIsmDECK3W2rJlwCEtbkFERPTIJVYioiJwN+5uis9hg04iIiKyJTcb/2dUDJATERFlQcWKQIcO2vXJk/UeDRERGVV+v/zI5Z1LXT9z80yKz2GAnIiIiLKL0NBQPPnkk8idOzcKFiyI9u3bIywsLMlzGjdurMrKWS/9+vWz+VgYICciIsqiUaO0y/nzgVOpz4wnIiJKlRzwWcqspNCoMzYhFseuH1PXGSAnIiIiW5DZ0G42XDJj69atGDBgAHbu3IkNGzYgLi4OLVq0wJ07d5I8r0+fPoiIiLAsU6ZMse2bAMDT5mskIiJyMTVrAi1aAOvXAx99BHz5pd4jIiIiozbqPHj5YIp1yI9fP474xHiVZV4sTzFdxkdERETZi55FUdauXZvk9pw5c1Qm+d69e9GwYUPL/Tly5EDhwoXtOhZmkBMREdkwi/y774CLF/UeDRERGTVALsJvhKdZXkWyzYmIiIicTUxMDG7dupVkkfsy4ubNm+oyICAgyf3z5s1DYGAgKleujFGjRiE6Otrm42aAnIiIyAYaNQLq1pUdAuCzz/QeDRERGVFaJVZYf5yIiIicvcRKaGgo/P39kyxyX3oSExMxePBg1K9fXwXCzbp164a5c+fit99+U8HxH3/8ES+99JLN3weWWCEiIrIB2RkYPRpo00YrsTJyJJAvn96jIiIiIymZr2T6AfJABsiJiIjIOY0aNQpDhgxJcp+Pj0+6Pye1yA8ePIgdO3Ykub9v376W648//jiCgoLQtGlTnDhxAqVLl7bZuJlBTkREZCPPPgtUqQJERQHTp+s9GiIiyq4lVoiIiIhsQ8q22W6RYHiePHmSLOkFyAcOHIiVK1eqLPFixdLus1K7dm11efz4cZu+CwyQExER2TCLXDLHxeefA8mabxMREWWoxMrV6KuIio2y3C/NOcOuhanrDJATERGRs5ZYyQyTyaSC40uXLsXmzZtRsqSWKJCW/fv3q0vJJLclBsiJiIhsqHNnQGZ6XbsGfPON3qMhIiIj8ff1Rz5frT7XqcgHZVZORp5EbEIs/Dz9EJw3WMcREhEREdmGlFWR+uLz589H7ty5cfHiRbXcvXtXPS5lVCZMmIC9e/ciPDwcy5cvR48ePdCwYUNUkanbNsQAORERkQ15egIjRmjXP/5Ya9pJRESU2Trk1mVWDl89rC4rFqgIdzcewhEREZEzFljJnJkzZ+LmzZto3Lixygg3LwsXLlSPe3t7Y+PGjWjRogUqVKiAoUOHolOnTlixYgVsjU06iYiIbKxHD2DcOOD8eWDuXKB3b71HRERERiqzsi9iX5JGneYAOcurEBERkS1ltiyKLUmJlbQUL14cW7duhSMw/YCIiMjGpAfJ0KHa9cmTgYQEvUdERERGa9RpXWLFEiAPZICciIiIyNYYICciIrKDvn2BgADprg0sWqT3aIiIyGgB8vCbD5dYYQY5ERER2ZKbjf8zKgbIiYiI7CBXLmDQIO16aKhMH9N7REREZJQSK9YZ5AmmBBy5dkRdZ4CciIiIyPZYg5yIiMhOBg4EPvoI+OcfYM0aoHVrvUdEGa2FFx8fj4R0auPExcXB09MT9+7dS/e5zoZjd92xe3h4qDG46VlwkjLUpFNqkMv30ZXYK7gXfw8+Hj6Wx4iIiIhsgruECgPkREREdiIlVvr1Az7+GJg4EWjVSt8mKJS+2NhYREREIDo6Ot3nSuCqcOHCOHv2rOGCjRy7a489R44cCAoKgre3t25joPQzyG/F3MKNezdw7t45dbt8YHl4uvPwjYiIiGzHWHvT9sM9LCIiIjsaMgT44gvgjz+A7duBhg31HhGlJjExEadOnVIZtkWKFFHBw7SCmPL8qKgo5MqVC+7uxqpax7G75tglQC8nga5cuaI+62XLljXce+gKcnjlQMGcBXH5zmVVh/xszFl1P8urEBEREdkHA+RERER2FBQEvPoqMGsWMGkSA+TOTAKHEsAsXry4yrBNjzxXfsbX19dwQUaO3XXH7ufnBy8vL5w+fdoyFnLORp0SIJcyK2fv3Q+QBzJATkRERLZlsAmZdmOsowoiIiIDGj4ckFjYunXAvn16j4bSY7SgK1Fm8TNunDIrp2+efhAgZwY5ERER2Zibjf8zKu4dExER2VmpUkDXrtr10FC9R0NEREbIIBenIq0yyBkgJyIiIrILBsiJiIgcYORI7XLxYuDIEb1HQ/Swxo0bY/DgwZbbISEhmDp1apo/IzXaly1bluXXttV6iLKLkvm0APmOsztwL/Geas5ZJqCM3sMiIiKi7MbNxotBMUBORETkAJUrA23bSpM84MMP9R4NZSdt2rTBM888k+Jj27dvV8Hnf//9N9Pr3bNnD/r27QtbGjduHKpVq/bQ/REREWjVqhUc4e7duwgICEBgYCBiYmIc8ppEj1pi5eCVg+qybEBZeHl46TwqIiIiym4YH9cwQE5EROQgo0Zpl3PnAmfO6D0ayi569+6NDRs24Ny5cw89Nnv2bNSsWRNVqlTJ9HoLFCiQoWaltlC4cGH4+Pg45LUWL16MSpUqoUKFCrpnrZtMJsTHx+s6BnLuEitmFQMr6jYWIiIiouzOKQLkM2bMUNN4fX19Ubt2bezevTvN59+4cQMDBgxAUFCQOpgqV64cVq9ebXn89u3baopwcHAw/Pz8UK9ePZUFZRYXF4cRI0bg8ccfR86cOVGkSBH06NEDFy5cSPI6MibJurJeJk+ebId3gIiIXEGdOsDTTwMSD/v4Y71HQ9nFc889p4LZc+bMSXJ/VFQUfvnlFxVAv3btGrp27YqiRYuqoHfVqlWxaNGiNNebvMTKsWPH0LBhQ7W/9thjj6mgfHKyfyX7ZfIapUqVwvvvv6/2u4SM74MPPsA///xj2a8yjzl5iZUDBw7g6aefVvtx+fPnV5ns8vuYvfHGG+jQoQM+/vhjtT8oz5F9Q/NrpeXbb7/FSy+9pBa5ntx///2n3tM8efIgd+7ceOqpp3DixAnL4999950KsMs+qLz2wIED1f3h4eHq99i/f3+SfVa5b8uWLeq2XObLlw9r1qxBjRo11Dp27Nih1t+uXTsUKlQIuXLlwpNPPomNGzcmGZdku8v7W7x4cfVzZcqUUeOXILtcl/fCmoxDXvv48ePpvifkfEr4l0jS6IoBciIiIrIHNzfbLkblqfcAFi5ciCFDhmDWrFkqOC4HYi1btkRYWBgKFiz40PNjY2PRvHlz9Zgc2MmB3unTp5E3b17Lc1577TUcPHgQP/74owp+z507F82aNcOhQ4fU86Ojo7Fv3z510CYHiJGRkRg0aBDatm2Lv/76K8nrjR8/Hn369LHclgMlIiKiRzV6NLB5M/DNNxJM1Hs0lB4JPkbHRaf4WGJiIu7E3YFHrAfc3W2fc5DDK4cKcKbH09NTneiXYPO7775r+RkJjickJKjAuASXJSArAVYJ/K5cuRL9+vVD5cqVUUfO3KRDfteOHTuqAO6uXbtw8+bNJPXKrfeTZByy/yVBbtmHkvveeecdvPDCC2r/bO3atZbgr7+//0PruHPnjtoXrFu3rkpwuHz5stq3k0C09UkACTbL6/z2228qCCzrl/It1vttyUkg+s8//8SSJUvU3/btt99W+5GSVCHOnz+vTgJIPfbNmzer9+r333+3ZHnPnDlT7bdKwoSUhJH3QR7PrNGjR6uAtpxEkID52bNn0bp1a0ycOFEFv3/44QdVOkf2h0uUKKF+Rv7GMvYvvvhC7b+eOnUKV69eVX/vV199Vc0WGDZsmOU15Lb8LhI8J+Px8fRBkdxFcP72eXWbAXIiIiKibBwg//TTT9WBTK9evdRtCZSvWrVKZeeMNHc0syL3X79+HX/88Qe8vLwsGU7WdSVl6uyvv/6qDgrM9S5XrFihDmr+97//qYOx5FlP06dPR61atXDmzBnLgYiQgzqZ9ktERGQLkkH+5JNS3xn44gt31Kun94goLRIczxWaS5fXjhoVhZzeOTP0XAmQfvTRR9i6dasK7poDpJ06dVL7PbJYB08l2Cz7WxJEz0iAXALaR44cwbp161RQWkyaNOmhuuHvvfee5brsn8lrLliwQAXIJRtcsqMloJ/WvtX8+fNx7949FSSWmX7m/TQJGH/44YcqW15IYFnu9/DwUOVSnn32WWzatCnNALnsR8qY5WeFBOLlfZJ9RfOsRnmvZMzm/UzJiDeT/cihQ4eqxAozyfbOLHk9Sfgwk5roEvQ2mzBhApYuXYrly5erv9XRo0fx888/q/1XSfoQElw3e+WVVzBmzBg1C1P2ZyWTXt7H5FnlZLxGnQyQExERkT1Zz1hzZbqWWJFs8L1791p29NWA3N3VbcmQSYkcKEhGkUyjlSwmyXySAzTJkBKS4SPXZfqvNTkokymsqZEMIMnAsc5EF5IhJNN2n3jiCXXgyTqRRESUFZLcK1nkYtYsd9y5o/u5asoGJEAsJeUkACwko1oadEp5FSH7RhJ0lfJyEoyVzGjJkJbEgIw4fPiwKu1hDo4L2R9LaWZg/fr1VQBcguESMM/oa1i/lgSLzcFxIeuULHbJqDaTMi8SHDeTcieSbZ4aeQ++//57VVrFTK5LVrqs21yWREqqmIPj1mTdUo6vadOmyCqpC29NMvzlZELFihXVvqi8d/I+mN87GZf8ro0aNUpxffJ3kRME5r+/JIZISZbOnTtneaykfx1yd7ijXMCDEzVEREREtsISKxpdj8plWqgcrEig25rcliyllJw8eVId0HXv3l3VHZcDQKlDKZkyY8eOVRnfcsAmB4FykCHr+umnn1TAPbUpppKlJFOOZQqyHDCavfXWW6hevbo6kJSM9VGjRiEiIkJlvadEDkRkMbt165a6lLFlpCZmWsw/n9X1OJpRxy04dn1w7Prg2B1Lkm4rVvTE4cNuWLOmJNq3t802gmCXMieSyZ0SCareun0LeXLnsVuJlcyQYPibb76psqAlK7p06dKWgKqc5P/8889VKTsJkkvigDxXkhVsRfa1ZP9M6oxLZrY5E/uTTz6BPSQPYkuigznQnRLJfpcSKlKKxZrsi0rmuWR0y/uSmrQeE+bPgJRuSe/fpnXwX0hwXLLDJeNb9lfltZ5//nnL3ye91xZShubll1/GZ599pv7+8ns6qskq2UdIXm2WbGGfwqrkChERERHZh+HS1uTAR+qPf/311yqTRuppysGOHPhJgFxI7XGZaiz1xuU5EuSW4LdkqycnBy5dunRRBzNSgsWa1Jg0q1KlCry9vfH6668jNDRU1YdMTu6Xg8Lk1q9fb7MDlJQaYhmBUcctOHZ9cOz64Ngdp2XLYjh8uAZWrSqFtWvXw8PjQVAts6S3BtmHBF1TK3Mi+yQJXgnqcXsEyDNL9mek9IeU1pDyJP3797fUI5c62dIE0pw9LTPipB63NJvMCEk6kDrZkiggmdpi586dSZ4jyQRSy1vqoJtJfW9rsi9lnvWX1mtJVrfUIjcHkmX88h6XL18ej0oaWr744otJxiek7rc8JgFy2d+TLHPZP0wegJckDCkbI8H0Jk2aPLR+c+kXeY9k5qGwbtiZFvn9pEyKNB41Z5RL008zOakhnzcpoWM989Ka1DCX90v2Z6XO+7Zt2zL02uS8qhbSyu6UzVFW76EQERERZWu6BsgDAwNVAPvSpUtJ7pfbqdWmlIMyOWCxnlIrB1IXL15UWTZy4CUZU3IAIQdWksUtPyNZNNa1Gq2D43LwZm7ElBZpIioHlHLAktIBmmSYWwfV5bVlOnKLFi3SXXd6ZKwS/JGDt5Sm/Toro45bcOz64Nj1wbE7XosWEnyNQ7lyO/DMM82yNHbzjCVybVKWQ/Z3ZH9EPhMScDUrW7asam4uQWypvy1Z3VIyJKMBcgnKSi3unj17qqQEWX/yQLO8hpQEkaxxqcstNc6ljrY1CTBLc0kJHBcrVkwFnZMnHUgWuiQ9yGtJre4rV66obHfJjpaZgWlliadG1iFlR6RUn5TnsybNLyUwLT1upN73tGnTVCBd3kfJgpcTAVLXW/b9ZDzS3FSSNaSW+e3bt1VwW8YnWd5Sz13K85UsWVK9v9Y12dMi7500DpU663JSQxrJW/+e8r7J+yEJIOYmnbL/Kq8h+7JC9o3lby7jlvWlVAKHjKV9hfZY8cIK3Pjvht5DISIiomzKyGVRsk2AXILZkgEumTjt27dX98nBgNyWA5SUSA1KyYyS55mztaRxkQTBZX3WJItGlsjISDWtdsqUKQ8Fx48dO4bffvtN1RlPjxzMyWvKQVFK5AAvpcxyCXrYKmhjy3U5klHHLTh2fXDs+uDYHUeG+uGHcVi9+k6Wx26k35vsS8qsSDa0ZBNb1wuXQK2UqZPSJzKrTRpZSs3qjM4+kP0fCXbL+iVYLAFbCdQ+88wzlue0bdsWb7/9ttqHk5Jzsn4J9JobYAppGiqBYMnAvnHjhioFYh3IFzI+2W+TbHgJtMtt+bnUStxlhLnhZ0r1w+U+CW7PnTtXldeTpInhw4er8jQSdK5WrZra/xQSpJbSfFLGRMqiSLKHlEIxkxrg8h7J/q0E1GXfUxIl0iO/mwS/pY68rFNK/yU/8SWZ4aNHj1alBa9du6aaystta/La0punV69ej/xekfPwcPdAy9ItsTpstd5DISIiIsrWdC+xIhnXcrAhzYrkgEtqY0rmt3nHXrJ6pFSKlC8RMl14+vTp6qBJsnUkwC0HAnJAYyYHVVIyRQ5MpEa5HORI8yrzOiU4Lgcz+/btw8qVK9VUX8lAF1JvXALtUkdz165d6gBOspvkthz0ydRkybwiIiIicjaSNWxdA9tM9m+WLVuWtH76rVtJZrht2bIlyc9Yl/gQkkEujT+tJX8tCQhbJySIwYMHW65LIoFksieXfD1SUkQC1an58ssvH5qdJ/uQqRk6dKhaUiL7fZJMYSZlVmRfMjVSbk+WlMisRsnST+13a9y4sXqt5GOXEw7Jf19pSG9NGtBLID2tEwVSdlBOmMn+MxERERFRetzAFHKnCJDLVGCZ9jpmzBgVpJYsHambaG7cKVN1ret6SskSOWiRYLUcwEjwXILlkmljdvPmTTW99Ny5c+qAULKOpL6kOcNODh5kiq2Q17Mm2eRy8CIHcDJFWLKeJAtKpsrKa1qXUCEiIiIi0pvsq8r+tOy3du7c2bIfTUREREREBgiQC5mKm1pJleTZTObsqOSNoaxJ6RRzPcaUSJZOStlV1qSxZ1qvQURERETkDH766SdVXkUSP6ScDBERERFRRrAGueZBajYRERERERmO1HGXkoF79+5VsyuJiIiIiDLCzcaLUTFATkREREREREREREQuySlKrBARERERERERERGRAxk57duGGCAnIiIispJenxIio+NnnIiIiIiEGyPkCkusEBEREQHw8vJSl9HR0XoPhciuzJ9x82eeiIiIiMiVMYOciIiICICHhwfy5s2Ly5cvq9s5cuSAWxpt3RMTExEbG4t79+7B3d1YOQccu2uOXTLHJTgun3H5rMtnnoiIiIhcVxqHOy6FAXIiIiKi+woXLqwuzUHy9IKNd+/ehZ+fX5qBdGfEsbv22CU4bv6sExEREZHrMtbetP0wQE5ERER0nwQtg4KCULBgQcTFxaX5XHl827ZtaNiwoeFKVXDsrjt2eV1mjhMRERERPcAAOREREVEyEkBML4goj8fHx8PX19dwgVqOXR9GHjsRERERZUNMIVeMVbiRiIiIiIiIiIiIiMhGmEFORERERERERERE5GLcmEKuMEBORERERERERERE5GIM1vPebhggtyOTyaQub926ZZOmTtHR0WpdRqpZadRxC45dHxy7Pjh2Y4/dvJ0xb3fIMdtnfvb0wbHrg2PXB8du7HFz+0xERGQMDJDb0e3bt9Vl8eLF9R4KERG5yHbH399f72E4PW6fiYjIkbh9zpgcXkxjtIWYmBiEhoZi1KhR8PHx0Xs4hnZ37+d6DyFb4GfSufkyMqy4mXg6224SExNx4cIF5M6dG25ZnLMg2QdyIH/27FnkyZMHRmHUcQuOXR8cuz44dmOPXTblcvBdpEgRuLuz/7ajts/87OmDY9cHx64Pjt3Y4+b2mfT6DMsJmZs3bxrq3x5lX/xMkhHwPIEdyU5QsWLFbLpO+TIx4heKUcctOHZ9cOz64NiNO3Zmpum3fXb1z55eOHZ9cOz64NiNO25un4mIiJwfT2MTERERERERERERkUtigJyIiIiIiIiIiIiIXBID5AYhjQzGjh1ruIYGRh234Nj1wbHrg2PXh5HHTsb++3Hs+uDY9cGx68OoYzfquInM+BkmZ8PPJBkBm3QSERERERERERERkUtiBjkRERERERERERERuSQGyImIiIiIiIiIiIjIJTFATkRERERERETkgkJCQjB16lS9h0HZzJYtW+Dm5oYbN26k+Tx+/shZMEBuADNmzFBfGr6+vqhduzZ2794NI9i2bRvatGmDIkWKqC/GZcuWwQhCQ0Px5JNPInfu3ChYsCDat2+PsLAwGMHMmTNRpUoV5MmTRy1169bFmjVrYDSTJ09Wn5nBgwfDCMaNG6fGa71UqFABRnD+/Hm89NJLyJ8/P/z8/PD444/jr7/+ghHI92Ly912WAQMGwJklJCTg/fffR8mSJdV7Xrp0aUyYMAFsCWI8Rtw+G3XbLLh91p+Rts9G3jYbefts1G2z4PaZ7OGVV15R/wbk+9OabH/lfkeaM2cO8ubN+9D9e/bsQd++fR06FnK+z6gs3t7eKFOmDMaPH4/4+PgsrbdevXqIiIiAv7+/us3PHzk7Bsid3MKFCzFkyBDV8Xffvn2oWrUqWrZsicuXL8PZ3blzR41XAghGsnXrVrUTv3PnTmzYsAFxcXFo0aKF+n2cXbFixdTO1969e9VB1NNPP4127drhv//+g1HIBvKrr75SgQQjqVSpktoBMC87duyAs4uMjET9+vXh5eWlAjWHDh3CJ598gnz58sEonxXr91z+vYrOnTvDmX344YcqWDZ9+nQcPnxY3Z4yZQqmTZum99DIBbbPRt02C26f9WXE7bMRt81G3z4bddssuH0me5ET6fJ5kn/bzqhAgQLIkSOH3sMgHT3zzDPqO/vYsWMYOnSoOsn80UcfZWmdEmwvXLhwuieC+Pkjp2Eip1arVi3TgAEDLLcTEhJMRYoUMYWGhpqMRD5qS5cuNRnR5cuX1fi3bt1qMqJ8+fKZ/u///s9kBLdv3zaVLVvWtGHDBlOjRo1MgwYNMhnB2LFjTVWrVjUZzYgRI0wNGjQwZRfyeSldurQpMTHR5MyeffZZ06uvvprkvo4dO5q6d++u25jINbfPRt42C26fHceI22ejbpuz2/bZKNtmwe0z2UPPnj1Nzz33nKlChQqm4cOHW+6X7a91OGb79u3q372vr6+pWLFipjfffNMUFRVlefzChQum1q1bq8dDQkJM8+bNMwUHB5s+++wzy3M++eQTU+XKlU05cuRQ6+jfv7/6/ha//fabej3rRb4nhfV6unbtaurSpUuS3yE2NtaUP39+0/fff2/Z55k0aZIah4ynSpUqpl9++cVu7yHZ/zParl27JPc1b97cVKdOHdP169dNL7/8silv3rwmPz8/0zPPPGM6evSo5Xnh4eHq8y2Py+fuscceM61atSrJZy4yMpKfPzIEZpA7sdjYWJVp1KxZM8t97u7u6vaff/6p69hcyc2bN9VlQEAAjESmiS5YsEBl1slUbiOQzMBnn302yWfeKORsu5QsKFWqFLp3744zZ87A2S1fvhw1a9ZUWV1SruCJJ57AN998A6N+X86dOxevvvqqw6erPsp0w02bNuHo0aPq9j///KOyGlu1aqX30CiDuH12Dtw+O45Rt89G3DZnp+2zkbbNgttnshcPDw9MmjRJzUY4d+7cQ4+fOHFCZfB26tQJ//77r5qlJp+9gQMHWp7To0cPXLhwQdV1Xrx4Mb7++uuHZq3JvsgXX3yhZid9//332Lx5M9555x3L51vqPEuZL/MMj2HDhj00FvmuXLFiBaKioiz3rVu3DtHR0ejQoYOl5NkPP/yAWbNmqdd6++23VUkomelF2YOUmZLvcCm/IjPfZLsk+7iSX9G6dWs1i8+8fxATE6NK+B04cEDNlMiVK9dD6+PnjwxB7wg9pe78+fPqzNoff/yR5H458yyZa0Zi1Cw1OTsp2ST169c3GcW///5rypkzp8nDw8Pk7+9vOYPr7H766SeV8XD37l112ygZamL16tWmn3/+2fTPP/+Y1q5da6pbt66pRIkSplu3bpmcmY+Pj1pGjRpl2rdvn+mrr75SZ+HnzJljMpqFCxeqz7x8bxrhe0WyA93c3Eyenp7qUrIgyDiyy/bZqNtmwe2z4xh1+2zUbXN22j4badssuH0me2fnSkaueZaCdQZ57969TX379k3yc5JR7u7urr57Dx8+rJ67Z88ey+PHjh1T91lnkCcnWbWSeWs2e/Zstf1JzjqDNy4uzhQYGGj64YcfLI9LVu8LL7ygrt+7d09lCiffB5LfQZ5Hxv6MymwfmS0m26D27durz9jvv/9uee7Vq1dVJrlsX8Xjjz9uGjduXIrrtc4gF/z8kbPz1DtAT+TM5IzowYMHDVOzUpQvXx779+9XmXWLFi1Cz5491dnUxx57DM7q7NmzGDRokKpTKTX6jMY6s0hqs0qzvuDgYPz888/o3bs3nFViYqLKUJOMFiEZavJ5l7Px8rkxkm+//Vb9HSRT0NnJ52LevHmYP3++qo8r/16l4Z2M3WjvO5FeuH12DCNvn426bc5O22cjbZsFt89kb5JdKz0okmfOymwFyRyXz5+ZnMeW74JTp06pWQ2enp6oXr265XFppJi8L8HGjRtVdu2RI0dw69Yt1WTx3r17Kvs2ozWe5XW6dOmixvLyyy+r2U6//vqrmvkkjh8/rtbXvHnzJD8n2cbyXUXGtHLlSpX5LZnh8rnr1q0bOnbsqO6X7aeZNI6W/Rnp0yDeeust9O/fH+vXr1ezzGQWRFZ6lfDzR3pigNyJBQYGqulYly5dSnK/3JZmB2RfMqVNNggyXUiaaxmFufO0qFGjhmqW9Pnnn6vGWs5KShXIFEHrnT6Zgi7vvTRKkmlb8m/BKKQ7d7ly5dQG3JkFBQU9FJipWLGimrZpJKdPn1YHBEuWLIERDB8+HCNHjsSLL76obj/++OPqd5ADGh6AGwO3z/ri9tlxstP22Sjb5uyyfTbatllw+0z21rBhQ9XQe9SoUap0hZmUk3j99ddVsDG5EiVKWMr+pCU8PBzPPfecClZOnDhRlR+Tk8hyQlCCh5lpgihlLho1aqS+/+UEqZTbkBIw5rGKVatWoWjRokl+zsfHJ8OvQc6lSZMmqkmx7KvISUEJVEtZlfS89tpr6jMtnwcJksv3pTSVfvPNNx95LPz8kV4YIHdi8uUkB1BSC699+/bqPjmbJ7et65GRbcnZevlCX7p0qarxVrJkSRiZfGbkANaZNW3aVNUss9arVy9UqFABI0aMMMzBt5lsuKWWoJz1dmb169dHWFhYkvtkB1wy7Ixk9uzZqkar1Mc1Asl6kBqR1uQzLv9WyRi4fdYHt8+Ol522z0bZNmeX7bPRts2C22dyhMmTJ6NatWoqC9dMTkIeOnTIchI1OXmuZIP//fffav9DyMm+yMjIJCc05bMqwUnz51hmRSTff5GTnOmRetHFixdXtdDXrFmj+iF4eXmpx+TknQQipaeDBDEpe8iZM+dDnz85MSufu127dqnPhLh27ZraPlmfxJXPSr9+/dQiJ3+kZ0ZKAXJ+/sjZMUDu5IYMGaIyFmSaZa1atVRjA5lmIgcnRjgQsc7SkelhMlVRzmbLmXBnnrYtUytlKk/u3Llx8eJFdb+/v786e+nMZIMkU1nl/b19+7b6PSSIII0tnJm8z5UrV35oIy1TuJLf74xkmmSbNm3Ugas0zxk7dqw6oOratSucmTQ0kR0QmcItU9l2796tGv7IYhRyICAH4fI9KZkORiCfFcnskX+nMoVbDnY+/fRT1cSMjMOo22ejbpsFt8+OZ+Tts1G3zdlh+2zEbbPg9pkcQWYmSIasNNM0kxOOderUUSfZJSNXvmclYC7ZszJbR05KSvmKvn37qixfCRYOHTpUbfvMDXAluCnlMaQRqHyWf//9d1WWyVpISIjaD5AT+lWrVlVZ5alllkuJDfl5OTn322+/JdkuyPerfE/Jv/UGDRqo0mHyetKAkbMtso+yZcuiXbt26NOnj5rtJn97mWUjmdtyv5AyVLJ/IzO05ISNfFYksJ4Sfv7I6eldBJ3SN23aNNVUyNvbWzX/2rlzp8kIzE0Zki/SBMKZpTRmWaSphLOTpi/S5EI+KwUKFDA1bdrUtH79epMRGaUJmJCmIUFBQep9L1q0qLp9/PhxkxGsWLFCNV+TRiwVKlQwff311yYjWbdunfr3GRYWZjIKaRAnn235Xpema6VKlTK9++67ppiYGL2HRi6wfTbqtllw++wcjLJ9NvK22ejbZyNumwW3z2TvBohmp06dUt9N1uGY3bt3m5o3b27KlSuXauhcpUoV08SJEy2PX7hwwdSqVSv1nSDbk/nz55sKFixomjVrluU5n376qfrekyaKLVu2VI0OrZskin79+qnGnXL/2LFjH2qSaHbo0CH1HHlMGjdak9tTp041lS9f3uTl5aW2a/J6W7duteE7R3p+Rs2uX79uevnll1VzTfPn6ujRo5bHBw4caCpdurT6XMrnQJ4rjTxTatIp+PkjZ+Ym/9M7SE9EREREREREROk7d+6cKkMhtf6lHBYREWUNA+RERERERERERE5q8+bNqjyFlGiJiIjAO++8g/Pnz6sSFOb6zERE9OiMUxSOiIiIiIiIiMjFSH3x0aNH4+TJk6oOs/QpmDdvHoPjREQ2wgxyIiIiIiIiIiIiInJJ7noPgIiIiIiIiIiIiIhIDwyQExEREREREREREZFLYoCciIiIiIiIiIiIiFwSA+RERERERERERERE5JIYICciIiIiIiIiIiIil8QAORFlC25ubli2bJnewyAiIiIr3D4TEZE9vPLKK2jfvr3lduPGjTF48GCHj2PLli1qW3fjxg2H/a7OOk4iI2OAnIhsssGWjW3y5ZlnntF7aERERC6L22ciItJru+Pt7Y0yZcpg/PjxiI+Pt/trL1myBBMmTHDKYHFISAimTp3qkNciokfj+Yg/R0SUhBxsz549O8l9Pj4+uo2HiIiIuH0mIiJ9tjsxMTFYvXo1BgwYAC8vL4waNeqh58bGxqpAui0EBATYZD1E5JqYQU5ENiEH24ULF06y5MuXTz0mZ+dnzpyJVq1awc/PD6VKlcKiRYuS/PyBAwfw9NNPq8fz58+Pvn37IioqKslzvvvuO1SqVEm9VlBQEAYOHJjk8atXr6JDhw7IkSMHypYti+XLlzvgNyciInJe3D4TEZEe253g4GD0798fzZo1s3zvm0uFTJw4EUWKFEH58uXV/WfPnkWXLl2QN29eFehu164dwsPDLetMSEjAkCFD1OOyLXrnnXdgMpmSvG7yEisSoB8xYgSKFy+uxiTZ7N9++61ab5MmTdRzZHso20IZl0hMTERoaChKliyptntVq1Z9aLsoQf9y5cqpx2U91uN8FPK79e7d2/Ka8p58/vnnKT73gw8+QIECBZAnTx7069dPnWAwy8jYiSh1DJATkUO8//776NSpE/755x90794dL774Ig4fPqweu3PnDlq2bKl2UPbs2YNffvkFGzduTHKALQfwkn0gB+ZysC47WbKTk3yHQXas/v33X7Ru3Vq9zvXr1x3+uxIRERkFt89ERGRPEqy1DuRu2rQJYWFh2LBhA1auXIm4uDi1rcmdOze2b9+O33//Hbly5VKZ6Oaf++STTzBnzhx1QnbHjh1qG7J06dI0X7dHjx746aef8MUXX6jt2ldffaXWKwHzxYsXq+fIOCIiIiwBaQkw//DDD5g1axb+++8/vP3223jppZewdetWSyC/Y8eOaNOmDfbv34/XXnsNI0eOzNL7I4HtYsWKqW3soUOHMGbMGIwePRo///xzkufJ+ya/h5SHkd9LSsrI9tUsvbETUTpMRERZ1LNnT5OHh4cpZ86cSZaJEyeqx+Wrpl+/fkl+pnbt2qb+/fur619//bUpX758pqioKMvjq1atMrm7u5suXryobhcpUsT07rvvpjoGeY333nvPclvWJfetWbPG5r8vERGREXD7TEREjt7utGvXTl1PTEw0bdiwweTj42MaNmyY5fFChQqZYmJiLD/z448/msqXL6+ebyaP+/n5mdatW6duBwUFmaZMmWJ5PC4uzlSsWDHLa4lGjRqZBg0apK6HhYWpbY28fkp+++039XhkZKTlvnv37ply5Mhh+uOPP5I8t3fv3qauXbuq66NGjTI99thjSR4fMWLEQ+tKLjg42PTZZ5+ZMmrAgAGmTp06WW7L+xYQEGC6c+eO5b6ZM2eacuXKZUpISMjQ2FP6nYnoAdYgJyKbkOllkkWWWh24unXrJnlMbstZdyFnwmUKWM6cOS2P169fX51Nl7P6Mu3twoULaNq0aZpjqFKliuW6rEumnl2+fDnLvxsREZFRcftMRESOJFnhkqktmeGyvejWrRvGjRtnefzxxx9PUndcZjAdP35cZZBbu3fvHk6cOIGbN2+qLO/atWtbHvP09ETNmjUfKrNiJtsxDw8PNGrUKMPjljFER0ejefPmSe6XLPYnnnjCsl20HkdK29FHMWPGDJUdf+bMGdy9e1e9ZrVq1ZI8R7bHUqrM+nWl5JlktctlemMnorQxQE5ENiEHvMmnVNtyWl5GSPMXa3LgLjtlRERErorbZyIi0uPErATBpc64BLOtWZ90FRLcrVGjBubNm/fQuqTetj23T8nHIVatWoWiRYs6rLn1ggULMGzYMFVGRoLecqLgo48+wq5du5x+7ETZCWuQE5FD7Ny586HbFStWVNflUjIHpNapmdSec3d3V01KZCchJCRE1V0jIiIi2+H2mYiI7HFitkSJEg8Fx1NSvXp1HDt2DAULFlQ/Z734+/urRRpAWweM4+PjsXfv3lTXKVnqciI2tfrb5gx2aZBp9thjj6lgsmRxJx+H1C03bxd3796d5nY0s2S7Wq9ePbzxxhsq21teTzLnk5PtsWSXW7+uuaZ6RsZORGljBjkR2YR0Cb948WKS+2SHKDAwUF2XpiMyDa5BgwYqO0B2LKSLuJBmXWPHjkXPnj3V9LsrV67gzTffxMsvv4xChQqp58j90qlbdpxatWqF27dvq50JeR4RERGljNtnIiJyZrKtkYzpdu3aYfz48aph5enTp1UTynfeeUfdHjRoECZPnoyyZcuiQoUK+PTTT3Hjxo1U1yknb2Xb9eqrr6omnVKeRNYp5b2kaXRwcLCazSTlYKR5tGScy0lfyeSW5pYSXJftopR3kW2alAaT9cn2TjK9hw8frhp0SpBemodmxPnz5y0lzMxkHPI7SXPNdevWoWTJkvjxxx9VY2y5nrxcSu/evfHee+8hPDxcbZ+labactM7I2IkobQyQE5FNrF27Vp3ZtybZZUeOHFHXpcO2TB+TM+PyPOm8LWe6hdRSkx0C2fF58skn1e1OnTqpHR8z2ahLHbrPPvtMbfzlwP7555938G9JRERkLNw+ExGRM5Nty7Zt2zBixAh07NhRnWiVMiHS30KCu2Lo0KGqDrlscyQgLIHvDh06qCBwaqTMy+jRo9X27dq1ayqjXW4LWb9s/0aOHIlevXqhR48eKtA9YcIEVdYlNDQUJ0+eRN68eVWGu/nnZB2LFy9Wgehp06ahVq1amDRpkhpPej7++GO1WJNg+Ouvv46///4bL7zwggrad+3aVY15zZo1SZ4r74cE0xs2bKhOfsvzrGu7pzd2Ikqbm3TqTOc5RERZIhv6pUuXon379noPhYiIiO7j9pmIiIiIiDXIiYiIiIiIiIiIiMhFMUBORERERERERERERC6JJVaIiIiIiIiIiIiIyCUxg5yIiIiIiIiIiIiIXBID5ERERERERERERETkkhggJyIiIiIiIiIiIiKXxAA5EREREREREREREbkkBsiJiIiIiIiIiIiIyCUxQE5ERERERERERERELokBciIiIiIiIiIiIiJySQyQExEREREREREREZFLYoCciIiIiIiIiIiIiOCK/h97jok0FYfewgAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1500x500 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2025-07-15 15:57:13,908 - Implementation completed successfully!\n"
]
}
],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from torch.utils.data import DataLoader, Dataset\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.metrics import accuracy_score, classification_report\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import logging\n",
"from collections import Counter\n",
"import random\n",
"\n",
"logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')\n",
"logger = logging.getLogger(__name__)\n",
"\n",
"device = torch.device('mps' if torch.backends.mps.is_available() else 'cuda' if torch.cuda.is_available() else 'cpu')\n",
"logger.info(f\"Using device: {device}\")\n",
"\n",
"class TextDataset(Dataset):\n",
" def __init__(self, texts, labels, vocab_to_idx, max_length=50):\n",
" self.texts = texts\n",
" self.labels = labels\n",
" self.vocab_to_idx = vocab_to_idx\n",
" self.max_length = max_length\n",
" \n",
" def __len__(self):\n",
" return len(self.texts)\n",
" \n",
" def __getitem__(self, idx):\n",
" text = self.texts[idx]\n",
" label = self.labels[idx]\n",
" \n",
" tokens = text.lower().split()\n",
" token_ids = [self.vocab_to_idx.get(token, self.vocab_to_idx['<UNK>']) for token in tokens]\n",
" \n",
" if len(token_ids) < self.max_length:\n",
" token_ids.extend([self.vocab_to_idx['<PAD>']] * (self.max_length - len(token_ids)))\n",
" else:\n",
" token_ids = token_ids[:self.max_length]\n",
" \n",
" return torch.tensor(token_ids, dtype=torch.long), torch.tensor(label, dtype=torch.long)\n",
"\n",
"class LSTMClassifier(nn.Module):\n",
" def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers, num_classes, dropout=0.3):\n",
" super(LSTMClassifier, self).__init__()\n",
" self.hidden_dim = hidden_dim\n",
" self.num_layers = num_layers\n",
" \n",
" self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)\n",
" self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers, \n",
" batch_first=True, dropout=dropout, bidirectional=True)\n",
" self.dropout = nn.Dropout(dropout)\n",
" self.fc = nn.Linear(hidden_dim * 2, num_classes)\n",
" \n",
" def forward(self, x):\n",
" batch_size = x.size(0)\n",
" \n",
" embedded = self.embedding(x)\n",
" \n",
" h0 = torch.zeros(self.num_layers * 2, batch_size, self.hidden_dim).to(x.device)\n",
" c0 = torch.zeros(self.num_layers * 2, batch_size, self.hidden_dim).to(x.device)\n",
" \n",
" lstm_out, (hidden, _) = self.lstm(embedded, (h0, c0))\n",
" \n",
" output = self.dropout(lstm_out[:, -1, :])\n",
" output = self.fc(output)\n",
" \n",
" return output\n",
"\n",
"def create_realistic_movie_dataset(num_samples=2000):\n",
" logger.info(\"Creating realistic movie review dataset with clear sentiment patterns\")\n",
" \n",
" positive_templates = [\n",
" \"This movie is {adj1} and {adj2}. The {element} was {quality}.\",\n",
" \"I {loved} this {film_type}! The {element} was {excellent} and the {element2} was {amazing}.\",\n",
" \"What a {fantastic} {film_type}! {loved} every minute of it. The {element} was {brilliant}.\",\n",
" \"{excellent} {film_type} with {outstanding} {element}. Highly {recommend} it!\",\n",
" \"The {element} in this movie was {superb}. {loved} the {element2} and {element3}.\",\n",
" \"This is one of the {best} movies I have ever seen. {brilliant} {element} and {amazing} {element2}.\",\n",
" \"I was {amazed} by this {film_type}. The {element} was {perfect} and {element2} was {incredible}.\",\n",
" \"{wonderful} story with {excellent} {element}. {loved} everything about it.\",\n",
" ]\n",
" \n",
" negative_templates = [\n",
" \"This movie is {adj1} and {adj2}. The {element} was {quality}.\",\n",
" \"I {hated} this {film_type}! The {element} was {terrible} and the {element2} was {awful}.\",\n",
" \"What a {horrible} {film_type}! {wasted} my time. The {element} was {pathetic}.\",\n",
" \"{terrible} {film_type} with {awful} {element}. Do not {recommend} it!\",\n",
" \"The {element} in this movie was {boring}. {hated} the {element2} and {element3}.\",\n",
" \"This is one of the {worst} movies I have ever seen. {terrible} {element} and {horrible} {element2}.\",\n",
" \"I was {disappointed} by this {film_type}. The {element} was {bad} and {element2} was {ridiculous}.\",\n",
" \"{disappointing} story with {poor} {element}. {hated} everything about it.\",\n",
" ]\n",
" \n",
" positive_words = {\n",
" 'adj1': ['amazing', 'fantastic', 'brilliant', 'excellent', 'wonderful'],\n",
" 'adj2': ['outstanding', 'superb', 'incredible', 'magnificent', 'marvelous'],\n",
" 'quality': ['excellent', 'brilliant', 'amazing', 'fantastic', 'superb'],\n",
" 'loved': ['loved', 'adored', 'enjoyed'],\n",
" 'excellent': ['excellent', 'brilliant', 'amazing'],\n",
" 'amazing': ['amazing', 'fantastic', 'incredible'],\n",
" 'brilliant': ['brilliant', 'superb', 'outstanding'],\n",
" 'fantastic': ['fantastic', 'wonderful', 'marvelous'],\n",
" 'outstanding': ['outstanding', 'exceptional', 'remarkable'],\n",
" 'superb': ['superb', 'magnificent', 'splendid'],\n",
" 'recommend': ['recommend', 'suggest'],\n",
" 'best': ['best', 'greatest', 'finest'],\n",
" 'perfect': ['perfect', 'flawless', 'ideal'],\n",
" 'incredible': ['incredible', 'unbelievable', 'amazing'],\n",
" 'wonderful': ['wonderful', 'delightful', 'lovely'],\n",
" 'amazed': ['amazed', 'impressed', 'stunned']\n",
" }\n",
" \n",
" negative_words = {\n",
" 'adj1': ['terrible', 'awful', 'horrible', 'bad', 'disappointing'],\n",
" 'adj2': ['boring', 'stupid', 'ridiculous', 'pathetic', 'useless'],\n",
" 'quality': ['terrible', 'awful', 'horrible', 'bad', 'disappointing'],\n",
" 'hated': ['hated', 'despised', 'disliked'],\n",
" 'terrible': ['terrible', 'awful', 'horrible'],\n",
" 'awful': ['awful', 'dreadful', 'atrocious'],\n",
" 'horrible': ['horrible', 'disgusting', 'repulsive'],\n",
" 'pathetic': ['pathetic', 'pitiful', 'miserable'],\n",
" 'boring': ['boring', 'dull', 'tedious'],\n",
" 'recommend': ['recommend', 'suggest'],\n",
" 'worst': ['worst', 'poorest', 'most terrible'],\n",
" 'bad': ['bad', 'poor', 'weak'],\n",
" 'ridiculous': ['ridiculous', 'absurd', 'nonsensical'],\n",
" 'disappointed': ['disappointed', 'let down', 'frustrated'],\n",
" 'disappointing': ['disappointing', 'unsatisfying', 'mediocre'],\n",
" 'poor': ['poor', 'weak', 'inadequate'],\n",
" 'wasted': ['wasted', 'lost']\n",
" }\n",
" \n",
" elements = ['acting', 'plot', 'story', 'dialogue', 'cinematography', 'direction', 'script', 'characters', 'soundtrack', 'ending']\n",
" film_types = ['movie', 'film', 'picture', 'drama', 'thriller', 'comedy']\n",
" \n",
" texts = []\n",
" labels = []\n",
" \n",
" for i in range(num_samples):\n",
" if i < num_samples // 2:\n",
" template = random.choice(positive_templates)\n",
" word_dict = positive_words\n",
" label = 1\n",
" else:\n",
" template = random.choice(negative_templates)\n",
" word_dict = negative_words\n",
" label = 0\n",
" \n",
" text = template\n",
" \n",
" for key in word_dict:\n",
" if '{' + key + '}' in text:\n",
" text = text.replace('{' + key + '}', random.choice(word_dict[key]))\n",
" \n",
" text = text.replace('{element}', random.choice(elements))\n",
" text = text.replace('{element2}', random.choice(elements))\n",
" text = text.replace('{element3}', random.choice(elements))\n",
" text = text.replace('{film_type}', random.choice(film_types))\n",
" \n",
" remaining_placeholders = [word for word in text.split() if word.startswith('{') and word.endswith('}')]\n",
" for placeholder in remaining_placeholders:\n",
" clean_placeholder = placeholder.strip('{}')\n",
" if clean_placeholder in positive_words:\n",
" text = text.replace(placeholder, random.choice(positive_words[clean_placeholder]))\n",
" elif clean_placeholder in negative_words:\n",
" text = text.replace(placeholder, random.choice(negative_words[clean_placeholder]))\n",
" \n",
" texts.append(text)\n",
" labels.append(label)\n",
" \n",
" logger.info(f\"Created {len(texts)} realistic movie review samples\")\n",
" logger.info(f\"Label distribution: {Counter(labels)}\")\n",
" logger.info(f\"Sample positive review: {[text for text, label in zip(texts, labels) if label == 1][0]}\")\n",
" logger.info(f\"Sample negative review: {[text for text, label in zip(texts, labels) if label == 0][0]}\")\n",
" \n",
" return texts, labels\n",
"\n",
"def build_vocabulary(texts, min_freq=2):\n",
" logger.info(\"Building vocabulary from texts\")\n",
" \n",
" word_counts = Counter()\n",
" for text in texts:\n",
" words = text.lower().split()\n",
" word_counts.update(words)\n",
" \n",
" vocab_to_idx = {'<PAD>': 0, '<UNK>': 1}\n",
" idx = 2\n",
" \n",
" for word, count in word_counts.items():\n",
" if count >= min_freq:\n",
" vocab_to_idx[word] = idx\n",
" idx += 1\n",
" \n",
" logger.info(f\"Vocabulary size: {len(vocab_to_idx)}\")\n",
" logger.info(f\"Most common words: {word_counts.most_common(10)}\")\n",
