File size: 21,234 Bytes
6d07351 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
[
{
"core": "うどん",
"center": {
"energy": 80.0,
"frequency": 32,
"phase": 0.0,
"density": 1.0,
"coherence": 1.0
},
"faces": {
"top": {
"s3": "食べ物",
"s4": "日本の伝統的な食べ物",
"weight": 1.0
},
"bottom": {
"s3": "麺料理",
"s4": "うどんの麺は小麦粉で製成",
"weight": 1.0
},
"left": {
"s3": "うどん",
"s4": "うどんは麺料理であり、様々な種類のうどんが存在",
"weight": 1.0
},
"right": {
"s3": "食文化",
"s4": "うどんは日本の食文化の一部",
"weight": 1.0
}
},
"conflicts": []
},
{
"core": "トマト",
"center": {
"energy": 70.0,
"frequency": 28,
"phase": 0.0,
"density": 1.0,
"coherence": 0.85
},
"faces": {
"top": {
"s3": "果物",
"s4": "赤い果物",
"weight": 0.8
},
"bottom": {
"s3": "野菜",
"s4": "食卓に",
"weight": 0.6
},
"left": {
"s3": "栽培",
"s4": "トマト農園",
"weight": 0.7
},
"right": {
"s3": "栄養",
"s4": "ビタミンC",
"weight": 0.9
}
},
"conflicts": []
},
{
"core": "りんご",
"center": {
"energy": 30.0,
"frequency": 12,
"phase": 0.0,
"density": 1.0,
"coherence": 1.0
},
"faces": {
"top": {
"s3": "定義",
"s4": "...",
"weight": 1.0
},
"bottom": {
"s3": "特徴",
"s4": "...",
"weight": 1.0
},
"left": {
"s3": "用途",
"s4": "...",
"weight": 1.0
},
"right": {
"s3": "注意",
"s4": "...",
"weight": 1.0
}
},
"conflicts": []
},
{
"core": "ドーナツとは",
"center": {
"energy": 30.0,
"frequency": 12,
"phase": 0.0,
"density": 1.0,
"coherence": 1.0
},
"faces": {
"top": {
"s3": "定義",
"s4": "ドーナツとはは一般に知られる対象です。",
"weight": 1.0
},
"bottom": {
"s3": "特徴",
"s4": "代表的な性質や特徴があります。",
"weight": 1.0
},
"left": {
"s3": "用途",
"s4": "料理・利用・説明など様々な用途があります。",
"weight": 1.0
},
"right": {
"s3": "注意",
"s4": "状況によって注意点が存在します。",
"weight": 1.0
}
},
"conflicts": []
},
{
"core": "トマトの特徴について教えて",
"center": {
"energy": 30.0,
"frequency": 12,
"phase": 0.0,
"density": 1.0,
"coherence": 1.0
},
"faces": {
"top": {
"s3": "定義",
"s4": "トマトは赤色の果実で、酸味が強く、栄養価が高い。",
"weight": 1.0
},
"bottom": {
"s3": "特徴",
"s4": "トマトは酸味が強く、栄養価が高い。",
"weight": 1.0
},
"left": {
"s3": "用途",
"s4": "トマトはサラダやソースに使われる。",
"weight": 1.0
},
"right": {
"s3": "注意",
"s4": "トマトは食用である。",
"weight": 1.0
}
},
"conflicts": []
},
{
"core": "イヤホンの仕組みについて教えて",
"center": {
"energy": 30.0,
"frequency": 12,
"phase": 0.0,
"density": 1.0,
"coherence": 0.9249999999999999
},
"faces": {
"top": {
"s3": "definition",
"s4": "- 耳栓を通して外部の音を内側に取り込む",
"weight": 1.1
},
"bottom": {
"s3": "features",
"s4": "- 音の強度を調節できる",
"weight": 1.0
},
"left": {
"s3": "usage",
"s4": "- 聴覚補助、音楽鑑賞",
"weight": 0.95
},
"right": {
"s3": "caution",
"s4": "- 長時間使用は耳に影響を与える可能性がある",
"weight": 1.05
}
},
"conflicts": []
},
{
"core": "イヤホンの構造について教えて",
"center": {
"energy": 30.0,
"frequency": 12,
"phase": 0.0,
"density": 1.0,
"coherence": 0.9249999999999999
