verantyx-logic-math / db /knowledge_db.json
kofdai's picture
Initial upload of Verantyx Logic Engine (v1.0)
29b87da verified
{
"domains": ["modal_logic", "order_theory", "group_theory", "set_theory"],
"lexicon": {
"assumptions": {
"assume:transitive": {
"positive": ["transitive", "推移的", "推移性", "推移律", "連鎖的"],
"negative": ["not transitive", "non-transitive", "反推移", "推移的ではない"],
"description": "R is transitive: (wRv and vRu) => wRu"
},
"assume:reflexive": {
"positive": ["reflexive", "反射的", "反射性", "自己到達", "wRw"],
"negative": ["not reflexive", "non-reflexive", "反射的ではない"],
"description": "R is reflexive: for all w, wRw"
},
"assume:symmetric": {
"positive": ["symmetric", "対称的", "対称性", "双方向"],
"negative": ["not symmetric", "non-symmetric", "非対称"],
"description": "R is symmetric: wRv => vRw"
},
"assume:euclidean": {
"positive": ["euclidean", "ユークリッド的", "ユークリッド性"],
"negative": ["not euclidean", "non-euclidean"],
"description": "R is euclidean: wRv and wRu => vRu"
},
"assume:antisymmetric": {
"positive": ["antisymmetric", "反対称的", "反対称性"],
"negative": ["not antisymmetric"],
"description": "xRy and yRx => x=y"
},
"assume:associative": {
"positive": ["associative", "結合的", "結合律"],
"negative": ["not associative", "非結合的"],
"description": "(a * b) * c = a * (b * c)"
},
"assume:commutative": {
"positive": ["commutative", "可換", "交換法則"],
"negative": ["not commutative", "非可換"],
"description": "a * b = b * a"
}
}
},
"correspondence": {
"axioms": {
"axiom:T": {
"requires": ["assume:reflexive"],
"schema": "[]P -> P",
"description": "Reflexivity corresponds to Axiom T."
},
"axiom:4": {
"requires": ["assume:transitive"],
"schema": "[]P -> [][]P",
"description": "Transitivity corresponds to Axiom 4."
},
"axiom:5": {
"requires": ["assume:euclidean"],
"schema": "<>P -> []<>P",
"description": "Euclidean property corresponds to Axiom 5."
},
"axiom:B": {
"requires": ["assume:symmetric"],
"schema": "P -> []<>P",
"description": "Symmetry corresponds to Axiom B."
},
"axiom:group_identity": {
"requires": ["assume:group_structure"],
"schema": "e * x = x",
"description": "Identity element existence."
}
},
"schemas": {
"[]p->p": { "explain": "T-axiom (Reflexivity)", "supports": ["axiom:T"] },
"[]p->[][]p": { "explain": "4-axiom (Transitivity)", "supports": ["axiom:4"] },
"<>p->[]<>p": { "explain": "5-axiom (Euclidean)", "supports": ["axiom:5"] },
"p->[]<>p": { "explain": "B-axiom (Symmetry)", "supports": ["axiom:B"] }
},
"missing_assumption_hints": {
"[]p->p": ["assume:reflexive"],
"[]p->[][]p": ["assume:transitive"],
"<>p->[]<>p": ["assume:euclidean"],
"p->[]<>p": ["assume:symmetric"]
}
},
"structures": {
"order:partial_order": {
"name": "Partial Order",
"assumptions": ["assume:reflexive", "assume:antisymmetric", "assume:transitive"],
"intuition": "A set with a hierarchy where not all elements need to be comparable."
},
"algebra:group": {
"name": "Group",
"assumptions": ["assume:associative", "assume:has_identity", "assume:has_inverse"],
"intuition": "A set with an operation that allows symmetry and reversibility."
}
},
"counterexample_notes": {
"missing_reflexive_breaks_T": {
"explain": "反射性が無いと wRw が保証されないため、□P が真(到達先がない)でも P が偽になる世界が存在しうる。"
},
"missing_transitive_breaks_4": {
"explain": "推移性が無いと、2歩先の到達点が見えないため、□P から □□P が導けない。"
}
}
}