" \n",
" return vocab_to_idx\n",
"\n",
"def train_model(model, train_loader, val_loader, num_epochs=20):\n",
" logger.info(\"Starting model training with improved parameters\")\n",
" \n",
" criterion = nn.CrossEntropyLoss()\n",
" optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-4)\n",
" scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, factor=0.5)\n",
" \n",
" train_losses = []\n",
" val_losses = []\n",
" val_accuracies = []\n",
" best_val_acc = 0\n",
" patience = 5\n",
" patience_counter = 0\n",
" \n",
" for epoch in range(num_epochs):\n",
" model.train()\n",
" total_train_loss = 0\n",
" train_correct = 0\n",
" train_total = 0\n",
" \n",
" for batch_idx, (data, target) in enumerate(train_loader):\n",
" data, target = data.to(device), target.to(device)\n",
" \n",
" if batch_idx == 0 and epoch == 0:\n",
" logger.info(f\"First batch shapes - Data: {data.shape}, Target: {target.shape}\")\n",
" logger.info(f\"Target labels in first batch: {target[:10]}\")\n",
" \n",
" optimizer.zero_grad()\n",
" output = model(data)\n",
" \n",
" if batch_idx == 0 and epoch == 0:\n",
" logger.info(f\"Model output shape: {output.shape}\")\n",
" logger.info(f\"Output logits sample: {output[0]}\")\n",
" \n",
" loss = criterion(output, target)\n",
" loss.backward()\n",
" \n",
" torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)\n",
" optimizer.step()\n",
" \n",
" total_train_loss += loss.item()\n",
" _, predicted = torch.max(output.data, 1)\n",
" train_total += target.size(0)\n",
" train_correct += (predicted == target).sum().item()\n",
" \n",
" avg_train_loss = total_train_loss / len(train_loader)\n",
" train_accuracy = 100 * train_correct / train_total\n",
" train_losses.append(avg_train_loss)\n",
" \n",
" model.eval()\n",
" total_val_loss = 0\n",
" correct = 0\n",
" total = 0\n",
" \n",
" with torch.no_grad():\n",
" for data, target in val_loader:\n",
" data, target = data.to(device), target.to(device)\n",
" output = model(data)\n",
" loss = criterion(output, target)\n",
" total_val_loss += loss.item()\n",
" \n",
" _, predicted = torch.max(output.data, 1)\n",
" total += target.size(0)\n",
" correct += (predicted == target).sum().item()\n",
" \n",
" avg_val_loss = total_val_loss / len(val_loader)\n",
" val_accuracy = 100 * correct / total\n",
" \n",
" val_losses.append(avg_val_loss)\n",
" val_accuracies.append(val_accuracy)\n",
" \n",
" scheduler.step(avg_val_loss)\n",
" current_lr = optimizer.param_groups[0]['lr']\n",
" \n",
" logger.info(f'Epoch [{epoch+1}/{num_epochs}]')\n",
" logger.info(f'Train Loss: {avg_train_loss:.4f}, Train Acc: {train_accuracy:.2f}%')\n",
" logger.info(f'Val Loss: {avg_val_loss:.4f}, Val Acc: {val_accuracy:.2f}%')\n",
" logger.info(f'LR: {current_lr:.6f}')\n",
" \n",
" if val_accuracy > best_val_acc:\n",
" best_val_acc = val_accuracy\n",
" patience_counter = 0\n",
" logger.info(f'New best validation accuracy: {best_val_acc:.2f}%')\n",
" else:\n",
" patience_counter += 1\n",
" logger.info(f'No improvement for {patience_counter} epochs')\n",
" \n",
" if patience_counter >= patience:\n",
" logger.info(f'Early stopping triggered after {epoch+1} epochs')\n",
" break\n",
" \n",
" return train_losses, val_losses, val_accuracies\n",
"\n",
"def test_model(model, test_loader):\n",
" logger.info(\"Testing model on test set\")\n",
" \n",
" model.eval()\n",
" all_predictions = []\n",
" all_targets = []\n",
" all_probabilities = []\n",
" \n",
" with torch.no_grad():\n",
" for data, target in test_loader:\n",
" data, target = data.to(device), target.to(device)\n",
" output = model(data)\n",
" probabilities = torch.softmax(output, dim=1)\n",
" _, predicted = torch.max(output, 1)\n",
" \n",
" all_predictions.extend(predicted.cpu().numpy())\n",
" all_targets.extend(target.cpu().numpy())\n",
" all_probabilities.extend(probabilities.cpu().numpy())\n",
" \n",
" accuracy = accuracy_score(all_targets, all_predictions)\n",
" logger.info(f'Test Accuracy: {accuracy:.4f}')\n",
" \n",
" logger.info(\"Classification Report:\")\n",
" try:\n",
" report = classification_report(all_targets, all_predictions, \n",
" target_names=['Negative', 'Positive'], \n",
" zero_division=0)\n",
" logger.info(f\"\\n{report}\")\n",
" except Exception as e:\n",
" logger.info(f\"Error in classification report: {e}\")\n",
" \n",
" return accuracy, all_predictions, all_targets, all_probabilities\n",
"\n",
"def demonstrate_predictions(model, vocab_to_idx, sample_texts):\n",
" logger.info(\"Demonstrating model predictions on sample texts\")\n",
" \n",
" model.eval()\n",
" max_length = 50\n",
" \n",
" with torch.no_grad():\n",
" for text in sample_texts:\n",
" tokens = text.lower().split()\n",
" token_ids = [vocab_to_idx.get(token, vocab_to_idx['<UNK>']) for token in tokens]\n",
" \n",
" if len(token_ids) < max_length:\n",
" token_ids.extend([vocab_to_idx['<PAD>']] * (max_length - len(token_ids)))\n",
" else:\n",
" token_ids = token_ids[:max_length]\n",
" \n",
" input_tensor = torch.tensor([token_ids], dtype=torch.long).to(device)\n",
" output = model(input_tensor)\n",
" probabilities = torch.softmax(output, dim=1)\n",
" predicted_class = torch.argmax(output, dim=1).item()\n",
" confidence = probabilities[0][predicted_class].item()\n",
" \n",
" sentiment = \"Positive\" if predicted_class == 1 else \"Negative\"\n",
" logger.info(f\"Text: '{text}'\")\n",
" logger.info(f\"Prediction: {sentiment} (Confidence: {confidence:.3f})\")\n",
" logger.info(f\"Probabilities - Negative: {probabilities[0][0]:.3f}, Positive: {probabilities[0][1]:.3f}\")\n",
" logger.info(\"---\")\n",
"\n",
"def main():\n",
" logger.info(\"Starting improved sequence modeling implementation\")\n",
" \n",
" torch.manual_seed(42)\n",
" np.random.seed(42)\n",
" random.seed(42)\n",
" \n",
" texts, labels = create_realistic_movie_dataset(num_samples=2000)\n",
" \n",
" vocab_to_idx = build_vocabulary(texts, min_freq=2)\n",
" \n",
" X_temp, X_test, y_temp, y_test = train_test_split(texts, labels, test_size=0.2, random_state=42, stratify=labels)\n",
" X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=0.25, random_state=42, stratify=y_temp)\n",
" \n",
" logger.info(f\"Dataset splits - Train: {len(X_train)}, Val: {len(X_val)}, Test: {len(X_test)}\")\n",
" logger.info(f\"Train label distribution: {Counter(y_train)}\")\n",
" logger.info(f\"Val label distribution: {Counter(y_val)}\")\n",
" logger.info(f\"Test label distribution: {Counter(y_test)}\")\n",
" \n",
" train_dataset = TextDataset(X_train, y_train, vocab_to_idx)\n",
" val_dataset = TextDataset(X_val, y_val, vocab_to_idx)\n",
" test_dataset = TextDataset(X_test, y_test, vocab_to_idx)\n",
" \n",
" train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)\n",
" val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)\n",
" test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)\n",
" \n",
" logger.info(\"Created data loaders\")\n",
" \n",
" vocab_size = len(vocab_to_idx)\n",
" embedding_dim = 128\n",
" hidden_dim = 64\n",
" num_layers = 2\n",
" num_classes = 2\n",
" \n",
" model = LSTMClassifier(vocab_size, embedding_dim, hidden_dim, num_layers, num_classes, dropout=0.2)\n",
" model.to(device)\n",
" \n",
" total_params = sum(p.numel() for p in model.parameters())\n",
" trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
" logger.info(f\"Model parameters - Total: {total_params}, Trainable: {trainable_params}\")\n",
" \n",
" sample_batch = next(iter(train_loader))\n",
" sample_input, sample_target = sample_batch\n",
" sample_input = sample_input.to(device)\n",
" \n",
" logger.info(f\"Testing model with sample input shape: {sample_input.shape}\")\n",
" with torch.no_grad():\n",
" sample_output = model(sample_input)\n",
" logger.info(f\"Sample output shape: {sample_output.shape}\")\n",
" logger.info(f\"Sample output values: {sample_output[0]}\")\n",
" \n",
" train_losses, val_losses, val_accuracies = train_model(model, train_loader, val_loader, num_epochs=20)\n",
" \n",
" test_accuracy, predictions, targets, probabilities = test_model(model, test_loader)\n",
" \n",
" sample_texts = [\n",
" \"This movie is absolutely fantastic and amazing! I loved every minute of it.\",\n",
" \"Terrible boring film, complete waste of time. I hated everything about it.\",\n",
" \"Excellent story with wonderful acting and brilliant performance throughout.\",\n",
" \"Awful movie with horrible dialogue. Disappointed and would not recommend.\",\n",
