Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- .venv/lib/python3.11/site-packages/PIL/__pycache__/Image.cpython-311.pyc +3 -0
- .venv/lib/python3.11/site-packages/PIL/_imaging.cpython-311-x86_64-linux-gnu.so +3 -0
- .venv/lib/python3.11/site-packages/PIL/_imagingft.cpython-311-x86_64-linux-gnu.so +3 -0
- .venv/lib/python3.11/site-packages/PIL/_webp.cpython-311-x86_64-linux-gnu.so +3 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/__init__.py +133 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/approximation/clique.py +259 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/approximation/clustering_coefficient.py +71 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/approximation/connectivity.py +412 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/approximation/distance_measures.py +150 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/approximation/kcomponents.py +369 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/approximation/matching.py +44 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/approximation/maxcut.py +143 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/approximation/ramsey.py +53 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/approximation/steinertree.py +231 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/approximation/traveling_salesman.py +1501 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/broadcasting.py +155 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/dominating.py +95 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/__init__.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/boykovkolmogorov.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/capacityscaling.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/dinitz_alg.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/edmondskarp.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/gomory_hu.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/maxflow.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/mincost.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/networksimplex.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/preflowpush.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/shortestaugmentingpath.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/utils.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/edmondskarp.py +241 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/mincost.py +356 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/shortestaugmentingpath.py +300 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__init__.py +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/__init__.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/test_gomory_hu.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/test_maxflow.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/test_maxflow_large_graph.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/test_mincost.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/test_networksimplex.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/test_gomory_hu.py +128 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/test_maxflow.py +573 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/test_maxflow_large_graph.py +156 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/test_mincost.py +476 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/test_networksimplex.py +387 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/flow/utils.py +189 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/link_analysis/__init__.py +2 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/link_analysis/__pycache__/__init__.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/link_analysis/__pycache__/hits_alg.cpython-311.pyc +0 -0
- .venv/lib/python3.11/site-packages/networkx/algorithms/link_analysis/__pycache__/pagerank_alg.cpython-311.pyc +0 -0
.gitattributes
CHANGED
|
@@ -305,3 +305,7 @@ tuning-competition-baseline/.venv/lib/python3.11/site-packages/nvidia/cudnn/lib/
|
|
| 305 |
.venv/lib/python3.11/site-packages/torchaudio/transforms/__pycache__/_transforms.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
| 306 |
.venv/lib/python3.11/site-packages/PIL/_imagingmath.cpython-311-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 307 |
.venv/lib/python3.11/site-packages/PIL/_imagingcms.cpython-311-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
.venv/lib/python3.11/site-packages/torchaudio/transforms/__pycache__/_transforms.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
| 306 |
.venv/lib/python3.11/site-packages/PIL/_imagingmath.cpython-311-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 307 |
.venv/lib/python3.11/site-packages/PIL/_imagingcms.cpython-311-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 308 |
+
.venv/lib/python3.11/site-packages/PIL/_webp.cpython-311-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 309 |
+
.venv/lib/python3.11/site-packages/PIL/_imagingft.cpython-311-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 310 |
+
.venv/lib/python3.11/site-packages/PIL/__pycache__/Image.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
|
| 311 |
+
.venv/lib/python3.11/site-packages/PIL/_imaging.cpython-311-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
.venv/lib/python3.11/site-packages/PIL/__pycache__/Image.cpython-311.pyc
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:79b49a60b6452dacc1cccac7143b705dece7b1e8c1eba21aa226a47fe3ea12f5
|
| 3 |
+
size 179907
|
.venv/lib/python3.11/site-packages/PIL/_imaging.cpython-311-x86_64-linux-gnu.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:28a22e8cdfe2f7cd15a98551cbe737198b69d22266e19e98dd796d0e6515278f
|
| 3 |
+
size 3062073
|
.venv/lib/python3.11/site-packages/PIL/_imagingft.cpython-311-x86_64-linux-gnu.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:569172d64c6773374562af7f28905a5d65dc08c2bf530fcd81c119ac3c4e3418
|
| 3 |
+
size 290065
|
.venv/lib/python3.11/site-packages/PIL/_webp.cpython-311-x86_64-linux-gnu.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d81e0eeb3333d6eaa4bd5ebfc2a59932b8e19dbf6d9cea095be9fe1126085a1
|
| 3 |
+
size 100857
|
.venv/lib/python3.11/site-packages/networkx/algorithms/__init__.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from networkx.algorithms.assortativity import *