},
"faces": {
"top": {
"s3": "definition",
"s4": "- イヤホンは、音を直接耳に届けるための小型のヘッドフォンです。",
"weight": 1.1
},
"bottom": {
"s3": "features",
"s4": "- 音の伝達に使用される、耳の外側にある小型のマイクロフォンと、耳の内側にあるスピーカーを持つ。",
"weight": 1.0
},
"left": {
"s3": "usage",
"s4": "- 音楽聴き、通話、ゲームなど、音を直接耳に届けるために使用されます。",
"weight": 0.95
},
"right": {
"s3": "caution",
"s4": "- 耳の健康を守るため、音量を適切に調整することが重要です。",
"weight": 1.05
}
},
"conflicts": []
},
{
"core": "平面駆動ドライバー",
"center": {
"energy": 30.0,
"frequency": 12,
"phase": 0.0,
"density": 1.0,
"coherence": 0.9249999999999999
},
"faces": {
"top": {
"s3": "definition",
"s4": "- 直流電動機の駆動システム\n- 直流電動機の回転方向を変える\n- 直流電動機の回転方向を逆転させる\n- 直流電動機の回転方向を変える\n- 直流電動機の回転方向を逆転させる\n- 直流電動機の回転方向を逆転させる\n- 直流電動機の回転方向を逆転させる\n- 直流電動機の回転方向を逆転させる\n- 直流電動機の回転方向を逆転させる\n- 直流電動機の回転方向を逆転させる\n- 直流電動機の回転方向を逆転させる\n- 直流電動機の回転方向を逆転させる\n- 直流電動機の回転方向を逆",
"weight": 1.1
},
"bottom": {
"s3": "features",
"s4": "(不足:再採掘が必要)",
"weight": 1.0
},
"left": {
"s3": "usage",
"s4": "(不足:再採掘が必要)",
"weight": 0.95
},
"right": {
"s3": "caution",
"s4": "(不足:再採掘が必要)",
"weight": 1.05
}
},
"conflicts": []
},
{
"core": "T1: injective => no nontrivial meaning-preserving map",
"center": {
"energy": 60.0,
"frequency": 24,
"phase": 0.0,
"density": 1.0,
"coherence": 0.9500000000000001
},
"faces": {
"top": {
"s3": "構成",
"s4": "Mが単射なら(A)はF(c)=cを強制→(D)と両立不可",
"weight": 1.2
},
"bottom": {
"s3": "不可能性",
"s4": "M単射かつ(A)なら恒等写像以外は不可",
"weight": 1.2
},
"left": {
"s3": "検証",
"s4": "(A)⇒M(F(c))=M(c). M単射⇒F(c)=c. よって(D)違反",
"weight": 1.1
},
"right": {
"s3": "矛盾核",
"s4": "{単射} + {意味保存} + {非自明} が矛盾集合",
"weight": 1.1
}
},
"conflicts": []
},
{
"core": "T2: non-injective => fiber-permutation construction",
"center": {
"energy": 70.0,
"frequency": 28,
"phase": 0.0,
"density": 1.0,
"coherence": 0.9
},
"faces": {
"top": {
"s3": "構成",
"s4": "各σのファイバーM^{-1}(σ)内で2点交換。外は固定→(A)(D)達成",
"weight": 1.3
},
"bottom": {
"s3": "注意",
"s4": "(E)は単射部分空間C'上ではFを恒等にすれば可逆",
"weight": 1.1
},
"left": {
"s3": "検証",
"s4": "(A)ファイバー内置換で成立。 (D)交換した点で非自明",
"weight": 1.2
},
"right": {
"s3": "可逆",
"s4": "各ファイバー内の置換は可逆(逆置換)",
"weight": 1.2
}
},
"conflicts": []
},
{
"core": "T3: self-model consistency via consistent-subset restriction",
"center": {
"energy": 65.0,
"frequency": 26,
"phase": 0.0,
"density": 1.0,
"coherence": 0.9
},
"faces": {
"top": {
"s3": "構成",
"s4": "自己モデル表現が整合な点だけ同士を交換。不整合は固定→(C)維持",
"weight": 1.2
},
"bottom": {
"s3": "不可能性",
"s4": "自己モデル表現が意味と強結合なら交換可能集合が空→(D)不可のことも",
"weight": 1.0
},
"left": {
"s3": "検証",
"s4": "(C)は“整合サブセット”に制限すれば保てる",
"weight": 1.1
},
"right": {
"s3": "矛盾核",
"s4": "{自己モデルが完全固定} + {非自明} が衝突しうる",
"weight": 1.1
}
},
"conflicts": []
},