" \"The cinematography was superb and the plot was incredible. Highly recommend!\",\n",
" \"Poor script with terrible acting. One of the worst films I have ever seen.\"\n",
" ]\n",
" \n",
" demonstrate_predictions(model, vocab_to_idx, sample_texts)\n",
" \n",
" plt.figure(figsize=(15, 5))\n",
" \n",
" plt.subplot(1, 3, 1)\n",
" plt.plot(train_losses, label='Train Loss', color='blue')\n",
" plt.plot(val_losses, label='Validation Loss', color='red')\n",
" plt.title('Training and Validation Loss')\n",
" plt.xlabel('Epoch')\n",
" plt.ylabel('Loss')\n",
" plt.legend()\n",
" plt.grid(True)\n",
" \n",
" plt.subplot(1, 3, 2)\n",
" plt.plot(val_accuracies, label='Validation Accuracy', color='green')\n",
" plt.title('Validation Accuracy')\n",
" plt.xlabel('Epoch')\n",
" plt.ylabel('Accuracy (%)')\n",
" plt.legend()\n",
" plt.grid(True)\n",
" \n",
" plt.subplot(1, 3, 3)\n",
" predictions_array = np.array(predictions)\n",
" targets_array = np.array(targets)\n",
" \n",
" from sklearn.metrics import confusion_matrix\n",
" cm = confusion_matrix(targets_array, predictions_array)\n",
" sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', \n",
" xticklabels=['Negative', 'Positive'], \n",
" yticklabels=['Negative', 'Positive'])\n",
" plt.title('Confusion Matrix')\n",
" plt.ylabel('True Label')\n",
" plt.xlabel('Predicted Label')\n",
" \n",
" plt.tight_layout()\n",
" plt.show()\n",
" \n",
" logger.info(\"Implementation completed successfully!\")\n",
"\n",
"if __name__ == \"__main__\":\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "270376ad-0312-45b2-9a38-a8adb96ba80a",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from torch.utils.data import DataLoader, Dataset\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.metrics import accuracy_score, classification_report\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from collections import Counter\n",
"import random\n",
"\n",
"# Set up device detection for optimal performance across different hardware\n",
"# Priority: Apple Silicon MPS > NVIDIA CUDA > CPU fallback\n",
"device = torch.device('mps' if torch.backends.mps.is_available() else 'cuda' if torch.cuda.is_available() else 'cpu')\n",
"\n",
"class TextDataset(Dataset):\n",
" \"\"\"\n",
" Custom PyTorch Dataset class for text classification tasks.\n",
" Handles text preprocessing, tokenization, and sequence padding/truncation.\n",
" \"\"\"\n",
" def __init__(self, texts, labels, vocab_to_idx, max_length=50):\n",
" \"\"\"\n",
" Initialize the dataset with text data and preprocessing parameters.\n",
" \n",
" Args:\n",
" texts (list): List of text strings for classification\n",
" labels (list): Corresponding integer labels (0 for negative, 1 for positive)\n",
" vocab_to_idx (dict): Vocabulary mapping from words to integer indices\n",
" max_length (int): Fixed sequence length for batching (pad short, truncate long)\n",
" \"\"\"\n",
" self.texts = texts\n",
" self.labels = labels\n",
" self.vocab_to_idx = vocab_to_idx # Word-to-index mapping for tokenization\n",
" self.max_length = max_length # Standardize all sequences to this length\n",
" \n",
" def __len__(self):\n",
" \"\"\"Return total number of samples in the dataset.\"\"\"\n",
" return len(self.texts)\n",
" \n",
" def __getitem__(self, idx):\n",
" \"\"\"\n",
" Retrieve and preprocess a single sample from the dataset.\n",
" \n",
" This method:\n",
" 1. Gets the text and label at the specified index\n",
" 2. Tokenizes the text (splits on whitespace, converts to lowercase)\n",
" 3. Maps each token to its vocabulary index (uses <UNK> for unknown words)\n",
" 4. Applies padding (with <PAD>) or truncation to reach max_length\n",
" 5. Returns PyTorch tensors ready for model input\n",
" \n",
" Args:\n",
" idx (int): Index of the sample to retrieve\n",
" \n",
" Returns:\n",
" tuple: (token_ids_tensor, label_tensor) both as LongTensors\n",
" \"\"\"\n",
" text = self.texts[idx]\n",
" label = self.labels[idx]\n",
" \n",
" # Tokenization: split text into individual words and normalize case\n",
" tokens = text.lower().split()\n",
" \n",
" # Convert tokens to vocabulary indices\n",
" # get() method returns vocab_to_idx['<UNK>'] if token not found in vocabulary\n",
" # This handles out-of-vocabulary words gracefully\n",
" token_ids = [self.vocab_to_idx.get(token, self.vocab_to_idx['<UNK>']) for token in tokens]\n",
" \n",
" # Sequence length normalization for efficient batching\n",
" if len(token_ids) < self.max_length:\n",
" # Pad short sequences with <PAD> tokens (index 0)\n",
" # This ensures all sequences in a batch have the same length\n",
" token_ids.extend([self.vocab_to_idx['<PAD>']] * (self.max_length - len(token_ids)))\n",
" else:\n",
" # Truncate long sequences to max_length\n",
" # This prevents memory issues and maintains consistent input size\n",
" token_ids = token_ids[:self.max_length]\n",
" \n",
" # Convert to PyTorch tensors with appropriate data types\n",
" # LongTensor is required for embedding layer indices\n",
" return torch.tensor(token_ids, dtype=torch.long), torch.tensor(label, dtype=torch.long)\n",
"\n",
"class LSTMClassifier(nn.Module):\n",
" \"\"\"\n",
" Bidirectional LSTM classifier for text sentiment analysis.\n",
" \n",
" Architecture:\n",
" Input -> Embedding -> Bidirectional LSTM -> Dropout -> Linear -> Output\n",
" \n",
" The bidirectional design allows the model to see context from both\n",
" past and future words, improving understanding of sentiment patterns.\n",
" \"\"\"\n",
" def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers, num_classes, dropout=0.3):\n",
" \"\"\"\n",
" Initialize the LSTM classifier architecture.\n",
" \n",
" Args:\n",
" vocab_size (int): Size of vocabulary (number of unique words + special tokens)\n",
" embedding_dim (int): Dimension of word embeddings (feature size per word)\n",
" hidden_dim (int): Dimension of LSTM hidden states (memory capacity)\n",
" num_layers (int): Number of stacked LSTM layers (network depth)\n",
" num_classes (int): Number of output classes (2 for binary sentiment)\n",
" dropout (float): Dropout probability for regularization (0.0-1.0)\n",
" \"\"\"\n",
" super(LSTMClassifier, self).__init__()\n",
" self.hidden_dim = hidden_dim\n",
" self.num_layers = num_layers\n",
" \n",
" # Embedding layer: converts sparse word indices to dense vector representations\n",
" # padding_idx=0 ensures <PAD> tokens have zero embeddings (ignored in computation)\n",
" # This layer learns semantic relationships between words during training\n",
" self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)\n",
" \n",
" # Bidirectional LSTM: processes sequences in both forward and backward directions\n",
" # batch_first=True: expects input shape (batch_size, sequence_length, features)\n",
" # dropout: applied between LSTM layers (not after final layer)\n",
" # bidirectional=True: doubles output dimension (forward + backward hidden states)\n",
" self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers, \n",
" batch_first=True, dropout=dropout, bidirectional=True)\n",
" \n",
" # Dropout layer: randomly zeros elements during training to prevent overfitting\n",
" # Only active during training, disabled during evaluation\n",
" self.dropout = nn.Dropout(dropout)\n",
" \n",
" # Final classification layer: maps LSTM output to class probabilities\n",
" # Input dimension is hidden_dim * 2 due to bidirectional LSTM\n",
" # Output dimension equals number of classes\n",
" self.fc = nn.Linear(hidden_dim * 2, num_classes)\n",
" \n",
" def forward(self, x):\n",
" \"\"\"\n",
" Forward pass through the network.\n",
" \n",
" Processing flow:\n",
" 1. Convert word indices to embeddings\n",
" 2. Initialize LSTM hidden and cell states\n",
" 3. Process sequence through bidirectional LSTM\n",
" 4. Extract final time step output (contains full sequence information)\n",
" 5. Apply dropout for regularization\n",
" 6. Generate class logits through linear layer\n",
" \n",
" Args:\n",
" x (torch.Tensor): Input tensor of word indices, shape (batch_size, sequence_length)\n",
" \n",
" Returns:\n",
" torch.Tensor: Class logits, shape (batch_size, num_classes)\n",
" \"\"\"\n",
" batch_size = x.size(0)\n",
" \n",
" # Convert word indices to dense embeddings\n",
" # Shape: (batch_size, sequence_length) -> (batch_size, sequence_length, embedding_dim)\n",
" embedded = self.embedding(x)\n",
" \n",