|
| 2 |
+
from networkx.algorithms.asteroidal import *
|
| 3 |
+
from networkx.algorithms.boundary import *
|
| 4 |
+
from networkx.algorithms.broadcasting import *
|
| 5 |
+
from networkx.algorithms.bridges import *
|
| 6 |
+
from networkx.algorithms.chains import *
|
| 7 |
+
from networkx.algorithms.centrality import *
|
| 8 |
+
from networkx.algorithms.chordal import *
|
| 9 |
+
from networkx.algorithms.cluster import *
|
| 10 |
+
from networkx.algorithms.clique import *
|
| 11 |
+
from networkx.algorithms.communicability_alg import *
|
| 12 |
+
from networkx.algorithms.components import *
|
| 13 |
+
from networkx.algorithms.coloring import *
|
| 14 |
+
from networkx.algorithms.core import *
|
| 15 |
+
from networkx.algorithms.covering import *
|
| 16 |
+
from networkx.algorithms.cycles import *
|
| 17 |
+
from networkx.algorithms.cuts import *
|
| 18 |
+
from networkx.algorithms.d_separation import *
|
| 19 |
+
from networkx.algorithms.dag import *
|
| 20 |
+
from networkx.algorithms.distance_measures import *
|
| 21 |
+
from networkx.algorithms.distance_regular import *
|
| 22 |
+
from networkx.algorithms.dominance import *
|
| 23 |
+
from networkx.algorithms.dominating import *
|
| 24 |
+
from networkx.algorithms.efficiency_measures import *
|
| 25 |
+
from networkx.algorithms.euler import *
|
| 26 |
+
from networkx.algorithms.graphical import *
|
| 27 |
+
from networkx.algorithms.hierarchy import *
|
| 28 |
+
from networkx.algorithms.hybrid import *
|
| 29 |
+
from networkx.algorithms.link_analysis import *
|
| 30 |
+
from networkx.algorithms.link_prediction import *
|
| 31 |
+
from networkx.algorithms.lowest_common_ancestors import *
|
| 32 |
+
from networkx.algorithms.isolate import *
|
| 33 |
+
from networkx.algorithms.matching import *
|
| 34 |
+
from networkx.algorithms.minors import *
|
| 35 |
+
from networkx.algorithms.mis import *
|
| 36 |
+
from networkx.algorithms.moral import *
|
| 37 |
+
from networkx.algorithms.non_randomness import *
|
| 38 |
+
from networkx.algorithms.operators import *
|
| 39 |
+
from networkx.algorithms.planarity import *
|
| 40 |
+
from networkx.algorithms.planar_drawing import *
|
| 41 |
+
from networkx.algorithms.polynomials import *
|
| 42 |
+
from networkx.algorithms.reciprocity import *
|
| 43 |
+
from networkx.algorithms.regular import *
|
| 44 |
+
from networkx.algorithms.richclub import *
|
| 45 |
+
from networkx.algorithms.shortest_paths import *
|
| 46 |
+
from networkx.algorithms.similarity import *
|
| 47 |
+
from networkx.algorithms.graph_hashing import *
|
| 48 |
+
from networkx.algorithms.simple_paths import *
|
| 49 |
+
from networkx.algorithms.smallworld import *
|
| 50 |
+
from networkx.algorithms.smetric import *
|
| 51 |
+
from networkx.algorithms.structuralholes import *
|
| 52 |
+
from networkx.algorithms.sparsifiers import *
|
| 53 |
+
from networkx.algorithms.summarization import *
|
| 54 |
+
from networkx.algorithms.swap import *
|
| 55 |
+
from networkx.algorithms.time_dependent import *
|
| 56 |
+
from networkx.algorithms.traversal import *
|
| 57 |
+
from networkx.algorithms.triads import *
|
| 58 |
+
from networkx.algorithms.vitality import *
|
| 59 |
+
from networkx.algorithms.voronoi import *
|
| 60 |
+
from networkx.algorithms.walks import *
|
| 61 |
+
from networkx.algorithms.wiener import *
|
| 62 |
+
|
| 63 |
+
# Make certain subpackages available to the user as direct imports from
|
| 64 |
+
# the `networkx` namespace.
|
| 65 |
+
from networkx.algorithms import approximation
|
| 66 |
+
from networkx.algorithms import assortativity
|
| 67 |
+
from networkx.algorithms import bipartite
|
| 68 |
+
from networkx.algorithms import node_classification
|
| 69 |
+
from networkx.algorithms import centrality
|
| 70 |
+
from networkx.algorithms import chordal
|
| 71 |
+
from networkx.algorithms import cluster
|
| 72 |
+
from networkx.algorithms import clique
|
| 73 |
+
from networkx.algorithms import components
|
| 74 |
+
from networkx.algorithms import connectivity
|
| 75 |
+
from networkx.algorithms import community
|
| 76 |
+
from networkx.algorithms import coloring
|
| 77 |
+
from networkx.algorithms import flow
|
| 78 |
+
from networkx.algorithms import isomorphism
|
| 79 |
+
from networkx.algorithms import link_analysis
|
| 80 |
+
from networkx.algorithms import lowest_common_ancestors
|
| 81 |
+
from networkx.algorithms import operators
|
| 82 |
+
from networkx.algorithms import shortest_paths
|
| 83 |
+
from networkx.algorithms import tournament
|
| 84 |
+
from networkx.algorithms import traversal
|
| 85 |
+
from networkx.algorithms import tree
|
| 86 |
+
|
| 87 |
+
# Make certain functions from some of the previous subpackages available
|
| 88 |
+
# to the user as direct imports from the `networkx` namespace.
|
| 89 |
+
from networkx.algorithms.bipartite import complete_bipartite_graph
|
| 90 |
+
from networkx.algorithms.bipartite import is_bipartite
|
| 91 |
+
from networkx.algorithms.bipartite import projected_graph
|
| 92 |
+
from networkx.algorithms.connectivity import all_pairs_node_connectivity
|
| 93 |
+
from networkx.algorithms.connectivity import all_node_cuts
|
| 94 |
+
from networkx.algorithms.connectivity import average_node_connectivity
|
| 95 |
+
from networkx.algorithms.connectivity import edge_connectivity
|
| 96 |
+
from networkx.algorithms.connectivity import edge_disjoint_paths
|
| 97 |
+
from networkx.algorithms.connectivity import k_components
|
| 98 |
+
from networkx.algorithms.connectivity import k_edge_components
|
| 99 |
+
from networkx.algorithms.connectivity import k_edge_subgraphs
|
| 100 |
+
from networkx.algorithms.connectivity import k_edge_augmentation
|
| 101 |
+
from networkx.algorithms.connectivity import is_k_edge_connected
|
| 102 |
+
from networkx.algorithms.connectivity import minimum_edge_cut
|
| 103 |
+
from networkx.algorithms.connectivity import minimum_node_cut
|
| 104 |
+
from networkx.algorithms.connectivity import node_connectivity
|
| 105 |
+
from networkx.algorithms.connectivity import node_disjoint_paths
|
| 106 |
+
from networkx.algorithms.connectivity import stoer_wagner
|
| 107 |
+
from networkx.algorithms.flow import capacity_scaling
|
| 108 |
+
from networkx.algorithms.flow import cost_of_flow
|
| 109 |
+
from networkx.algorithms.flow import gomory_hu_tree
|
| 110 |
+
from networkx.algorithms.flow import max_flow_min_cost
|
| 111 |
+
from networkx.algorithms.flow import maximum_flow
|
| 112 |
+
from networkx.algorithms.flow import maximum_flow_value
|
| 113 |
+
from networkx.algorithms.flow import min_cost_flow
|
| 114 |
+
from networkx.algorithms.flow import min_cost_flow_cost
|
| 115 |
+
from networkx.algorithms.flow import minimum_cut
|
| 116 |
+
from networkx.algorithms.flow import minimum_cut_value
|
| 117 |
+
from networkx.algorithms.flow import network_simplex
|
| 118 |
+
from networkx.algorithms.isomorphism import could_be_isomorphic
|
| 119 |
+
from networkx.algorithms.isomorphism import fast_could_be_isomorphic
|
| 120 |
+
from networkx.algorithms.isomorphism import faster_could_be_isomorphic
|
| 121 |
+
from networkx.algorithms.isomorphism import is_isomorphic
|
| 122 |
+
from networkx.algorithms.isomorphism.vf2pp import *
|
| 123 |
+
from networkx.algorithms.tree.branchings import maximum_branching
|
| 124 |
+
from networkx.algorithms.tree.branchings import maximum_spanning_arborescence
|
| 125 |
+
from networkx.algorithms.tree.branchings import minimum_branching
|
| 126 |
+
from networkx.algorithms.tree.branchings import minimum_spanning_arborescence
|
| 127 |
+
from networkx.algorithms.tree.branchings import ArborescenceIterator
|
| 128 |
+
from networkx.algorithms.tree.coding import *
|
| 129 |
+
from networkx.algorithms.tree.decomposition import *
|
| 130 |
+
from networkx.algorithms.tree.mst import *
|
| 131 |
+
from networkx.algorithms.tree.operations import *
|
| 132 |
+
from networkx.algorithms.tree.recognition import *
|
| 133 |
+
from networkx.algorithms.tournament import is_tournament
|
.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/clique.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Functions for computing large cliques and maximum independent sets."""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.algorithms.approximation import ramsey
|
| 5 |
+
from networkx.utils import not_implemented_for
|
| 6 |
+
|
| 7 |
+
__all__ = [
|
| 8 |
+
"clique_removal",
|
| 9 |
+
"max_clique",
|
| 10 |
+
"large_clique_size",
|
| 11 |
+
"maximum_independent_set",
|
| 12 |
+
]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@not_implemented_for("directed")
|
| 16 |
+
@not_implemented_for("multigraph")
|
| 17 |
+
@nx._dispatchable
|
| 18 |
+
def maximum_independent_set(G):
|
| 19 |
+
"""Returns an approximate maximum independent set.
|
| 20 |
+
|
| 21 |
+
Independent set or stable set is a set of vertices in a graph, no two of
|
| 22 |
+
which are adjacent. That is, it is a set I of vertices such that for every
|
| 23 |
+
two vertices in I, there is no edge connecting the two. Equivalently, each
|
| 24 |
+
edge in the graph has at most one endpoint in I. The size of an independent
|
| 25 |
+
set is the number of vertices it contains [1]_.
|
| 26 |
+
|
| 27 |
+
A maximum independent set is a largest independent set for a given graph G
|
| 28 |
+
and its size is denoted $\\alpha(G)$. The problem of finding such a set is called
|
| 29 |
+
the maximum independent set problem and is an NP-hard optimization problem.
|
| 30 |
+
As such, it is unlikely that there exists an efficient algorithm for finding
|
| 31 |
+
a maximum independent set of a graph.
|
| 32 |
+
|
| 33 |
+
The Independent Set algorithm is based on [2]_.
|
| 34 |
+
|
| 35 |
+
Parameters
|
| 36 |
+
----------
|
| 37 |
+
G : NetworkX graph
|
| 38 |
+
Undirected graph
|
| 39 |
+
|
| 40 |
+
Returns
|
| 41 |
+
-------
|
| 42 |
+
iset : Set
|
| 43 |
+
The apx-maximum independent set
|
| 44 |
+
|
| 45 |
+
Examples
|
| 46 |
+
--------
|
| 47 |
+
>>> G = nx.path_graph(10)
|
| 48 |
+
>>> nx.approximation.maximum_independent_set(G)
|
| 49 |
+
{0, 2, 4, 6, 9}
|
| 50 |
+
|
| 51 |
+
Raises
|
| 52 |
+
------
|
| 53 |
+
NetworkXNotImplemented
|
| 54 |
+
If the graph is directed or is a multigraph.
|
| 55 |
+
|
| 56 |
+
Notes
|
| 57 |
+
-----
|
| 58 |
+
Finds the $O(|V|/(log|V|)^2)$ apx of independent set in the worst case.
|
| 59 |
+
|
| 60 |
+
References
|
| 61 |
+
----------
|
| 62 |
+
.. [1] `Wikipedia: Independent set
|
| 63 |
+
<https://en.wikipedia.org/wiki/Independent_set_(graph_theory)>`_
|
| 64 |
+
.. [2] Boppana, R., & Halldórsson, M. M. (1992).
|
| 65 |
+
Approximating maximum independent sets by excluding subgraphs.
|
| 66 |
+
BIT Numerical Mathematics, 32(2), 180–196. Springer.
|
| 67 |
+
"""
|
| 68 |
+
iset, _ = clique_removal(G)
|
| 69 |
+
return iset
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
@not_implemented_for("directed")
|
| 73 |
+
@not_implemented_for("multigraph")
|
| 74 |
+
@nx._dispatchable
|
| 75 |
+
def max_clique(G):
|
| 76 |
+
r"""Find the Maximum Clique
|
| 77 |
+
|
| 78 |
+
Finds the $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set
|
| 79 |
+
in the worst case.
|
| 80 |
+
|
| 81 |
+
Parameters
|
| 82 |
+
----------
|
| 83 |
+
G : NetworkX graph
|
| 84 |
+
Undirected graph
|
| 85 |
+
|
| 86 |
+
Returns
|
| 87 |
+
-------
|
| 88 |
+
clique : set
|
| 89 |
+
The apx-maximum clique of the graph
|
| 90 |
+
|
| 91 |
+
Examples
|
| 92 |
+
--------
|
| 93 |
+
>>> G = nx.path_graph(10)
|
| 94 |
+
>>> nx.approximation.max_clique(G)
|
| 95 |
+
{8, 9}
|
| 96 |
+
|
| 97 |
+
Raises
|
| 98 |
+
------
|
| 99 |
+
NetworkXNotImplemented
|
| 100 |
+
If the graph is directed or is a multigraph.
|
| 101 |
+
|
| 102 |
+
Notes
|
| 103 |
+
-----
|
| 104 |
+
A clique in an undirected graph G = (V, E) is a subset of the vertex set
|
| 105 |
+
`C \subseteq V` such that for every two vertices in C there exists an edge
|
| 106 |
+
connecting the two. This is equivalent to saying that the subgraph
|
| 107 |
+
induced by C is complete (in some cases, the term clique may also refer
|
| 108 |
+
to the subgraph).
|
| 109 |
+
|
| 110 |
+
A maximum clique is a clique of the largest possible size in a given graph.
|
| 111 |
+
The clique number `\omega(G)` of a graph G is the number of
|
| 112 |
+
vertices in a maximum clique in G. The intersection number of
|
| 113 |
+
G is the smallest number of cliques that together cover all edges of G.
|
| 114 |
+
|
| 115 |
+
https://en.wikipedia.org/wiki/Maximum_clique
|
| 116 |
+
|
| 117 |
+
References
|
| 118 |
+
----------
|
| 119 |
+
.. [1] Boppana, R., & Halldórsson, M. M. (1992).
|
| 120 |
+
Approximating maximum independent sets by excluding subgraphs.
|
| 121 |
+
BIT Numerical Mathematics, 32(2), 180–196. Springer.
|
| 122 |
+
doi:10.1007/BF01994876
|
| 123 |
+
"""
|
| 124 |
+
# finding the maximum clique in a graph is equivalent to finding
|
| 125 |
+
# the independent set in the complementary graph
|
| 126 |
+
cgraph = nx.complement(G)
|
| 127 |
+
iset, _ = clique_removal(cgraph)
|
| 128 |
+
return iset
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
@not_implemented_for("directed")
|
| 132 |
+
@not_implemented_for("multigraph")
|
| 133 |
+
@nx._dispatchable
|
| 134 |
+
def clique_removal(G):
|
| 135 |
+
r"""Repeatedly remove cliques from the graph.
|
| 136 |
+
|
| 137 |
+
Results in a $O(|V|/(\log |V|)^2)$ approximation of maximum clique
|
| 138 |
+
and independent set. Returns the largest independent set found, along
|
| 139 |
+
with found maximal cliques.
|
| 140 |
+
|
| 141 |
+
Parameters
|
| 142 |
+
----------
|
| 143 |
+
G : NetworkX graph
|
| 144 |
+
Undirected graph
|
| 145 |
+
|
| 146 |
+
Returns
|
| 147 |
+
-------
|
| 148 |
+
max_ind_cliques : (set, list) tuple
|
| 149 |
+
2-tuple of Maximal Independent Set and list of maximal cliques (sets).
|
| 150 |
+
|
| 151 |
+
Examples
|
| 152 |
+
--------
|
| 153 |
+
>>> G = nx.path_graph(10)
|
| 154 |
+
>>> nx.approximation.clique_removal(G)
|
| 155 |
+
({0, 2, 4, 6, 9}, [{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}])
|
| 156 |
+
|
| 157 |
+
Raises
|
| 158 |
+
------
|
| 159 |
+
NetworkXNotImplemented
|
| 160 |
+
If the graph is directed or is a multigraph.
|
| 161 |
+
|
| 162 |
+
References
|
| 163 |
+
----------
|
| 164 |
+
.. [1] Boppana, R., & Halldórsson, M. M. (1992).
|
| 165 |
+
Approximating maximum independent sets by excluding subgraphs.
|
| 166 |
+
BIT Numerical Mathematics, 32(2), 180–196. Springer.
|
| 167 |
+
"""
|
| 168 |
+
graph = G.copy()
|
| 169 |
+
c_i, i_i = ramsey.ramsey_R2(graph)
|
| 170 |
+
cliques = [c_i]
|
| 171 |
+
isets = [i_i]
|
| 172 |
+
while graph:
|
| 173 |
+
graph.remove_nodes_from(c_i)
|
| 174 |
+
c_i, i_i = ramsey.ramsey_R2(graph)
|
| 175 |
+
if c_i:
|
| 176 |
+
cliques.append(c_i)
|
| 177 |
+
if i_i:
|
| 178 |
+
isets.append(i_i)
|
| 179 |
+
# Determine the largest independent set as measured by cardinality.
|
| 180 |
+
maxiset = max(isets, key=len)
|
| 181 |
+
return maxiset, cliques
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
@not_implemented_for("directed")
|
| 185 |
+
@not_implemented_for("multigraph")
|
| 186 |
+
@nx._dispatchable
|
| 187 |
+
def large_clique_size(G):
|
| 188 |
+
"""Find the size of a large clique in a graph.