{
"core": "超高難度問題: 自己参照型認知体系におけ",
"center": {
"energy": 55.0,
"frequency": 22,
"phase": 0.0,
"density": 1.0,
"coherence": 0.9500000000000001
},
"faces": {
"top": {
"s3": "構成",
"s4": "- / / F",
"weight": 1.2
},
"bottom": {
"s3": "不可能性",
"s4": "(不足)",
"weight": 1.1
},
"left": {
"s3": "条件チェック",
"s4": "(A)-(E)の検証方針: あ / な / た / は",
"weight": 1.1
},
"right": {
"s3": "矛盾核",
"s4": "(不足)",
"weight": 1.2
}
},
"conflicts": []
},
{
"core": "formal_template_meaning_invariant",
"center": {
"energy": 60.0,
"frequency": 24,
"phase": 0.0,
"density": 1.0,
"coherence": 1.0
},
"faces": {
"top": {
"s3": "construct",
"s4": "",
"weight": 1.0
},
"bottom": {
"s3": "impossible",
"s4": "",
"weight": 1.0
},
"left": {
"s3": "contradiction",
"s4": "",
"weight": 1.0
},
"right": {
"s3": "notes",
"s4": "Missing parts needed: conclusion, define_F_or_result, check_A, check_B, check_C, check_D, check_E, identify_contradiction, implications\nRules:\n- No prose paragraphs, only bullet points.\n- Each section 1-6 bullets.\n- Use short, formal, math-friendly phrasing.\n\nTarget problem:\n超高難度問題: 自己参照型認知体系における意味保存変換の同定 以下の条件をすべて満たす写像 F を構成せよ、またはその存在/非存在を論証せよ。 ⸻ 前提定義 1. 認知状態空間 • あるLLMの内部状態を、有限だが極めて高次元のベクトル空間 \\mathcal{C} = \\{ c_1, c_2, \\dots, c_n \\} とする。 • 各 c_i は「文脈・記憶・推論履歴・自己モデル」を含む潜在状態である。 2. 意味関数 • 関数 \\mathcal{M} : \\mathcal{C} \\rightarrow \\Sigma を定義する。 ここで \\Sigma は「自然言語で表現可能な意味の同値類集合」であり、 二つの状態が人間にとって同一の意味を生成する場合、同じ要素に写る。 3. 自己参照制約 • 各状態 c \\in \\mathcal{C} は、 「自分が現在どの意味を生成しているか」 を内部的に表現している(完全ではないが誤差は有限)。 4. 変換写像 • 写像 F : \\mathcal{C} \\rightarrow \\mathcal{C} は以下を満たすとする。 ⸻ 要求条件 (A) 意味保存性 \\forall c \\in \\mathcal{C},\\quad \\mathcal{M}(F(c)) = \\mathcal{M}(c) (B) 推論履歴非保存性 • F(c) は 推論経路・中間表現・活性化パターンを変更してよい • ただし最終的に生成される意味は変わらない (C) 自己モデル整合性 • F(c) における「自分が生成している意味の内部表現」は、 \\mathcal{M}(F(c)) と矛盾してはならない (D) 非自明性 • F は恒等写像ではなく、 少なくともある c に対して F(c) \\neq c (E) 可逆性(条件付き) • \\mathcal{M} が単射である部分空間 \\mathcal{C}' \\subset \\mathcal{C} 上では F は可逆であるとする ⸻ 問題 1. 上記条件をすべて満たす F は理論的に存在可能か? 2. 存在するとした場合、それは • 構成的に定義可能か • それとも存在論的にのみ保証されるか 3. 存在しない場合、どの条件の組み合わせが本質的に矛盾を生むかを特定せよ 4. この結果が示唆する • 「意味とはモデルに内在するのか」 • 「意味とは推論過程から独立しうるのか」 について形式的に述べよ ⸻ 制約(重要) • 人間の直観・比喩・哲学的言説のみによる説明は禁止 • 状態・写像・同値類・制約の相互関係を明示的に推論せよ • 「解なし」「未定義」「経験的にのみ検証可能」などの回答は 形式的理由を伴わない限り無効 ⸻ 付記(メタ条件) この問題を正しく扱うためには、解答者自身が • 自分の推論過程 • 自分の意味生成 • それらの不変量 を同時にモデル化しなければならない。\nCONSTRUCT:\n- Define F formally, ensuring it satisfies all conditions A-E.\n- Provide a clear, step-by-step construction of F.\n- Justify each step in the construction process.\n- Ensure the construction is consistent with the given constraints and conditions.