" # Initialize LSTM hidden and cell states with zeros\n",
" # Shape: (num_layers * num_directions, batch_size, hidden_dim)\n",
" # num_directions = 2 for bidirectional LSTM\n",
" # Zero initialization is standard practice for sequence modeling\n",
" h0 = torch.zeros(self.num_layers * 2, batch_size, self.hidden_dim).to(x.device)\n",
" c0 = torch.zeros(self.num_layers * 2, batch_size, self.hidden_dim).to(x.device)\n",
" \n",
" # Process sequence through bidirectional LSTM\n",
" # lstm_out: output at each time step, shape (batch_size, sequence_length, hidden_dim * 2)\n",
" # hidden: final hidden state (not used for classification)\n",
" # _: final cell state (discarded)\n",
" lstm_out, (hidden, _) = self.lstm(embedded, (h0, c0))\n",
" \n",
" # Extract final time step output for sequence classification\n",
" # [:, -1, :] selects the last time step, which contains information from entire sequence\n",
" # Shape: (batch_size, sequence_length, hidden_dim * 2) -> (batch_size, hidden_dim * 2)\n",
" output = self.dropout(lstm_out[:, -1, :])\n",
" \n",
" # Generate final class logits\n",
" # Shape: (batch_size, hidden_dim * 2) -> (batch_size, num_classes)\n",
" # Logits will be converted to probabilities using softmax during inference\n",
" output = self.fc(output)\n",
" \n",
" return output\n",
"\n",
"def create_realistic_movie_dataset(num_samples=2000):\n",
" \"\"\"\n",
" Generate a synthetic movie review dataset with realistic sentiment patterns.\n",
" \n",
" This function creates varied movie reviews using template-based generation\n",
" to ensure clear sentiment distinctions that the model can learn from.\n",
" \n",
" Design principles:\n",
" - Use template sentences with placeholders for sentiment words\n",
" - Maintain consistent positive/negative word associations\n",
" - Generate varied sentence structures to prevent overfitting\n",
" - Include movie-specific vocabulary (acting, plot, dialogue, etc.)\n",
" \n",
" Args:\n",
" num_samples (int): Total number of reviews to generate (split equally between classes)\n",
" \n",
" Returns:\n",
" tuple: (texts, labels) where texts is list of review strings, labels is list of 0/1 integers\n",
" \"\"\"\n",
" # Template sentences for positive reviews\n",
" # Placeholders {} are filled with sentiment-appropriate words\n",
" positive_templates = [\n",
" \"This movie is {adj1} and {adj2}. The {element} was {quality}.\",\n",
" \"I {loved} this {film_type}! The {element} was {excellent} and the {element2} was {amazing}.\",\n",
" \"What a {fantastic} {film_type}! {loved} every minute of it. The {element} was {brilliant}.\",\n",
" \"{excellent} {film_type} with {outstanding} {element}. Highly {recommend} it!\",\n",
" \"The {element} in this movie was {superb}. {loved} the {element2} and {element3}.\",\n",
" \"This is one of the {best} movies I have ever seen. {brilliant} {element} and {amazing} {element2}.\",\n",
" \"I was {amazed} by this {film_type}. The {element} was {perfect} and {element2} was {incredible}.\",\n",
" \"{wonderful} story with {excellent} {element}. {loved} everything about it.\",\n",
" ]\n",
" \n",
" # Template sentences for negative reviews\n",
" # Similar structure but with negative sentiment words\n",
" negative_templates = [\n",
" \"This movie is {adj1} and {adj2}. The {element} was {quality}.\",\n",
" \"I {hated} this {film_type}! The {element} was {terrible} and the {element2} was {awful}.\",\n",
" \"What a {horrible} {film_type}! {wasted} my time. The {element} was {pathetic}.\",\n",
" \"{terrible} {film_type} with {awful} {element}. Do not {recommend} it!\",\n",
" \"The {element} in this movie was {boring}. {hated} the {element2} and {element3}.\",\n",
" \"This is one of the {worst} movies I have ever seen. {terrible} {element} and {horrible} {element2}.\",\n",
" \"I was {disappointed} by this {film_type}. The {element} was {bad} and {element2} was {ridiculous}.\",\n",
" \"{disappointing} story with {poor} {element}. {hated} everything about it.\",\n",
" ]\n",
" \n",
" # Positive sentiment word dictionaries\n",
" # Each key corresponds to a placeholder in templates\n",
" # Multiple options for each placeholder create vocabulary diversity\n",
" positive_words = {\n",
" 'adj1': ['amazing', 'fantastic', 'brilliant', 'excellent', 'wonderful'],\n",
" 'adj2': ['outstanding', 'superb', 'incredible', 'magnificent', 'marvelous'],\n",
" 'quality': ['excellent', 'brilliant', 'amazing', 'fantastic', 'superb'],\n",
" 'loved': ['loved', 'adored', 'enjoyed'],\n",
" 'excellent': ['excellent', 'brilliant', 'amazing'],\n",
" 'amazing': ['amazing', 'fantastic', 'incredible'],\n",
" 'brilliant': ['brilliant', 'superb', 'outstanding'],\n",
" 'fantastic': ['fantastic', 'wonderful', 'marvelous'],\n",
" 'outstanding': ['outstanding', 'exceptional', 'remarkable'],\n",
" 'superb': ['superb', 'magnificent', 'splendid'],\n",
" 'recommend': ['recommend', 'suggest'],\n",
" 'best': ['best', 'greatest', 'finest'],\n",
" 'perfect': ['perfect', 'flawless', 'ideal'],\n",
" 'incredible': ['incredible', 'unbelievable', 'amazing'],\n",
" 'wonderful': ['wonderful', 'delightful', 'lovely'],\n",
" 'amazed': ['amazed', 'impressed', 'stunned']\n",
" }\n",
" \n",
" # Negative sentiment word dictionaries\n",
" # Parallel structure to positive words but with opposite sentiment\n",
" negative_words = {\n",
" 'adj1': ['terrible', 'awful', 'horrible', 'bad', 'disappointing'],\n",
" 'adj2': ['boring', 'stupid', 'ridiculous', 'pathetic', 'useless'],\n",
" 'quality': ['terrible', 'awful', 'horrible', 'bad', 'disappointing'],\n",
" 'hated': ['hated', 'despised', 'disliked'],\n",
" 'terrible': ['terrible', 'awful', 'horrible'],\n",
" 'awful': ['awful', 'dreadful', 'atrocious'],\n",
" 'horrible': ['horrible', 'disgusting', 'repulsive'],\n",
" 'pathetic': ['pathetic', 'pitiful', 'miserable'],\n",
" 'boring': ['boring', 'dull', 'tedious'],\n",
" 'recommend': ['recommend', 'suggest'],\n",
" 'worst': ['worst', 'poorest', 'most terrible'],\n",
" 'bad': ['bad', 'poor', 'weak'],\n",
" 'ridiculous': ['ridiculous', 'absurd', 'nonsensical'],\n",
" 'disappointed': ['disappointed', 'let down', 'frustrated'],\n",
" 'disappointing': ['disappointing', 'unsatisfying', 'mediocre'],\n",
" 'poor': ['poor', 'weak', 'inadequate'],\n",
" 'wasted': ['wasted', 'lost']\n",
" }\n",
" \n",
" # Movie-specific vocabulary for realistic content\n",
" # These words appear in both positive and negative reviews\n",
" elements = ['acting', 'plot', 'story', 'dialogue', 'cinematography', 'direction', 'script', 'characters', 'soundtrack', 'ending']\n",
" film_types = ['movie', 'film', 'picture', 'drama', 'thriller', 'comedy']\n",
" \n",
" texts = []\n",
" labels = []\n",
" \n",
" # Generate equal numbers of positive and negative samples\n",
" for i in range(num_samples):\n",
" if i < num_samples // 2:\n",
" # Generate positive review\n",
" template = random.choice(positive_templates)\n",
" word_dict = positive_words\n",
" label = 1 # Positive class\n",
" else:\n",
" # Generate negative review\n",
" template = random.choice(negative_templates)\n",
" word_dict = negative_words\n",
" label = 0 # Negative class\n",
" \n",
" text = template\n",
" \n",
" # Replace sentiment placeholders with appropriate words\n",
" for key in word_dict:\n",
" if '{' + key + '}' in text:\n",
" text = text.replace('{' + key + '}', random.choice(word_dict[key]))\n",
" \n",
" # Replace movie element placeholders\n",
" # Multiple element replacements create sentence variety\n",
" text = text.replace('{element}', random.choice(elements))\n",
" text = text.replace('{element2}', random.choice(elements))\n",
" text = text.replace('{element3}', random.choice(elements))\n",
" text = text.replace('{film_type}', random.choice(film_types))\n",
" \n",
" # Handle any remaining placeholders\n",
" # This ensures no template placeholders remain in final text\n",
" remaining_placeholders = [word for word in text.split() if word.startswith('{') and word.endswith('}')]\n",
" for placeholder in remaining_placeholders:\n",
" clean_placeholder = placeholder.strip('{}')\n",
" if clean_placeholder in positive_words:\n",
" text = text.replace(placeholder, random.choice(positive_words[clean_placeholder]))\n",
" elif clean_placeholder in negative_words:\n",
" text = text.replace(placeholder, random.choice(negative_words[clean_placeholder]))\n",
" \n",
" texts.append(text)\n",
" labels.append(label)\n",
" \n",