|
| 189 |
+
|
| 190 |
+
A *clique* is a subset of nodes in which each pair of nodes is
|
| 191 |
+
adjacent. This function is a heuristic for finding the size of a
|
| 192 |
+
large clique in the graph.
|
| 193 |
+
|
| 194 |
+
Parameters
|
| 195 |
+
----------
|
| 196 |
+
G : NetworkX graph
|
| 197 |
+
|
| 198 |
+
Returns
|
| 199 |
+
-------
|
| 200 |
+
k: integer
|
| 201 |
+
The size of a large clique in the graph.
|
| 202 |
+
|
| 203 |
+
Examples
|
| 204 |
+
--------
|
| 205 |
+
>>> G = nx.path_graph(10)
|
| 206 |
+
>>> nx.approximation.large_clique_size(G)
|
| 207 |
+
2
|
| 208 |
+
|
| 209 |
+
Raises
|
| 210 |
+
------
|
| 211 |
+
NetworkXNotImplemented
|
| 212 |
+
If the graph is directed or is a multigraph.
|
| 213 |
+
|
| 214 |
+
Notes
|
| 215 |
+
-----
|
| 216 |
+
This implementation is from [1]_. Its worst case time complexity is
|
| 217 |
+
:math:`O(n d^2)`, where *n* is the number of nodes in the graph and
|
| 218 |
+
*d* is the maximum degree.
|
| 219 |
+
|
| 220 |
+
This function is a heuristic, which means it may work well in
|
| 221 |
+
practice, but there is no rigorous mathematical guarantee on the
|
| 222 |
+
ratio between the returned number and the actual largest clique size
|
| 223 |
+
in the graph.
|
| 224 |
+
|
| 225 |
+
References
|
| 226 |
+
----------
|
| 227 |
+
.. [1] Pattabiraman, Bharath, et al.
|
| 228 |
+
"Fast Algorithms for the Maximum Clique Problem on Massive Graphs
|
| 229 |
+
with Applications to Overlapping Community Detection."
|
| 230 |
+
*Internet Mathematics* 11.4-5 (2015): 421--448.
|
| 231 |
+
<https://doi.org/10.1080/15427951.2014.986778>
|
| 232 |
+
|
| 233 |
+
See also
|
| 234 |
+
--------
|
| 235 |
+
|
| 236 |
+
:func:`networkx.algorithms.approximation.clique.max_clique`
|
| 237 |
+
A function that returns an approximate maximum clique with a
|
| 238 |
+
guarantee on the approximation ratio.
|
| 239 |
+
|
| 240 |
+
:mod:`networkx.algorithms.clique`
|
| 241 |
+
Functions for finding the exact maximum clique in a graph.
|
| 242 |
+
|
| 243 |
+
"""
|
| 244 |
+
degrees = G.degree
|
| 245 |
+
|
| 246 |
+
def _clique_heuristic(G, U, size, best_size):
|
| 247 |
+
if not U:
|
| 248 |
+
return max(best_size, size)
|
| 249 |
+
u = max(U, key=degrees)
|
| 250 |
+
U.remove(u)
|
| 251 |
+
N_prime = {v for v in G[u] if degrees[v] >= best_size}
|
| 252 |
+
return _clique_heuristic(G, U & N_prime, size + 1, best_size)
|
| 253 |
+
|
| 254 |
+
best_size = 0
|
| 255 |
+
nodes = (u for u in G if degrees[u] >= best_size)
|
| 256 |
+
for u in nodes:
|
| 257 |
+
neighbors = {v for v in G[u] if degrees[v] >= best_size}
|
| 258 |
+
best_size = _clique_heuristic(G, neighbors, 1, best_size)
|
| 259 |
+
return best_size
|
.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/clustering_coefficient.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import networkx as nx
|
| 2 |
+
from networkx.utils import not_implemented_for, py_random_state
|
| 3 |
+
|
| 4 |
+
__all__ = ["average_clustering"]
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@not_implemented_for("directed")
|
| 8 |
+
@py_random_state(2)
|
| 9 |
+
@nx._dispatchable(name="approximate_average_clustering")
|
| 10 |
+
def average_clustering(G, trials=1000, seed=None):
|
| 11 |
+
r"""Estimates the average clustering coefficient of G.
|
| 12 |
+
|
| 13 |
+
The local clustering of each node in `G` is the fraction of triangles
|
| 14 |
+
that actually exist over all possible triangles in its neighborhood.
|
| 15 |
+
The average clustering coefficient of a graph `G` is the mean of
|
| 16 |
+
local clusterings.
|
| 17 |
+
|
| 18 |
+
This function finds an approximate average clustering coefficient
|
| 19 |
+
for G by repeating `n` times (defined in `trials`) the following
|
| 20 |
+
experiment: choose a node at random, choose two of its neighbors
|
| 21 |
+
at random, and check if they are connected. The approximate
|
| 22 |
+
coefficient is the fraction of triangles found over the number
|
| 23 |
+
of trials [1]_.
|
| 24 |
+
|
| 25 |
+
Parameters
|
| 26 |
+
----------
|
| 27 |
+
G : NetworkX graph
|
| 28 |
+
|
| 29 |
+
trials : integer
|
| 30 |
+
Number of trials to perform (default 1000).
|
| 31 |
+
|
| 32 |
+
seed : integer, random_state, or None (default)
|
| 33 |
+
Indicator of random number generation state.
|
| 34 |
+
See :ref:`Randomness<randomness>`.
|
| 35 |
+
|
| 36 |
+
Returns
|
| 37 |
+
-------
|
| 38 |
+
c : float
|
| 39 |
+
Approximated average clustering coefficient.
|
| 40 |
+
|
| 41 |
+
Examples
|
| 42 |
+
--------
|
| 43 |
+
>>> from networkx.algorithms import approximation
|
| 44 |
+
>>> G = nx.erdos_renyi_graph(10, 0.2, seed=10)
|
| 45 |
+
>>> approximation.average_clustering(G, trials=1000, seed=10)
|
| 46 |
+
0.214
|
| 47 |
+
|
| 48 |
+
Raises
|
| 49 |
+
------
|
| 50 |
+
NetworkXNotImplemented
|
| 51 |
+
If G is directed.
|
| 52 |
+
|
| 53 |
+
References
|
| 54 |
+
----------
|
| 55 |
+
.. [1] Schank, Thomas, and Dorothea Wagner. Approximating clustering
|
| 56 |
+
coefficient and transitivity. Universität Karlsruhe, Fakultät für
|
| 57 |
+
Informatik, 2004.
|
| 58 |
+
https://doi.org/10.5445/IR/1000001239
|
| 59 |
+
|
| 60 |
+
"""
|
| 61 |
+
n = len(G)
|
| 62 |
+
triangles = 0
|
| 63 |
+
nodes = list(G)
|
| 64 |
+
for i in [int(seed.random() * n) for i in range(trials)]:
|
| 65 |
+
nbrs = list(G[nodes[i]])
|
| 66 |
+
if len(nbrs) < 2:
|
| 67 |
+
continue
|
| 68 |
+
u, v = seed.sample(nbrs, 2)
|
| 69 |
+
if u in G[v]:
|
| 70 |
+
triangles += 1
|
| 71 |
+
return triangles / trials
|
.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/connectivity.py
ADDED
|
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Fast approximation for node connectivity"""
|
| 2 |
+
|
| 3 |
+
import itertools
|
| 4 |
+
from operator import itemgetter
|
| 5 |
+
|
| 6 |
+
import networkx as nx
|
| 7 |
+
|
| 8 |
+
__all__ = [
|
| 9 |
+
"local_node_connectivity",
|
| 10 |
+
"node_connectivity",
|
| 11 |
+
"all_pairs_node_connectivity",
|
| 12 |
+
]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@nx._dispatchable(name="approximate_local_node_connectivity")
|
| 16 |
+
def local_node_connectivity(G, source, target, cutoff=None):
|
| 17 |
+
"""Compute node connectivity between source and target.
|
| 18 |
+
|
| 19 |
+
Pairwise or local node connectivity between two distinct and nonadjacent
|
| 20 |
+
nodes is the minimum number of nodes that must be removed (minimum
|
| 21 |
+
separating cutset) to disconnect them. By Menger's theorem, this is equal
|
| 22 |
+
to the number of node independent paths (paths that share no nodes other
|
| 23 |
+
than source and target). Which is what we compute in this function.
|
| 24 |
+
|
| 25 |
+
This algorithm is a fast approximation that gives an strict lower
|
| 26 |
+
bound on the actual number of node independent paths between two nodes [1]_.
|
| 27 |
+
It works for both directed and undirected graphs.
|
| 28 |
+
|
| 29 |
+
Parameters
|
| 30 |
+
----------
|
| 31 |
+
|
| 32 |
+
G : NetworkX graph
|
| 33 |
+
|
| 34 |
+
source : node
|
| 35 |
+
Starting node for node connectivity
|
| 36 |
+
|
| 37 |
+
target : node
|
| 38 |
+
Ending node for node connectivity
|
| 39 |
+
|
| 40 |
+
cutoff : integer
|
| 41 |
+
Maximum node connectivity to consider. If None, the minimum degree
|
| 42 |
+
of source or target is used as a cutoff. Default value None.
|
| 43 |
+
|
| 44 |
+
Returns
|
| 45 |
+
-------
|
| 46 |
+
k: integer
|
| 47 |
+
pairwise node connectivity
|
| 48 |
+
|
| 49 |
+
Examples
|
| 50 |
+
--------
|
| 51 |
+
>>> # Platonic octahedral graph has node connectivity 4
|
| 52 |
+
>>> # for each non adjacent node pair
|
| 53 |
+
>>> from networkx.algorithms import approximation as approx
|
| 54 |
+
>>> G = nx.octahedral_graph()
|
| 55 |
+
>>> approx.local_node_connectivity(G, 0, 5)
|
| 56 |
+
4
|
| 57 |
+
|
| 58 |
+
Notes
|
| 59 |
+
-----
|
| 60 |
+
This algorithm [1]_ finds node independents paths between two nodes by
|
| 61 |
+
computing their shortest path using BFS, marking the nodes of the path
|
| 62 |
+
found as 'used' and then searching other shortest paths excluding the
|
| 63 |
+
nodes marked as used until no more paths exist. It is not exact because
|
| 64 |
+
a shortest path could use nodes that, if the path were longer, may belong
|
| 65 |
+
to two different node independent paths. Thus it only guarantees an
|
| 66 |
+
strict lower bound on node connectivity.
|
| 67 |
+
|
| 68 |
+
Note that the authors propose a further refinement, losing accuracy and
|
| 69 |
+
gaining speed, which is not implemented yet.
|
| 70 |
+
|
| 71 |
+
See also
|
| 72 |
+
--------
|
| 73 |
+
all_pairs_node_connectivity
|
| 74 |
+
node_connectivity
|
| 75 |
+
|
| 76 |
+
References
|
| 77 |
+
----------
|
| 78 |
+
.. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
|
| 79 |
+
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
|
| 80 |
+
http://eclectic.ss.uci.edu/~drwhite/working.pdf
|
| 81 |
+
|
| 82 |
+
"""
|
| 83 |
+
if target == source:
|
| 84 |
+
raise nx.NetworkXError("source and target have to be different nodes.")