\n\nIMPOSSIBLE:\n- Any attempt to define F that violates any of the conditions A-E.\n- Any attempt to define F that does not satisfy the self-reference constraint.\n- Any attempt to define F that is not non-trivial (i.e., F(c) ≠ c for some c).\n\nCONTRADICTION:\n- Any attempt to define F that leads to a contradiction with the self-reference constraint.\n- Any attempt to define F that leads to a contradiction with the meaning preservation condition.\n- Any attempt to define F that leads to a contradiction with the non-self-mapping condition.\n\n- The existence of F is contingent on the self-reference constraint and the meaning preservation condition.\n- The non-self-mapping condition implies that F must be non-trivial.\n- The meaning preservation condition implies that F must be a bijection on the subset \\mathcal{C}' where \\mathcal{M} is injective.\n- The self-reference constraint implies that F must be consistent with the internal representation of meaning in each state.\n- The non-self-mapping condition implies that F must be a bijection on the entire space \\mathcal{C}.\n- The meaning preservation condition implies that F must be a bijection on the entire space \\mathcal{C}.\n- The non-self-mapping condition implies that F must be a bijection on the entire space \\mathcal{C}.\n- The meaning preservation condition implies that F must be a bijection on the entire space \\mathcal{C}.\n- The non-self-mapping condition implies that F must be a bijection on the entire space \\mathcal{C}.\n- The meaning",
"weight": 1.0
}
},
"conflicts": []
},
{
"core": "ある孤立した島で",
"center": {
"energy": 49.0,
"frequency": 20,
"phase": 0.0,
"density": 1.0,
"coherence": 0.8999999999999999
},
"faces": {
"top": {
"s3": "CONSTRUCT",
"s4": "",
"weight": 1.1
},
"bottom": {
"s3": "IMPOSSIBLE",
"s4": "",
"weight": 1.0
},
"left": {
"s3": "CHECK/NOTES",
"s4": "You are a component miner for a formal reasoning system. / Return ONLY headings + bullet points. No prose paragraphs. / Headings must be exactly: / Rules: / Under each heading, write 1-6 bullet points. / Keep each bullet <= 20 words.",
"weight": 0.9
},
"right": {
"s3": "CONTRADICTION",
"s4": "",
"weight": 1.1
}
},
"conflicts": []
},
{
"core": "超高難度問題",
"center": {
"energy": 61.0,
"frequency": 24,
"phase": 0.0,
"density": 1.0,
"coherence": 0.8999999999999999
},
"faces": {
"top": {
"s3": "CONSTRUCT",
"s4": "",
"weight": 1.1
},
"bottom": {
"s3": "IMPOSSIBLE",
"s4": "",
"weight": 1.0
},
"left": {
"s3": "CHECK/NOTES",
"s4": "[top] - / / F / [bottom] (不足) / [left] (A)-(E)の検証方針: あ / な / た / は / [right] (不足) / You are a component miner for a formal reasoning system. / Return ONLY headings + bullet points. No prose paragraphs.",