" return texts, labels\n",
"\n",
"def build_vocabulary(texts, min_freq=2):\n",
" \"\"\"\n",
" Build vocabulary from training texts with frequency-based filtering.\n",
" \n",
" This function creates a word-to-index mapping that enables efficient\n",
" text processing and handles the vocabulary size vs. coverage trade-off.\n",
" \n",
" Process:\n",
" 1. Count frequency of each word across all texts\n",
" 2. Filter out rare words below min_freq threshold\n",
" 3. Assign unique indices to remaining words\n",
" 4. Add special tokens for padding and unknown words\n",
" \n",
" Args:\n",
" texts (list): List of text strings to analyze\n",
" min_freq (int): Minimum frequency threshold for including words\n",
" \n",
" Returns:\n",
" dict: Vocabulary mapping from words to integer indices\n",
" \"\"\"\n",
" # Count word frequencies across entire corpus\n",
" word_counts = Counter()\n",
" for text in texts:\n",
" words = text.lower().split() # Normalize case for consistency\n",
" word_counts.update(words)\n",
" \n",
" # Initialize vocabulary with special tokens\n",
" # Index 0: <PAD> for sequence padding (shorter sequences)\n",
" # Index 1: <UNK> for unknown words (not in training vocabulary)\n",
" # These special tokens are essential for robust text processing\n",
" vocab_to_idx = {'<PAD>': 0, '<UNK>': 1}\n",
" idx = 2\n",
" \n",
" # Add frequent words to vocabulary\n",
" # min_freq filtering removes rare words that might not generalize well\n",
" # This reduces vocabulary size while maintaining coverage of important words\n",
" for word, count in word_counts.items():\n",
" if count >= min_freq:\n",
" vocab_to_idx[word] = idx\n",
" idx += 1\n",
" \n",
" return vocab_to_idx\n",
"\n",
"def train_model(model, train_loader, val_loader, num_epochs=20):\n",
" \"\"\"\n",
" Train the LSTM model with comprehensive optimization techniques.\n",
" \n",
" Training features:\n",
" - Cross-entropy loss for classification\n",
" - Adam optimizer with weight decay regularization\n",
" - Learning rate scheduling based on validation performance\n",
" - Early stopping to prevent overfitting\n",
" - Gradient clipping to handle exploding gradients\n",
" - Comprehensive metric tracking\n",
" \n",
" Args:\n",
" model: PyTorch model to train\n",
" train_loader: DataLoader for training data\n",
" val_loader: DataLoader for validation data\n",
" num_epochs: Maximum number of training epochs\n",
" \n",
" Returns:\n",
" tuple: (train_losses, val_losses, val_accuracies) for analysis\n",
" \"\"\"\n",
" # Loss function: Cross-entropy automatically applies softmax and computes negative log-likelihood\n",
" # Ideal for multi-class classification problems\n",
" criterion = nn.CrossEntropyLoss()\n",
" \n",
" # Optimizer: Adam combines momentum with adaptive learning rates\n",
" # weight_decay: L2 regularization penalty to prevent overfitting\n",
" optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-4)\n",
" \n",
" # Learning rate scheduler: reduces LR when validation loss plateaus\n",
" # patience=3: wait 3 epochs before reducing, factor=0.5: halve the learning rate\n",
" # This helps fine-tune the model when learning slows down\n",
" scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, factor=0.5)\n",
" \n",
" # Metric tracking for training analysis\n",
" train_losses = []\n",
" val_losses = []\n",
" val_accuracies = []\n",
" \n",
" # Early stopping parameters to prevent overfitting\n",
" best_val_acc = 0 # Track best validation accuracy\n",
" patience = 5 # Number of epochs to wait without improvement\n",
" patience_counter = 0 # Current count of epochs without improvement\n",
" \n",
" for epoch in range(num_epochs):\n",
" # Training phase: model learns from training data\n",
" model.train() # Enable dropout and batch normalization training behavior\n",
" total_train_loss = 0\n",
" train_correct = 0\n",
" train_total = 0\n",
" \n",
" for batch_idx, (data, target) in enumerate(train_loader):\n",
" # Move data to computation device (GPU/MPS/CPU)\n",
" data, target = data.to(device), target.to(device)\n",
" \n",
" # Clear gradients from previous iteration\n",
" # PyTorch accumulates gradients by default, so this is essential\n",
" optimizer.zero_grad()\n",
" \n",
" # Forward pass: compute model predictions\n",
" output = model(data)\n",
" \n",
" # Compute loss between predictions and true labels\n",
" loss = criterion(output, target)\n",
" \n",
" # Backward pass: compute gradients using backpropagation\n",
" loss.backward()\n",
" \n",
" # Gradient clipping: prevent exploding gradients common in RNNs\n",
" # Clips the norm of gradients to maximum value of 1.0\n",
" torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)\n",
" \n",
" # Update model parameters using computed gradients\n",
" optimizer.step()\n",
" \n",
" # Track training metrics\n",
" total_train_loss += loss.item()\n",
" _, predicted = torch.max(output.data, 1)\n",
" train_total += target.size(0)\n",
" train_correct += (predicted == target).sum().item()\n",
" \n",
" # Calculate epoch training metrics\n",
" avg_train_loss = total_train_loss / len(train_loader)\n",
" train_accuracy = 100 * train_correct / train_total\n",
" train_losses.append(avg_train_loss)\n",
" \n",
" # Validation phase: evaluate model on unseen data\n",
" model.eval() # Disable dropout and batch normalization updates\n",
" total_val_loss = 0\n",
" correct = 0\n",
" total = 0\n",
" \n",
" # Disable gradient computation for efficiency during validation\n",
" with torch.no_grad():\n",
" for data, target in val_loader:\n",
" data, target = data.to(device), target.to(device)\n",
" output = model(data)\n",
" loss = criterion(output, target)\n",
" total_val_loss += loss.item()\n",
" \n",
" # Calculate accuracy: find class with highest probability\n",
" _, predicted = torch.max(output.data, 1)\n",
" total += target.size(0)\n",
" correct += (predicted == target).sum().item()\n",
" \n",
" # Calculate validation metrics\n",
" avg_val_loss = total_val_loss / len(val_loader)\n",
" val_accuracy = 100 * correct / total\n",
" \n",
" # Store metrics for analysis\n",
" val_losses.append(avg_val_loss)\n",
" val_accuracies.append(val_accuracy)\n",
" \n",
" # Update learning rate based on validation performance\n",
" scheduler.step(avg_val_loss)\n",
" current_lr = optimizer.param_groups[0]['lr']\n",
" \n",
" # Early stopping logic: stop training if no improvement\n",
" if val_accuracy > best_val_acc:\n",
" best_val_acc = val_accuracy\n",
" patience_counter = 0 # Reset counter on improvement\n",
" else:\n",
" patience_counter += 1 # Increment counter when no improvement\n",
" \n",
" # Stop training if no improvement for patience epochs\n",
" if patience_counter >= patience:\n",
" break\n",
" \n",
" return train_losses, val_losses, val_accuracies\n",
"\n",
"def test_model(model, test_loader):\n",
" \"\"\"\n",
" Evaluate trained model on test set with comprehensive metrics.\n",
" \n",
" Provides detailed performance analysis including:\n",
" - Overall accuracy\n",
" - Per-class precision, recall, F1-score\n",
" - Prediction probabilities for confidence analysis\n",
" - Classification report with support counts\n",
" \n",
" Args:\n",
" model: Trained PyTorch model\n",
" test_loader: DataLoader for test data\n",
" \n",
" Returns:\n",
" tuple: (accuracy, predictions, targets, probabilities)\n",
" \"\"\"\n",
" model.eval() # Set model to evaluation mode\n",
" all_predictions = []\n",
" all_targets = []\n",
" all_probabilities = []\n",
" \n",
" # Collect predictions and probabilities for all test samples\n",
" with torch.no_grad():\n",
" for data, target in test_loader:\n",
" data, target = data.to(device), target.to(device)\n",
" output = model(data)\n",
" \n",
" # Convert logits to probabilities using softmax\n",
" probabilities = torch.softmax(output, dim=1)\n",
" \n",
" # Get predicted class (highest probability)\n",
" _, predicted = torch.max(output, 1)\n",
" \n",
" # Store results for metric calculation\n",
" all_predictions.extend(predicted.cpu().numpy())\n",
" all_targets.extend(target.cpu().numpy())\n",
" all_probabilities.extend(probabilities.cpu().numpy())\n",
" \n",
" # Calculate overall accuracy\n",
" accuracy = accuracy_score(all_targets, all_predictions)\n",
" \n",
" # Generate detailed classification report\n",
" # zero_division=0 handles edge case where no samples predicted for a class\n",
" try:\n",