|
| 85 |
+
|
| 86 |
+
# Maximum possible node independent paths
|
| 87 |
+
if G.is_directed():
|
| 88 |
+
possible = min(G.out_degree(source), G.in_degree(target))
|
| 89 |
+
else:
|
| 90 |
+
possible = min(G.degree(source), G.degree(target))
|
| 91 |
+
|
| 92 |
+
K = 0
|
| 93 |
+
if not possible:
|
| 94 |
+
return K
|
| 95 |
+
|
| 96 |
+
if cutoff is None:
|
| 97 |
+
cutoff = float("inf")
|
| 98 |
+
|
| 99 |
+
exclude = set()
|
| 100 |
+
for i in range(min(possible, cutoff)):
|
| 101 |
+
try:
|
| 102 |
+
path = _bidirectional_shortest_path(G, source, target, exclude)
|
| 103 |
+
exclude.update(set(path))
|
| 104 |
+
K += 1
|
| 105 |
+
except nx.NetworkXNoPath:
|
| 106 |
+
break
|
| 107 |
+
|
| 108 |
+
return K
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
@nx._dispatchable(name="approximate_node_connectivity")
|
| 112 |
+
def node_connectivity(G, s=None, t=None):
|
| 113 |
+
r"""Returns an approximation for node connectivity for a graph or digraph G.
|
| 114 |
+
|
| 115 |
+
Node connectivity is equal to the minimum number of nodes that
|
| 116 |
+
must be removed to disconnect G or render it trivial. By Menger's theorem,
|
| 117 |
+
this is equal to the number of node independent paths (paths that
|
| 118 |
+
share no nodes other than source and target).
|
| 119 |
+
|
| 120 |
+
If source and target nodes are provided, this function returns the
|
| 121 |
+
local node connectivity: the minimum number of nodes that must be
|
| 122 |
+
removed to break all paths from source to target in G.
|
| 123 |
+
|
| 124 |
+
This algorithm is based on a fast approximation that gives an strict lower
|
| 125 |
+
bound on the actual number of node independent paths between two nodes [1]_.
|
| 126 |
+
It works for both directed and undirected graphs.
|
| 127 |
+
|
| 128 |
+
Parameters
|
| 129 |
+
----------
|
| 130 |
+
G : NetworkX graph
|
| 131 |
+
Undirected graph
|
| 132 |
+
|
| 133 |
+
s : node
|
| 134 |
+
Source node. Optional. Default value: None.
|
| 135 |
+
|
| 136 |
+
t : node
|
| 137 |
+
Target node. Optional. Default value: None.
|
| 138 |
+
|
| 139 |
+
Returns
|
| 140 |
+
-------
|
| 141 |
+
K : integer
|
| 142 |
+
Node connectivity of G, or local node connectivity if source
|
| 143 |
+
and target are provided.
|
| 144 |
+
|
| 145 |
+
Examples
|
| 146 |
+
--------
|
| 147 |
+
>>> # Platonic octahedral graph is 4-node-connected
|
| 148 |
+
>>> from networkx.algorithms import approximation as approx
|
| 149 |
+
>>> G = nx.octahedral_graph()
|
| 150 |
+
>>> approx.node_connectivity(G)
|
| 151 |
+
4
|
| 152 |
+
|
| 153 |
+
Notes
|
| 154 |
+
-----
|
| 155 |
+
This algorithm [1]_ finds node independents paths between two nodes by
|
| 156 |
+
computing their shortest path using BFS, marking the nodes of the path
|
| 157 |
+
found as 'used' and then searching other shortest paths excluding the
|
| 158 |
+
nodes marked as used until no more paths exist. It is not exact because
|
| 159 |
+
a shortest path could use nodes that, if the path were longer, may belong
|
| 160 |
+
to two different node independent paths. Thus it only guarantees an
|
| 161 |
+
strict lower bound on node connectivity.
|
| 162 |
+
|
| 163 |
+
See also
|
| 164 |
+
--------
|
| 165 |
+
all_pairs_node_connectivity
|
| 166 |
+
local_node_connectivity
|
| 167 |
+
|
| 168 |
+
References
|
| 169 |
+
----------
|
| 170 |
+
.. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
|
| 171 |
+
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
|
| 172 |
+
http://eclectic.ss.uci.edu/~drwhite/working.pdf
|
| 173 |
+
|
| 174 |
+
"""
|
| 175 |
+
if (s is not None and t is None) or (s is None and t is not None):
|
| 176 |
+
raise nx.NetworkXError("Both source and target must be specified.")
|
| 177 |
+
|
| 178 |
+
# Local node connectivity
|
| 179 |
+
if s is not None and t is not None:
|
| 180 |
+
if s not in G:
|
| 181 |
+
raise nx.NetworkXError(f"node {s} not in graph")
|
| 182 |
+
if t not in G:
|
| 183 |
+
raise nx.NetworkXError(f"node {t} not in graph")
|
| 184 |
+
return local_node_connectivity(G, s, t)
|
| 185 |
+
|
| 186 |
+
# Global node connectivity
|
| 187 |
+
if G.is_directed():
|
| 188 |
+
connected_func = nx.is_weakly_connected
|
| 189 |
+
iter_func = itertools.permutations
|
| 190 |
+
|
| 191 |
+
def neighbors(v):
|
| 192 |
+
return itertools.chain(G.predecessors(v), G.successors(v))
|
| 193 |
+
|
| 194 |
+
else:
|
| 195 |
+
connected_func = nx.is_connected
|
| 196 |
+
iter_func = itertools.combinations
|
| 197 |
+
neighbors = G.neighbors
|
| 198 |
+
|
| 199 |
+
if not connected_func(G):
|
| 200 |
+
return 0
|
| 201 |
+
|
| 202 |
+
# Choose a node with minimum degree
|
| 203 |
+
v, minimum_degree = min(G.degree(), key=itemgetter(1))
|
| 204 |
+
# Node connectivity is bounded by minimum degree
|
| 205 |
+
K = minimum_degree
|
| 206 |
+
# compute local node connectivity with all non-neighbors nodes
|
| 207 |
+
# and store the minimum
|
| 208 |
+
for w in set(G) - set(neighbors(v)) - {v}:
|
| 209 |
+
K = min(K, local_node_connectivity(G, v, w, cutoff=K))
|
| 210 |
+
# Same for non adjacent pairs of neighbors of v
|
| 211 |
+
for x, y in iter_func(neighbors(v), 2):
|
| 212 |
+
if y not in G[x] and x != y:
|
| 213 |
+
K = min(K, local_node_connectivity(G, x, y, cutoff=K))
|
| 214 |
+
return K
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
@nx._dispatchable(name="approximate_all_pairs_node_connectivity")
|
| 218 |
+
def all_pairs_node_connectivity(G, nbunch=None, cutoff=None):
|
| 219 |
+
"""Compute node connectivity between all pairs of nodes.
|
| 220 |
+
|
| 221 |
+
Pairwise or local node connectivity between two distinct and nonadjacent
|
| 222 |
+
nodes is the minimum number of nodes that must be removed (minimum
|
| 223 |
+
separating cutset) to disconnect them. By Menger's theorem, this is equal
|
| 224 |
+
to the number of node independent paths (paths that share no nodes other
|
| 225 |
+
than source and target). Which is what we compute in this function.
|
| 226 |
+
|
| 227 |
+
This algorithm is a fast approximation that gives an strict lower
|
| 228 |
+
bound on the actual number of node independent paths between two nodes [1]_.
|
| 229 |
+
It works for both directed and undirected graphs.
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
Parameters
|
| 233 |
+
----------
|
| 234 |
+
G : NetworkX graph
|
| 235 |
+
|
| 236 |
+
nbunch: container
|
| 237 |
+
Container of nodes. If provided node connectivity will be computed
|
| 238 |
+
only over pairs of nodes in nbunch.
|
| 239 |
+
|
| 240 |
+
cutoff : integer
|
| 241 |
+
Maximum node connectivity to consider. If None, the minimum degree
|
| 242 |
+
of source or target is used as a cutoff in each pair of nodes.
|
| 243 |
+
Default value None.
|
| 244 |
+
|
| 245 |
+
Returns
|
| 246 |
+
-------
|
| 247 |
+
K : dictionary
|
| 248 |
+
Dictionary, keyed by source and target, of pairwise node connectivity
|
| 249 |
+
|
| 250 |
+
Examples
|
| 251 |
+
--------
|
| 252 |
+
A 3 node cycle with one extra node attached has connectivity 2 between all
|
| 253 |
+
nodes in the cycle and connectivity 1 between the extra node and the rest:
|
| 254 |
+
|
| 255 |
+
>>> G = nx.cycle_graph(3)
|
| 256 |
+
>>> G.add_edge(2, 3)
|
| 257 |
+
>>> import pprint # for nice dictionary formatting
|
| 258 |
+
>>> pprint.pprint(nx.all_pairs_node_connectivity(G))
|
| 259 |
+
{0: {1: 2, 2: 2, 3: 1},
|
| 260 |
+
1: {0: 2, 2: 2, 3: 1},
|
| 261 |
+
2: {0: 2, 1: 2, 3: 1},
|
| 262 |
+
3: {0: 1, 1: 1, 2: 1}}
|
| 263 |
+
|
| 264 |
+
See Also
|
| 265 |
+
--------
|
| 266 |
+
local_node_connectivity
|
| 267 |
+
node_connectivity
|
| 268 |
+
|
| 269 |
+
References
|
| 270 |
+
----------
|
| 271 |
+
.. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
|
| 272 |
+
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
|
| 273 |
+
http://eclectic.ss.uci.edu/~drwhite/working.pdf
|
| 274 |
+
"""
|
| 275 |
+
if nbunch is None:
|
| 276 |
+
nbunch = G
|
| 277 |
+
else:
|
| 278 |
+
nbunch = set(nbunch)
|
| 279 |
+
|
| 280 |
+
directed = G.is_directed()
|
| 281 |
+
if directed:
|
| 282 |
+
iter_func = itertools.permutations
|
| 283 |
+
else:
|
| 284 |
+
iter_func = itertools.combinations
|
| 285 |
+
|
| 286 |
+
all_pairs = {n: {} for n in nbunch}
|
| 287 |
+
|
| 288 |
+
for u, v in iter_func(nbunch, 2):
|
| 289 |
+
k = local_node_connectivity(G, u, v, cutoff=cutoff)
|
| 290 |
+
all_pairs[u][v] = k
|
| 291 |
+
if not directed:
|
| 292 |
+
all_pairs[v][u] = k
|
| 293 |
+
|
| 294 |
+
return all_pairs
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
def _bidirectional_shortest_path(G, source, target, exclude):
|
| 298 |
+
"""Returns shortest path between source and target ignoring nodes in the
|
| 299 |
+
container 'exclude'.