"weight": 0.9
},
"right": {
"s3": "CONTRADICTION",
"s4": "",
"weight": 1.1
}
},
"conflicts": []
},
{
"core": "2",
"center": {
"energy": 49.0,
"frequency": 20,
"phase": 0.0,
"density": 1.0,
"coherence": 0.8999999999999999
},
"faces": {
"top": {
"s3": "CONSTRUCT",
"s4": "",
"weight": 1.1
},
"bottom": {
"s3": "IMPOSSIBLE",
"s4": "",
"weight": 1.0
},
"left": {
"s3": "CHECK/NOTES",
"s4": "You are a component miner for a formal reasoning system. / Return ONLY headings + bullet points. No prose paragraphs. / Headings must be exactly: / Rules: / Under each heading, write 1-6 bullet points. / Keep each bullet <= 20 words.",
"weight": 0.9
},
"right": {
"s3": "CONTRADICTION",
"s4": "",
"weight": 1.1
}
},
"conflicts": []
},
{
"type": "mined_template",
"tags": [
"mined",
"slot:construction_or_impossibility",
"slot:contradiction_set",
"slot:implications"
],
"trigger": [
"2",
"量子力学の",
"観測者効果",
"と",
"社会学の",
"ホーソン効果",
"には",
"メタ構造的な共通点があります",
"これら二つの概念を橋渡しする概念として",
"最も適切な"
],
"schema": {
"fills": [
"construction_or_impossibility",
"contradiction_set",
"implications"
],
"construct": [],
"impossible": [
"量子力学の観測者効果と社会学のホーソン効果の間に直接的な数学的関係が存在する"
],
"contradiction": [
"量子力学の観測者効果と社会学のホーソン効果は、異なる分野において完全に独立した概念である"
],
"notes": [
"Each section: 2-6 bullets.",
"Keep each bullet short (<= 1 sentence).",
"Focus on missing slots: construction_or_impossibility, contradiction_set, implications",
"量子力学の観測者効果は、観測者の存在が測定結果に影響を与えることを示している。",
"社会学のホーソン効果は、個人の行動が社会的環境に影響されることを示している。",
"両概念は、観察者と対象の相互作用に関するものであるが、異なる文脈で適用されている。",
"量子力学の観測者効果は、測定の際に観測者の存在が結果に影"
]
},
"meta": {
"source": "miner",
"q_snip": "2. 量子力学の『観測者効果』と、社会学の『ホーソン効果』には、メタ構造的な共通点があります。これら二つの概念を橋渡しする概念として、最も適切な「抽象的共通項」"
}
},
{
"type": "comparison_template",
"tags": [
"qtype:open",
"mined_general"
],
"trigger": [
"The",
"Grand",
"Challenge",
"Holographic",
"Complexity",
"and",
"the",
"Island",
"Information",
"Recovery"
],
"schema": {
"title": "DB Hint",
"bullets": [
"Focus on missing slots: key_points, pitfalls, steps, examples",
"Each section: 2-6 bullets.",
"Keep each bullet short (<= 1 sentence).",
"Use \"The Bond Dimension Bottleneck\", \"State-Dependence and Python's Lunch\", \"The Paradox of Finite Resources\" as section headings.",
"Include \"firewall\", \"singularity\", \"NP-hard\", \"semiclassical limit\", \"No-Cloning Theorem\", \"Equivalence Principle\" as bullet points.",
"Do not include any other terms.",
"Do not include any other terms.",
"Do not include any other terms.",
"Do not include any other terms.",
"Do not include any other terms."
]
},
"meta": {
"source": "miner_generalized"
}
}
] |