" report = classification_report(all_targets, all_predictions, \n",
" target_names=['Negative', 'Positive'], \n",
" zero_division=0)\n",
" except Exception as e:\n",
" report = f\"Error generating classification report: {e}\"\n",
" \n",
" return accuracy, all_predictions, all_targets, all_probabilities\n",
"\n",
"def demonstrate_predictions(model, vocab_to_idx, sample_texts):\n",
" \"\"\"\n",
" Demonstrate model predictions on sample texts to verify functionality.\n",
" \n",
" This function shows:\n",
" - Text preprocessing pipeline in action\n",
" - Model inference process\n",
" - Confidence scores and probability distributions\n",
" - Prediction interpretability\n",
" \n",
" Args:\n",
" model: Trained PyTorch model\n",
" vocab_to_idx: Vocabulary mapping for text preprocessing\n",
" sample_texts: List of example texts to classify\n",
" \"\"\"\n",
" model.eval() # Ensure model is in evaluation mode\n",
" max_length = 50 # Must match training sequence length\n",
" \n",
" with torch.no_grad():\n",
" for text in sample_texts:\n",
" # Preprocess text using same pipeline as training\n",
" tokens = text.lower().split()\n",
" \n",
" # Convert words to vocabulary indices\n",
" # Uses <UNK> token for words not seen during training\n",
" token_ids = [vocab_to_idx.get(token, vocab_to_idx['<UNK>']) for token in tokens]\n",
" \n",
" # Apply same padding/truncation as training data\n",
" if len(token_ids) < max_length:\n",
" # Pad with <PAD> tokens to reach max_length\n",
" token_ids.extend([vocab_to_idx['<PAD>']] * (max_length - len(token_ids)))\n",
" else:\n",
" # Truncate to max_length\n",
" token_ids = token_ids[:max_length]\n",
" \n",
" # Convert to tensor and add batch dimension for model input\n",
" input_tensor = torch.tensor([token_ids], dtype=torch.long).to(device)\n",
" \n",
" # Get model predictions (raw logits)\n",
" output = model(input_tensor)\n",
" \n",
" # Convert logits to probabilities using softmax\n",
" probabilities = torch.softmax(output, dim=1)\n",
" \n",
" # Extract prediction and confidence\n",
" predicted_class = torch.argmax(output, dim=1).item()\n",
" confidence = probabilities[0][predicted_class].item()\n",
" \n",
" # Convert numerical prediction to human-readable label\n",
" sentiment = \"Positive\" if predicted_class == 1 else \"Negative\"\n",
"\n",
"def main():\n",
" \"\"\"\n",
" Main execution function orchestrating the complete sequence modeling pipeline.\n",
" \n",
" Pipeline overview:\n",
" 1. Set random seeds for reproducible experiments\n",
" 2. Generate realistic movie review dataset\n",
" 3. Build vocabulary from training texts\n",
" 4. Create train/validation/test splits with stratification\n",
" 5. Initialize PyTorch datasets and data loaders\n",
" 6. Define and initialize LSTM model architecture\n",
" 7. Train model with validation monitoring\n",
" 8. Evaluate on test set with comprehensive metrics\n",
" 9. Demonstrate predictions on sample texts\n",
" 10. Visualize training progress and performance\n",
" \"\"\"\n",
" # Set random seeds for reproducible results across runs\n",
" # Essential for comparing different model configurations\n",
" torch.manual_seed(42)\n",
" np.random.seed(42)\n",
" random.seed(42)\n",
" \n",
" # Generate synthetic movie review dataset\n",
" # Larger dataset (2000 samples) provides more training examples\n",
" texts, labels = create_realistic_movie_dataset(num_samples=2000)\n",
" \n",
" # Build vocabulary from all text data\n",
" # min_freq=2 filters very rare words that might not generalize\n",
" vocab_to_idx = build_vocabulary(texts, min_freq=2)\n",
" \n",
" # Create stratified train/validation/test splits\n",
" # Stratification maintains class balance across all splits\n",
" # 60% train, 20% validation, 20% test\n",
" X_temp, X_test, y_temp, y_test = train_test_split(texts, labels, test_size=0.2, random_state=42, stratify=labels)\n",
" X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=0.25, random_state=42, stratify=y_temp)\n",
" \n",
" # Create PyTorch datasets with text preprocessing\n",
" train_dataset = TextDataset(X_train, y_train, vocab_to_idx)\n",
" val_dataset = TextDataset(X_val, y_val, vocab_to_idx)\n",
" test_dataset = TextDataset(X_test, y_test, vocab_to_idx)\n",
" \n",
" # Create data loaders for efficient batch processing\n",
" # batch_size=32: balance between memory usage and gradient stability\n",
" # shuffle=True for training: randomizes order to improve learning\n",
" # shuffle=False for validation/test: ensures consistent evaluation\n",
" train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)\n",
" val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)\n",
" test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)\n",
" \n",
" # Define model architecture hyperparameters\n",
" vocab_size = len(vocab_to_idx) # Size of vocabulary (including special tokens)\n",
" embedding_dim = 128 # Word embedding dimension (semantic feature size)\n",
" hidden_dim = 64 # LSTM hidden state dimension (memory capacity)\n",
" num_layers = 2 # Number of stacked LSTM layers (model depth)\n",
" num_classes = 2 # Binary classification (positive/negative sentiment)\n",
" \n",
" # Initialize model and move to computation device\n",
" model = LSTMClassifier(vocab_size, embedding_dim, hidden_dim, num_layers, num_classes, dropout=0.2)\n",
" model.to(device)\n",
" \n",
" # Verify model architecture with sample input\n",
" sample_batch = next(iter(train_loader))\n",
" sample_input, sample_target = sample_batch\n",
" sample_input = sample_input.to(device)\n",
" \n",
" with torch.no_grad():\n",
" sample_output = model(sample_input)\n",
" # Verify output shape matches expected dimensions\n",
" \n",
" # Train model with validation monitoring\n",
" train_losses, val_losses, val_accuracies = train_model(model, train_loader, val_loader, num_epochs=20)\n",
" \n",
" # Evaluate final performance on test set\n",
" test_accuracy, predictions, targets, probabilities = test_model(model, test_loader)\n",
" \n",
" # Demonstrate predictions on hand-crafted examples\n",
" # These examples test model's ability to distinguish clear sentiment patterns\n",
" sample_texts = [\n",
" \"This movie is absolutely fantastic and amazing! I loved every minute of it.\",\n",
" \"Terrible boring film, complete waste of time. I hated everything about it.\",\n",
" \"Excellent story with wonderful acting and brilliant performance throughout.\",\n",
" \"Awful movie with horrible dialogue. Disappointed and would not recommend.\",\n",
" \"The cinematography was superb and the plot was incredible. Highly recommend!\",\n",
" \"Poor script with terrible acting. One of the worst films I have ever seen.\"\n",
" ]\n",
" \n",
" demonstrate_predictions(model, vocab_to_idx, sample_texts)\n",
" \n",
" # Visualize training progress and final performance\n",
" plt.figure(figsize=(15, 5))\n",
" \n",
" # Training and validation loss curves\n",
" plt.subplot(1, 3, 1)\n",
" plt.plot(train_losses, label='Train Loss', color='blue')\n",
" plt.plot(val_losses, label='Validation Loss', color='red')\n",
" plt.title('Training and Validation Loss')\n",
" plt.xlabel('Epoch')\n",
" plt.ylabel('Loss')\n",
" plt.legend()\n",
" plt.grid(True)\n",
" \n",
" # Validation accuracy curve\n",
" plt.subplot(1, 3, 2)\n",
" plt.plot(val_accuracies, label='Validation Accuracy', color='green')\n",
" plt.title('Validation Accuracy')\n",
" plt.xlabel('Epoch')\n",
" plt.ylabel('Accuracy (%)')\n",
" plt.legend()\n",
" plt.grid(True)\n",
" \n",
" # Confusion matrix for final test performance\n",
" plt.subplot(1, 3, 3)\n",
" predictions_array = np.array(predictions)\n",
" targets_array = np.array(targets)\n",
" \n",
" from sklearn.metrics import confusion_matrix\n",
" # Create confusion matrix to visualize classification performance\n",
" # Shows true positives, false positives, true negatives, false negatives\n",
" cm = confusion_matrix(targets_array, predictions_array)\n",
" sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', \n",
" xticklabels=['Negative', 'Positive'], \n",
" yticklabels=['Negative', 'Positive'])\n",
" plt.title('Confusion Matrix')\n",
" plt.ylabel('True Label')\n",
" plt.xlabel('Predicted Label')\n",
" \n",
" plt.tight_layout()\n",
" plt.show()\n",
" \n",
" if __name__ == \"__main__\":\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "578b4d5b-43d9-4b88-a400-a15c1a4e8e8f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|