|
| 300 |
+
|
| 301 |
+
Parameters
|
| 302 |
+
----------
|
| 303 |
+
|
| 304 |
+
G : NetworkX graph
|
| 305 |
+
|
| 306 |
+
source : node
|
| 307 |
+
Starting node for path
|
| 308 |
+
|
| 309 |
+
target : node
|
| 310 |
+
Ending node for path
|
| 311 |
+
|
| 312 |
+
exclude: container
|
| 313 |
+
Container for nodes to exclude from the search for shortest paths
|
| 314 |
+
|
| 315 |
+
Returns
|
| 316 |
+
-------
|
| 317 |
+
path: list
|
| 318 |
+
Shortest path between source and target ignoring nodes in 'exclude'
|
| 319 |
+
|
| 320 |
+
Raises
|
| 321 |
+
------
|
| 322 |
+
NetworkXNoPath
|
| 323 |
+
If there is no path or if nodes are adjacent and have only one path
|
| 324 |
+
between them
|
| 325 |
+
|
| 326 |
+
Notes
|
| 327 |
+
-----
|
| 328 |
+
This function and its helper are originally from
|
| 329 |
+
networkx.algorithms.shortest_paths.unweighted and are modified to
|
| 330 |
+
accept the extra parameter 'exclude', which is a container for nodes
|
| 331 |
+
already used in other paths that should be ignored.
|
| 332 |
+
|
| 333 |
+
References
|
| 334 |
+
----------
|
| 335 |
+
.. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
|
| 336 |
+
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
|
| 337 |
+
http://eclectic.ss.uci.edu/~drwhite/working.pdf
|
| 338 |
+
|
| 339 |
+
"""
|
| 340 |
+
# call helper to do the real work
|
| 341 |
+
results = _bidirectional_pred_succ(G, source, target, exclude)
|
| 342 |
+
pred, succ, w = results
|
| 343 |
+
|
| 344 |
+
# build path from pred+w+succ
|
| 345 |
+
path = []
|
| 346 |
+
# from source to w
|
| 347 |
+
while w is not None:
|
| 348 |
+
path.append(w)
|
| 349 |
+
w = pred[w]
|
| 350 |
+
path.reverse()
|
| 351 |
+
# from w to target
|
| 352 |
+
w = succ[path[-1]]
|
| 353 |
+
while w is not None:
|
| 354 |
+
path.append(w)
|
| 355 |
+
w = succ[w]
|
| 356 |
+
|
| 357 |
+
return path
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def _bidirectional_pred_succ(G, source, target, exclude):
|
| 361 |
+
# does BFS from both source and target and meets in the middle
|
| 362 |
+
# excludes nodes in the container "exclude" from the search
|
| 363 |
+
|
| 364 |
+
# handle either directed or undirected
|
| 365 |
+
if G.is_directed():
|
| 366 |
+
Gpred = G.predecessors
|
| 367 |
+
Gsucc = G.successors
|
| 368 |
+
else:
|
| 369 |
+
Gpred = G.neighbors
|
| 370 |
+
Gsucc = G.neighbors
|
| 371 |
+
|
| 372 |
+
# predecessor and successors in search
|
| 373 |
+
pred = {source: None}
|
| 374 |
+
succ = {target: None}
|
| 375 |
+
|
| 376 |
+
# initialize fringes, start with forward
|
| 377 |
+
forward_fringe = [source]
|
| 378 |
+
reverse_fringe = [target]
|
| 379 |
+
|
| 380 |
+
level = 0
|
| 381 |
+
|
| 382 |
+
while forward_fringe and reverse_fringe:
|
| 383 |
+
# Make sure that we iterate one step forward and one step backwards
|
| 384 |
+
# thus source and target will only trigger "found path" when they are
|
| 385 |
+
# adjacent and then they can be safely included in the container 'exclude'
|
| 386 |
+
level += 1
|
| 387 |
+
if level % 2 != 0:
|
| 388 |
+
this_level = forward_fringe
|
| 389 |
+
forward_fringe = []
|
| 390 |
+
for v in this_level:
|
| 391 |
+
for w in Gsucc(v):
|
| 392 |
+
if w in exclude:
|
| 393 |
+
continue
|
| 394 |
+
if w not in pred:
|
| 395 |
+
forward_fringe.append(w)
|
| 396 |
+
pred[w] = v
|
| 397 |
+
if w in succ:
|
| 398 |
+
return pred, succ, w # found path
|
| 399 |
+
else:
|
| 400 |
+
this_level = reverse_fringe
|
| 401 |
+
reverse_fringe = []
|
| 402 |
+
for v in this_level:
|
| 403 |
+
for w in Gpred(v):
|
| 404 |
+
if w in exclude:
|
| 405 |
+
continue
|
| 406 |
+
if w not in succ:
|
| 407 |
+
succ[w] = v
|
| 408 |
+
reverse_fringe.append(w)
|
| 409 |
+
if w in pred:
|
| 410 |
+
return pred, succ, w # found path
|
| 411 |
+
|
| 412 |
+
raise nx.NetworkXNoPath(f"No path between {source} and {target}.")
|
.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/distance_measures.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Distance measures approximated metrics."""
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.utils.decorators import py_random_state
|
| 5 |
+
|
| 6 |
+
__all__ = ["diameter"]
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@py_random_state(1)
|
| 10 |
+
@nx._dispatchable(name="approximate_diameter")
|
| 11 |
+
def diameter(G, seed=None):
|
| 12 |
+
"""Returns a lower bound on the diameter of the graph G.
|
| 13 |
+
|
| 14 |
+
The function computes a lower bound on the diameter (i.e., the maximum eccentricity)
|
| 15 |
+
of a directed or undirected graph G. The procedure used varies depending on the graph
|
| 16 |
+
being directed or not.
|
| 17 |
+
|
| 18 |
+
If G is an `undirected` graph, then the function uses the `2-sweep` algorithm [1]_.
|
| 19 |
+
The main idea is to pick the farthest node from a random node and return its eccentricity.
|
| 20 |
+
|
| 21 |
+
Otherwise, if G is a `directed` graph, the function uses the `2-dSweep` algorithm [2]_,
|
| 22 |
+
The procedure starts by selecting a random source node $s$ from which it performs a
|
| 23 |
+
forward and a backward BFS. Let $a_1$ and $a_2$ be the farthest nodes in the forward and
|
| 24 |
+
backward cases, respectively. Then, it computes the backward eccentricity of $a_1$ using
|
| 25 |
+
a backward BFS and the forward eccentricity of $a_2$ using a forward BFS.
|
| 26 |
+
Finally, it returns the best lower bound between the two.
|
| 27 |
+
|
| 28 |
+
In both cases, the time complexity is linear with respect to the size of G.
|
| 29 |
+
|
| 30 |
+
Parameters
|
| 31 |
+
----------
|
| 32 |
+
G : NetworkX graph
|
| 33 |
+
|
| 34 |
+
seed : integer, random_state, or None (default)
|
| 35 |
+
Indicator of random number generation state.
|
| 36 |
+
See :ref:`Randomness<randomness>`.
|
| 37 |
+
|
| 38 |
+
Returns
|
| 39 |
+
-------
|
| 40 |
+
d : integer
|
| 41 |
+
Lower Bound on the Diameter of G
|
| 42 |
+
|
| 43 |
+
Examples
|
| 44 |
+
--------
|
| 45 |
+
>>> G = nx.path_graph(10) # undirected graph
|
| 46 |
+
>>> nx.diameter(G)
|
| 47 |
+
9
|
| 48 |
+
>>> G = nx.cycle_graph(3, create_using=nx.DiGraph) # directed graph
|
| 49 |
+
>>> nx.diameter(G)
|
| 50 |
+
2
|
| 51 |
+
|
| 52 |
+
Raises
|
| 53 |
+
------
|
| 54 |
+
NetworkXError
|
| 55 |
+
If the graph is empty or
|
| 56 |
+
If the graph is undirected and not connected or
|
| 57 |
+
If the graph is directed and not strongly connected.
|
| 58 |
+
|
| 59 |
+
See Also
|
| 60 |
+
--------
|
| 61 |
+
networkx.algorithms.distance_measures.diameter
|
| 62 |
+
|
| 63 |
+
References
|
| 64 |
+
----------
|
| 65 |
+
.. [1] Magnien, Clémence, Matthieu Latapy, and Michel Habib.
|
| 66 |
+
*Fast computation of empirically tight bounds for the diameter of massive graphs.*
|
| 67 |
+
Journal of Experimental Algorithmics (JEA), 2009.
|
| 68 |
+
https://arxiv.org/pdf/0904.2728.pdf
|
| 69 |
+
.. [2] Crescenzi, Pierluigi, Roberto Grossi, Leonardo Lanzi, and Andrea Marino.
|
| 70 |
+
*On computing the diameter of real-world directed (weighted) graphs.*
|
| 71 |
+
International Symposium on Experimental Algorithms. Springer, Berlin, Heidelberg, 2012.
|
| 72 |
+
https://courses.cs.ut.ee/MTAT.03.238/2014_fall/uploads/Main/diameter.pdf
|
| 73 |
+
"""
|
| 74 |
+
# if G is empty
|
| 75 |
+
if not G:
|
| 76 |
+
raise nx.NetworkXError("Expected non-empty NetworkX graph!")
|
| 77 |
+
# if there's only a node
|
| 78 |
+
if G.number_of_nodes() == 1:
|
| 79 |
+
return 0
|
| 80 |
+
# if G is directed
|
| 81 |
+
if G.is_directed():
|
| 82 |
+
return _two_sweep_directed(G, seed)
|
| 83 |
+
# else if G is undirected
|
| 84 |
+
return _two_sweep_undirected(G, seed)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def _two_sweep_undirected(G, seed):
|
| 88 |
+
"""Helper function for finding a lower bound on the diameter
|
| 89 |
+
for undirected Graphs.
|
| 90 |
+
|
| 91 |
+
The idea is to pick the farthest node from a random node
|
| 92 |
+
and return its eccentricity.
|
| 93 |
+
|
| 94 |
+
``G`` is a NetworkX undirected graph.
|
| 95 |
+
|
| 96 |
+
.. note::
|
| 97 |
+
|
| 98 |
+
``seed`` is a random.Random or numpy.random.RandomState instance
|
| 99 |
+
"""
|
| 100 |
+
# select a random source node
|
| 101 |
+
source = seed.choice(list(G))
|
| 102 |
+
# get the distances to the other nodes
|
| 103 |
+
distances = nx.shortest_path_length(G, source)
|
| 104 |
+
# if some nodes have not been visited, then the graph is not connected
|
| 105 |
+
if len(distances) != len(G):
|
| 106 |
+
raise nx.NetworkXError("Graph not connected.")
|
| 107 |
+
# take a node that is (one of) the farthest nodes from the source
|
| 108 |
+
*_, node = distances
|
| 109 |
+
# return the eccentricity of the node
|
| 110 |
+
return nx.eccentricity(G, node)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def _two_sweep_directed(G, seed):
|
| 114 |
+
"""Helper function for finding a lower bound on the diameter
|
| 115 |
+
for directed Graphs.
|
| 116 |
+
|
| 117 |
+
It implements 2-dSweep, the directed version of the 2-sweep algorithm.
|
| 118 |
+
The algorithm follows the following steps.
|
| 119 |
+
1. Select a source node $s$ at random.
|
| 120 |
+
2. Perform a forward BFS from $s$ to select a node $a_1$ at the maximum
|
| 121 |
+
distance from the source, and compute $LB_1$, the backward eccentricity of $a_1$.
|
| 122 |
+
3. Perform a backward BFS from $s$ to select a node $a_2$ at the maximum
|
| 123 |
+
distance from the source, and compute $LB_2$, the forward eccentricity of $a_2$.
|
| 124 |
+
4. Return the maximum between $LB_1$ and $LB_2$.
|
| 125 |
+
|
| 126 |
+
``G`` is a NetworkX directed graph.
|
| 127 |
+
|
| 128 |
+
.. note::
|
| 129 |
+
|
| 130 |
+
``seed`` is a random.Random or numpy.random.RandomState instance
|
| 131 |
+
"""
|
| 132 |
+
# get a new digraph G' with the edges reversed in the opposite direction
|
| 133 |
+
G_reversed = G.reverse()
|
| 134 |
+
# select a random source node
|
| 135 |
+
source = seed.choice(list(G))
|
| 136 |
+
# compute forward distances from source
|
| 137 |
+
forward_distances = nx.shortest_path_length(G, source)
|
| 138 |
+
# compute backward distances from source
|
| 139 |
+
backward_distances = nx.shortest_path_length(G_reversed, source)
|
| 140 |
+
# if either the source can't reach every node or not every node
|
| 141 |
+
# can reach the source, then the graph is not strongly connected
|
| 142 |
+
n = len(G)
|
| 143 |
+
if len(forward_distances) != n or len(backward_distances) != n:
|
| 144 |
+
raise nx.NetworkXError("DiGraph not strongly connected.")
|
| 145 |
+
# take a node a_1 at the maximum distance from the source in G
|
| 146 |
+
*_, a_1 = forward_distances
|
| 147 |
+
# take a node a_2 at the maximum distance from the source in G_reversed
|
| 148 |
+
*_, a_2 = backward_distances
|
| 149 |
+
# return the max between the backward eccentricity of a_1 and the forward eccentricity of a_2
|
| 150 |
+
return max(nx.eccentricity(G_reversed, a_1), nx.eccentricity(G, a_2))
|
.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/kcomponents.py
ADDED
|
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Fast approximation for k-component structure"""
|
| 2 |
+
|
| 3 |
+
import itertools
|
| 4 |
+
from collections import defaultdict
|
| 5 |
+
from collections.abc import Mapping
|
| 6 |
+
from functools import cached_property
|
| 7 |
+
|
| 8 |
+
import networkx as nx
|
| 9 |
+
from networkx.algorithms.approximation import local_node_connectivity
|
| 10 |
+
from networkx.exception import NetworkXError
|
| 11 |
+
from networkx.utils import not_implemented_for
|
| 12 |
+
|
| 13 |
+
__all__ = ["k_components"]
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@not_implemented_for("directed")
|
| 17 |
+
@nx._dispatchable(name="approximate_k_components")
|
| 18 |
+
def k_components(G, min_density=0.95):
|
| 19 |
+
r"""Returns the approximate k-component structure of a graph G.
|
| 20 |
+
|
| 21 |
+
A `k`-component is a maximal subgraph of a graph G that has, at least,
|
| 22 |
+
node connectivity `k`: we need to remove at least `k` nodes to break it
|
| 23 |
+
into more components. `k`-components have an inherent hierarchical
|
| 24 |
+
structure because they are nested in terms of connectivity: a connected
|
| 25 |
+
graph can contain several 2-components, each of which can contain
|
| 26 |
+
one or more 3-components, and so forth.
|
| 27 |
+
|
| 28 |
+
This implementation is based on the fast heuristics to approximate
|
| 29 |
+
the `k`-component structure of a graph [1]_. Which, in turn, it is based on
|
| 30 |
+
a fast approximation algorithm for finding good lower bounds of the number
|
| 31 |
+
of node independent paths between two nodes [2]_.
|
| 32 |
+
|
| 33 |
+
Parameters
|
| 34 |
+
----------
|
| 35 |
+
G : NetworkX graph
|
| 36 |
+
Undirected graph
|
| 37 |
+
|
| 38 |
+
min_density : Float
|
| 39 |
+
Density relaxation threshold. Default value 0.95
|
| 40 |
+
|
| 41 |
+
Returns
|
| 42 |
+
-------
|
| 43 |
+
k_components : dict
|
| 44 |
+
Dictionary with connectivity level `k` as key and a list of
|
| 45 |
+
sets of nodes that form a k-component of level `k` as values.
|
| 46 |
+
|
| 47 |
+
Raises
|
| 48 |
+
------
|
| 49 |
+
NetworkXNotImplemented
|
| 50 |
+
If G is directed.
|
| 51 |
+
|
| 52 |
+
Examples
|
| 53 |
+
--------
|
| 54 |
+
>>> # Petersen graph has 10 nodes and it is triconnected, thus all
|
| 55 |
+
>>> # nodes are in a single component on all three connectivity levels
|
| 56 |
+
>>> from networkx.algorithms import approximation as apxa
|
| 57 |
+
>>> G = nx.petersen_graph()
|
| 58 |
+
>>> k_components = apxa.k_components(G)
|
| 59 |
+
|
| 60 |
+
Notes
|
| 61 |
+
-----
|
| 62 |
+
The logic of the approximation algorithm for computing the `k`-component
|
| 63 |
+
structure [1]_ is based on repeatedly applying simple and fast algorithms
|
| 64 |
+
for `k`-cores and biconnected components in order to narrow down the
|
| 65 |
+
number of pairs of nodes over which we have to compute White and Newman's
|
| 66 |
+
approximation algorithm for finding node independent paths [2]_. More
|
| 67 |
+
formally, this algorithm is based on Whitney's theorem, which states
|
| 68 |
+
an inclusion relation among node connectivity, edge connectivity, and
|
| 69 |
+
minimum degree for any graph G. This theorem implies that every
|
| 70 |
+
`k`-component is nested inside a `k`-edge-component, which in turn,
|
| 71 |
+
is contained in a `k`-core. Thus, this algorithm computes node independent
|
| 72 |
+
paths among pairs of nodes in each biconnected part of each `k`-core,
|
| 73 |
+
and repeats this procedure for each `k` from 3 to the maximal core number
|
| 74 |
+
of a node in the input graph.
|
| 75 |
+
|
| 76 |
+
Because, in practice, many nodes of the core of level `k` inside a
|
| 77 |
+
bicomponent actually are part of a component of level k, the auxiliary
|
| 78 |
+
graph needed for the algorithm is likely to be very dense. Thus, we use
|
| 79 |
+
a complement graph data structure (see `AntiGraph`) to save memory.
|
| 80 |
+
AntiGraph only stores information of the edges that are *not* present
|
| 81 |
+
in the actual auxiliary graph. When applying algorithms to this
|
| 82 |
+
complement graph data structure, it behaves as if it were the dense
|
| 83 |
+
version.
|
| 84 |
+
|
| 85 |
+
See also
|
| 86 |
+
--------
|
| 87 |
+
k_components
|
| 88 |
+
|
| 89 |
+
References
|
| 90 |
+
----------
|
| 91 |
+
.. [1] Torrents, J. and F. Ferraro (2015) Structural Cohesion:
|
| 92 |
+
Visualization and Heuristics for Fast Computation.
|
| 93 |
+
https://arxiv.org/pdf/1503.04476v1
|
| 94 |
+
|
| 95 |
+
.. [2] White, Douglas R., and Mark Newman (2001) A Fast Algorithm for
|
| 96 |
+
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
|
| 97 |
+
https://www.santafe.edu/research/results/working-papers/fast-approximation-algorithms-for-finding-node-ind
|
| 98 |
+
|
| 99 |
+
.. [3] Moody, J. and D. White (2003). Social cohesion and embeddedness:
|
| 100 |
+
A hierarchical conception of social groups.
|
| 101 |
+
American Sociological Review 68(1), 103--28.
|
| 102 |
+
https://doi.org/10.2307/3088904
|
| 103 |
+
|
| 104 |
+
"""
|
| 105 |
+
# Dictionary with connectivity level (k) as keys and a list of
|
| 106 |
+
# sets of nodes that form a k-component as values
|
| 107 |
+
k_components = defaultdict(list)
|
| 108 |
+
# make a few functions local for speed
|
| 109 |
+
node_connectivity = local_node_connectivity
|
| 110 |
+
k_core = nx.k_core
|
| 111 |
+
core_number = nx.core_number
|
| 112 |
+
biconnected_components = nx.biconnected_components
|
| 113 |
+
combinations = itertools.combinations
|
| 114 |
+
# Exact solution for k = {1,2}
|
| 115 |
+
# There is a linear time algorithm for triconnectivity, if we had an
|
| 116 |
+
# implementation available we could start from k = 4.
|
| 117 |
+
for component in nx.connected_components(G):
|
| 118 |
+
# isolated nodes have connectivity 0
|
| 119 |
+
comp = set(component)
|
| 120 |
+
if len(comp) > 1:
|
| 121 |
+
k_components[1].append(comp)
|
| 122 |
+
for bicomponent in nx.biconnected_components(G):
|
| 123 |
+
# avoid considering dyads as bicomponents
|
| 124 |
+
bicomp = set(bicomponent)
|
| 125 |
+
if len(bicomp) > 2:
|
| 126 |
+
k_components[2].append(bicomp)
|
| 127 |
+
# There is no k-component of k > maximum core number
|
| 128 |
+
# \kappa(G) <= \lambda(G) <= \delta(G)
|
| 129 |
+
g_cnumber = core_number(G)
|
| 130 |
+
max_core = max(g_cnumber.values())
|
| 131 |
+
for k in range(3, max_core + 1):
|
| 132 |
+
C = k_core(G, k, core_number=g_cnumber)
|
| 133 |
+
for nodes in biconnected_components(C):
|
| 134 |
+
# Build a subgraph SG induced by the nodes that are part of
|
| 135 |
+
# each biconnected component of the k-core subgraph C.
|
| 136 |
+
if len(nodes) < k:
|
| 137 |
+
continue
|
| 138 |
+
SG = G.subgraph(nodes)
|
| 139 |
+
# Build auxiliary graph
|
| 140 |
+
H = _AntiGraph()
|
| 141 |
+
H.add_nodes_from(SG.nodes())
|
| 142 |
+
for u, v in combinations(SG, 2):
|
| 143 |
+
K = node_connectivity(SG, u, v, cutoff=k)
|
| 144 |
+
if k > K:
|
| 145 |
+
H.add_edge(u, v)
|
| 146 |
+
for h_nodes in biconnected_components(H):
|
| 147 |
+
if len(h_nodes) <= k:
|
| 148 |
+
continue
|
| 149 |
+
SH = H.subgraph(h_nodes)
|
| 150 |
+
for Gc in _cliques_heuristic(SG, SH, k, min_density):
|
| 151 |
+
for k_nodes in biconnected_components(Gc):
|
| 152 |
+
Gk = nx.k_core(SG.subgraph(k_nodes), k)
|
| 153 |
+
if len(Gk) <= k:
|
| 154 |
+
continue
|
| 155 |
+
k_components[k].append(set(Gk))
|
| 156 |
+
return k_components
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def _cliques_heuristic(G, H, k, min_density):
|
| 160 |
+
h_cnumber = nx.core_number(H)
|
| 161 |
+
for i, c_value in enumerate(sorted(set(h_cnumber.values()), reverse=True)):
|
| 162 |
+
cands = {n for n, c in h_cnumber.items() if c == c_value}
|
| 163 |
+
# Skip checking for overlap for the highest core value
|
| 164 |
+
if i == 0:
|
| 165 |
+
overlap = False
|
| 166 |
+
else:
|
| 167 |
+
overlap = set.intersection(
|
| 168 |
+
*[{x for x in H[n] if x not in cands} for n in cands]
|
| 169 |
+
)
|
| 170 |
+
if overlap and len(overlap) < k:
|
| 171 |
+
SH = H.subgraph(cands | overlap)
|
| 172 |
+
else:
|
| 173 |
+
SH = H.subgraph(cands)
|
| 174 |
+
sh_cnumber = nx.core_number(SH)
|
| 175 |
+
SG = nx.k_core(G.subgraph(SH), k)
|
| 176 |
+
while not (_same(sh_cnumber) and nx.density(SH) >= min_density):
|
| 177 |
+
# This subgraph must be writable => .copy()
|
| 178 |
+
SH = H.subgraph(SG).copy()
|
| 179 |
+
if len(SH) <= k:
|
| 180 |
+
break
|
| 181 |
+
sh_cnumber = nx.core_number(SH)
|
| 182 |
+
sh_deg = dict(SH.degree())
|
| 183 |
+
min_deg = min(sh_deg.values())
|
| 184 |
+
SH.remove_nodes_from(n for n, d in sh_deg.items() if d == min_deg)
|
| 185 |
+
SG = nx.k_core(G.subgraph(SH), k)
|
| 186 |
+
else:
|
| 187 |
+
yield SG
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def _same(measure, tol=0):
|
| 191 |
+
vals = set(measure.values())
|
| 192 |
+
if (max(vals) - min(vals)) <= tol:
|
| 193 |
+
return True
|
| 194 |
+
return False
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class _AntiGraph(nx.Graph):
|
| 198 |
+
"""
|
| 199 |
+
Class for complement graphs.
|
| 200 |
+
|
| 201 |
+
The main goal is to be able to work with big and dense graphs with
|
| 202 |
+
a low memory footprint.
|
| 203 |
+
|
| 204 |
+
In this class you add the edges that *do not exist* in the dense graph,
|
| 205 |
+
the report methods of the class return the neighbors, the edges and
|
| 206 |
+
the degree as if it was the dense graph. Thus it's possible to use
|
| 207 |
+
an instance of this class with some of NetworkX functions. In this
|
| 208 |
+
case we only use k-core, connected_components, and biconnected_components.
|
| 209 |
+
"""
|
| 210 |
+
|
| 211 |
+
all_edge_dict = {"weight": 1}
|
| 212 |
+
|
| 213 |
+
def single_edge_dict(self):
|
| 214 |
+
return self.all_edge_dict
|
| 215 |
+
|
| 216 |
+
edge_attr_dict_factory = single_edge_dict # type: ignore[assignment]
|
| 217 |
+
|
| 218 |
+
def __getitem__(self, n):
|
| 219 |
+
"""Returns a dict of neighbors of node n in the dense graph.
|
| 220 |
+
|
| 221 |
+
Parameters
|
| 222 |
+
----------
|
| 223 |
+
n : node
|
| 224 |
+
A node in the graph.
|
| 225 |
+
|
| 226 |
+
Returns
|
| 227 |
+
-------
|
| 228 |
+
adj_dict : dictionary
|
| 229 |
+
The adjacency dictionary for nodes connected to n.
|
| 230 |
+
|
| 231 |
+
"""
|
| 232 |
+
all_edge_dict = self.all_edge_dict
|
| 233 |
+
return {
|
| 234 |
+
node: all_edge_dict for node in set(self._adj) - set(self._adj[n]) - {n}
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
def neighbors(self, n):
|
| 238 |
+
"""Returns an iterator over all neighbors of node n in the
|
| 239 |
+
dense graph.
|
| 240 |
+
"""
|
| 241 |
+
try:
|
| 242 |
+
return iter(set(self._adj) - set(self._adj[n]) - {n})
|
| 243 |
+
except KeyError as err:
|
| 244 |
+
raise NetworkXError(f"The node {n} is not in the graph.") from err
|
| 245 |
+
|
| 246 |
+
class AntiAtlasView(Mapping):
|
| 247 |
+
"""An adjacency inner dict for AntiGraph"""
|
| 248 |
+
|
| 249 |
+
def __init__(self, graph, node):
|
| 250 |
+
self._graph = graph
|
| 251 |
+
self._atlas = graph._adj[node]
|
| 252 |
+
self._node = node
|
| 253 |
+
|
| 254 |
+
def __len__(self):
|
| 255 |
+
return len(self._graph) - len(self._atlas) - 1
|
| 256 |
+
|
| 257 |
+
def __iter__(self):
|
| 258 |
+
return (n for n in self._graph if n not in self._atlas and n != self._node)
|
| 259 |
+
|
| 260 |
+
def __getitem__(self, nbr):
|
| 261 |
+
nbrs = set(self._graph._adj) - set(self._atlas) - {self._node}
|
| 262 |
+
if nbr in nbrs:
|
| 263 |
+
return self._graph.all_edge_dict
|
| 264 |
+
raise KeyError(nbr)
|
| 265 |
+
|
| 266 |
+
class AntiAdjacencyView(AntiAtlasView):
|
| 267 |
+
"""An adjacency outer dict for AntiGraph"""
|
| 268 |
+
|
| 269 |
+
def __init__(self, graph):
|
| 270 |
+
self._graph = graph
|
| 271 |
+
self._atlas = graph._adj
|
| 272 |
+
|
| 273 |
+
def __len__(self):
|
| 274 |
+
return len(self._atlas)
|
| 275 |
+
|
| 276 |
+
def __iter__(self):
|
| 277 |
+
return iter(self._graph)
|
| 278 |
+
|
| 279 |
+
def __getitem__(self, node):
|
| 280 |
+
if node not in self._graph:
|
| 281 |
+
raise KeyError(node)
|
| 282 |
+
return self._graph.AntiAtlasView(self._graph, node)
|
| 283 |
+
|
| 284 |
+
@cached_property
|
| 285 |
+
def adj(self):
|
| 286 |
+
return self.AntiAdjacencyView(self)
|
| 287 |
+
|
| 288 |
+
def subgraph(self, nodes):
|
| 289 |
+
"""This subgraph method returns a full AntiGraph. Not a View"""
|
| 290 |
+
nodes = set(nodes)
|
| 291 |
+
G = _AntiGraph()
|
| 292 |
+
G.add_nodes_from(nodes)
|
| 293 |
+
for n in G:
|
| 294 |
+
Gnbrs = G.adjlist_inner_dict_factory()
|
| 295 |
+
G._adj[n] = Gnbrs
|
| 296 |
+
for nbr, d in self._adj[n].items():
|
| 297 |
+
if nbr in G._adj:
|
| 298 |
+
Gnbrs[nbr] = d
|
| 299 |
+
G._adj[nbr][n] = d
|
| 300 |
+
G.graph = self.graph
|
| 301 |
+
return G
|
| 302 |
+
|
| 303 |
+
class AntiDegreeView(nx.reportviews.DegreeView):
|
| 304 |
+
def __iter__(self):
|
| 305 |
+
all_nodes = set(self._succ)
|
| 306 |
+
for n in self._nodes:
|
| 307 |
+
nbrs = all_nodes - set(self._succ[n]) - {n}
|
| 308 |
+
yield (n, len(nbrs))
|
| 309 |
+
|
| 310 |
+
def __getitem__(self, n):
|
| 311 |
+
nbrs = set(self._succ) - set(self._succ[n]) - {n}
|
| 312 |
+
# AntiGraph is a ThinGraph so all edges have weight 1
|
| 313 |
+
return len(nbrs) + (n in nbrs)
|
| 314 |
+
|
| 315 |
+
@cached_property
|
| 316 |
+
def degree(self):
|
| 317 |
+
"""Returns an iterator for (node, degree) and degree for single node.
|
| 318 |
+
|
| 319 |
+
The node degree is the number of edges adjacent to the node.
|
| 320 |
+
|
| 321 |
+
Parameters
|
| 322 |
+
----------
|
| 323 |
+
nbunch : iterable container, optional (default=all nodes)
|
| 324 |
+
A container of nodes. The container will be iterated
|
| 325 |
+
through once.
|
| 326 |
+
|
| 327 |
+
weight : string or None, optional (default=None)
|
| 328 |
+
The edge attribute that holds the numerical value used
|
| 329 |
+
as a weight. If None, then each edge has weight 1.
|
| 330 |
+
The degree is the sum of the edge weights adjacent to the node.
|
| 331 |
+
|
| 332 |
+
Returns
|
| 333 |
+
-------
|
| 334 |
+
deg:
|
| 335 |
+
Degree of the node, if a single node is passed as argument.
|
| 336 |
+
nd_iter : an iterator
|
| 337 |
+
The iterator returns two-tuples of (node, degree).
|
| 338 |
+
|
| 339 |
+
See Also
|
| 340 |
+
--------
|
| 341 |
+
degree
|
| 342 |
+
|
| 343 |
+
Examples
|
| 344 |
+
--------
|
| 345 |
+
>>> G = nx.path_graph(4)
|
| 346 |
+
>>> G.degree(0) # node 0 with degree 1
|
| 347 |
+
1
|
| 348 |
+
>>> list(G.degree([0, 1]))
|
| 349 |
+
[(0, 1), (1, 2)]
|
| 350 |
+
|
| 351 |
+
"""
|
| 352 |
+
return self.AntiDegreeView(self)
|
| 353 |
+
|
| 354 |
+
def adjacency(self):
|
| 355 |
+
"""Returns an iterator of (node, adjacency set) tuples for all nodes
|
| 356 |
+
in the dense graph.
|
| 357 |
+
|
| 358 |
+
This is the fastest way to look at every edge.
|
| 359 |
+
For directed graphs, only outgoing adjacencies are included.
|
| 360 |
+
|
| 361 |
+
Returns
|
| 362 |
+
-------
|
| 363 |
+
adj_iter : iterator
|
| 364 |
+
An iterator of (node, adjacency set) for all nodes in
|
| 365 |
+
the graph.
|
| 366 |
+
|
| 367 |
+
"""
|
| 368 |
+
for n in self._adj:
|
| 369 |
+
yield (n, set(self._adj) - set(self._adj[n]) - {n})
|
.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/matching.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
**************
|
| 3 |
+
Graph Matching
|
| 4 |
+
**************
|
| 5 |
+
|
| 6 |
+
Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent
|
| 7 |
+
edges; that is, no two edges share a common vertex.
|
| 8 |
+
|
| 9 |
+
`Wikipedia: Matching <https://en.wikipedia.org/wiki/Matching_(graph_theory)>`_
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
import networkx as nx
|
| 13 |
+
|
| 14 |
+
__all__ = ["min_maximal_matching"]
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@nx._dispatchable
|
| 18 |
+
def min_maximal_matching(G):
|
| 19 |
+
r"""Returns the minimum maximal matching of G. That is, out of all maximal
|
| 20 |
+
matchings of the graph G, the smallest is returned.
|
| 21 |
+
|
| 22 |
+
Parameters
|
| 23 |
+
----------
|
| 24 |
+
G : NetworkX graph
|
| 25 |
+
Undirected graph
|
| 26 |
+
|
| 27 |
+
Returns
|
| 28 |
+
-------
|
| 29 |
+
min_maximal_matching : set
|
| 30 |
+
Returns a set of edges such that no two edges share a common endpoint
|
| 31 |
+
and every edge not in the set shares some common endpoint in the set.
|
| 32 |
+
Cardinality will be 2*OPT in the worst case.
|
| 33 |
+
|
| 34 |
+
Notes
|
| 35 |
+
-----
|
| 36 |
+
The algorithm computes an approximate solution for the minimum maximal
|
| 37 |
+
cardinality matching problem. The solution is no more than 2 * OPT in size.
|
| 38 |
+
Runtime is $O(|E|)$.
|
| 39 |
+
|
| 40 |
+
References
|
| 41 |
+
----------
|
| 42 |
+
.. [1] Vazirani, Vijay Approximation Algorithms (2001)
|
| 43 |
+
"""
|
| 44 |
+
return nx.maximal_matching(G)
|
.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/maxcut.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import networkx as nx
|
| 2 |
+
from networkx.utils.decorators import not_implemented_for, py_random_state
|
| 3 |
+
|
| 4 |
+
__all__ = ["randomized_partitioning", "one_exchange"]
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@not_implemented_for("directed")
|
| 8 |
+
@not_implemented_for("multigraph")
|
| 9 |
+
@py_random_state(1)
|
| 10 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 11 |
+
def randomized_partitioning(G, seed=None, p=0.5, weight=None):
|
| 12 |
+
"""Compute a random partitioning of the graph nodes and its cut value.
|
| 13 |
+
|
| 14 |
+
A partitioning is calculated by observing each node
|
| 15 |
+
and deciding to add it to the partition with probability `p`,
|
| 16 |
+
returning a random cut and its corresponding value (the
|
| 17 |
+
sum of weights of edges connecting different partitions).
|
| 18 |
+
|
| 19 |
+
Parameters
|
| 20 |
+
----------
|
| 21 |
+
G : NetworkX graph
|
| 22 |
+
|
| 23 |
+
seed : integer, random_state, or None (default)
|
| 24 |
+
Indicator of random number generation state.
|
| 25 |
+
See :ref:`Randomness<randomness>`.
|
| 26 |
+
|
| 27 |
+
p : scalar
|
| 28 |
+
Probability for each node to be part of the first partition.
|
| 29 |
+
Should be in [0,1]
|
| 30 |
+
|
| 31 |
+
weight : object
|
| 32 |
+
Edge attribute key to use as weight. If not specified, edges
|
| 33 |
+
have weight one.
|
| 34 |
+
|
| 35 |
+
Returns
|
| 36 |
+
-------
|
| 37 |
+
cut_size : scalar
|
| 38 |
+
Value of the minimum cut.
|
| 39 |
+
|
| 40 |
+
partition : pair of node sets
|
| 41 |
+
A partitioning of the nodes that defines a minimum cut.
|
| 42 |
+
|
| 43 |
+
Examples
|
| 44 |
+
--------
|
| 45 |
+
>>> G = nx.complete_graph(5)
|
| 46 |
+
>>> cut_size, partition = nx.approximation.randomized_partitioning(G, seed=1)
|
| 47 |
+
>>> cut_size
|
| 48 |
+
6
|
| 49 |
+
>>> partition
|
| 50 |
+
({0, 3, 4}, {1, 2})
|
| 51 |
+
|
| 52 |
+
Raises
|
| 53 |
+
------
|
| 54 |
+
NetworkXNotImplemented
|
| 55 |
+
If the graph is directed or is a multigraph.
|
| 56 |
+
"""
|
| 57 |
+
cut = {node for node in G.nodes() if seed.random() < p}
|
| 58 |
+
cut_size = nx.algorithms.cut_size(G, cut, weight=weight)
|
| 59 |
+
partition = (cut, G.nodes - cut)
|
| 60 |
+
return cut_size, partition
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def _swap_node_partition(cut, node):
|
| 64 |
+
return cut - {node} if node in cut else cut.union({node})
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@not_implemented_for("directed")
|
| 68 |
+
@not_implemented_for("multigraph")
|
| 69 |
+
@py_random_state(2)
|
| 70 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 71 |
+
def one_exchange(G, initial_cut=None, seed=None, weight=None):
|
| 72 |
+
"""Compute a partitioning of the graphs nodes and the corresponding cut value.
|
| 73 |
+
|
| 74 |
+
Use a greedy one exchange strategy to find a locally maximal cut
|
| 75 |
+
and its value, it works by finding the best node (one that gives
|
| 76 |
+
the highest gain to the cut value) to add to the current cut
|
| 77 |
+
and repeats this process until no improvement can be made.
|
| 78 |
+
|
| 79 |
+
Parameters
|
| 80 |
+
----------
|
| 81 |
+
G : networkx Graph
|
| 82 |
+
Graph to find a maximum cut for.
|
| 83 |
+
|
| 84 |
+
initial_cut : set
|
| 85 |
+
Cut to use as a starting point. If not supplied the algorithm
|
| 86 |
+
starts with an empty cut.
|
| 87 |
+
|
| 88 |
+
seed : integer, random_state, or None (default)
|
| 89 |
+
Indicator of random number generation state.
|
| 90 |
+
See :ref:`Randomness<randomness>`.
|
| 91 |
+
|
| 92 |
+
weight : object
|
| 93 |
+
Edge attribute key to use as weight. If not specified, edges
|
| 94 |
+
have weight one.
|
| 95 |
+
|
| 96 |
+
Returns
|
| 97 |
+
-------
|
| 98 |
+
cut_value : scalar
|
| 99 |
+
Value of the maximum cut.
|
| 100 |
+
|
| 101 |
+
partition : pair of node sets
|
| 102 |
+
A partitioning of the nodes that defines a maximum cut.
|
| 103 |
+
|
| 104 |
+
Examples
|
| 105 |
+
--------
|
| 106 |
+
>>> G = nx.complete_graph(5)
|
| 107 |
+
>>> curr_cut_size, partition = nx.approximation.one_exchange(G, seed=1)
|
| 108 |
+
>>> curr_cut_size
|
| 109 |
+
6
|
| 110 |
+
>>> partition
|
| 111 |
+
({0, 2}, {1, 3, 4})
|
| 112 |
+
|
| 113 |
+
Raises
|
| 114 |
+
------
|
| 115 |
+
NetworkXNotImplemented
|
| 116 |
+
If the graph is directed or is a multigraph.
|
| 117 |
+
"""
|
| 118 |
+
if initial_cut is None:
|
| 119 |
+
initial_cut = set()
|
| 120 |
+
cut = set(initial_cut)
|
| 121 |
+
current_cut_size = nx.algorithms.cut_size(G, cut, weight=weight)
|
| 122 |
+
while True:
|
| 123 |
+
nodes = list(G.nodes())
|
| 124 |
+
# Shuffling the nodes ensures random tie-breaks in the following call to max
|
| 125 |
+
seed.shuffle(nodes)
|
| 126 |
+
best_node_to_swap = max(
|
| 127 |
+
nodes,
|
| 128 |
+
key=lambda v: nx.algorithms.cut_size(
|
| 129 |
+
G, _swap_node_partition(cut, v), weight=weight
|
| 130 |
+
),
|
| 131 |
+
default=None,
|
| 132 |
+
)
|
| 133 |
+
potential_cut = _swap_node_partition(cut, best_node_to_swap)
|
| 134 |
+
potential_cut_size = nx.algorithms.cut_size(G, potential_cut, weight=weight)
|
| 135 |
+
|
| 136 |
+
if potential_cut_size > current_cut_size:
|
| 137 |
+
cut = potential_cut
|
| 138 |
+
current_cut_size = potential_cut_size
|
| 139 |
+
else:
|
| 140 |
+
break
|
| 141 |
+
|
| 142 |
+
partition = (cut, G.nodes - cut)
|
| 143 |
+
return current_cut_size, partition
|
.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/ramsey.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Ramsey numbers.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
from networkx.utils import not_implemented_for
|
| 7 |
+
|
| 8 |
+
from ...utils import arbitrary_element
|
| 9 |
+
|
| 10 |
+
__all__ = ["ramsey_R2"]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@not_implemented_for("directed")
|
| 14 |
+
@not_implemented_for("multigraph")
|
| 15 |
+
@nx._dispatchable
|
| 16 |
+
def ramsey_R2(G):
|
| 17 |
+
r"""Compute the largest clique and largest independent set in `G`.
|
| 18 |
+
|
| 19 |
+
This can be used to estimate bounds for the 2-color
|
| 20 |
+
Ramsey number `R(2;s,t)` for `G`.
|
| 21 |
+
|
| 22 |
+
This is a recursive implementation which could run into trouble
|
| 23 |
+
for large recursions. Note that self-loop edges are ignored.
|
| 24 |
+
|
| 25 |
+
Parameters
|
| 26 |
+
----------
|
| 27 |
+
G : NetworkX graph
|
| 28 |
+
Undirected graph
|
| 29 |
+
|
| 30 |
+
Returns
|
| 31 |
+
-------
|
| 32 |
+
max_pair : (set, set) tuple
|
| 33 |
+
Maximum clique, Maximum independent set.
|
| 34 |
+
|
| 35 |
+
Raises
|
| 36 |
+
------
|
| 37 |
+
NetworkXNotImplemented
|
| 38 |
+
If the graph is directed or is a multigraph.
|
| 39 |
+
"""
|
| 40 |
+
if not G:
|
| 41 |
+
return set(), set()
|
| 42 |
+
|
| 43 |
+
node = arbitrary_element(G)
|
| 44 |
+
nbrs = (nbr for nbr in nx.all_neighbors(G, node) if nbr != node)
|
| 45 |
+
nnbrs = nx.non_neighbors(G, node)
|
| 46 |
+
c_1, i_1 = ramsey_R2(G.subgraph(nbrs).copy())
|
| 47 |
+
c_2, i_2 = ramsey_R2(G.subgraph(nnbrs).copy())
|
| 48 |
+
|
| 49 |
+
c_1.add(node)
|
| 50 |
+
i_2.add(node)
|
| 51 |
+
# Choose the larger of the two cliques and the larger of the two
|
| 52 |
+
# independent sets, according to cardinality.
|
| 53 |
+
return max(c_1, c_2, key=len), max(i_1, i_2, key=len)
|
.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/steinertree.py
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from itertools import chain
|
| 2 |
+
|
| 3 |
+
import networkx as nx
|
| 4 |
+
from networkx.utils import not_implemented_for, pairwise
|
| 5 |
+
|
| 6 |
+
__all__ = ["metric_closure", "steiner_tree"]
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@not_implemented_for("directed")
|
| 10 |
+
@nx._dispatchable(edge_attrs="weight", returns_graph=True)
|
| 11 |
+
def metric_closure(G, weight="weight"):
|
| 12 |
+
"""Return the metric closure of a graph.
|
| 13 |
+
|
| 14 |
+
The metric closure of a graph *G* is the complete graph in which each edge
|
| 15 |
+
is weighted by the shortest path distance between the nodes in *G* .
|
| 16 |
+
|
| 17 |
+
Parameters
|
| 18 |
+
----------
|
| 19 |
+
G : NetworkX graph
|
| 20 |
+
|
| 21 |
+
Returns
|
| 22 |
+
-------
|
| 23 |
+
NetworkX graph
|
| 24 |
+
Metric closure of the graph `G`.
|
| 25 |
+
|
| 26 |
+
"""
|
| 27 |
+
M = nx.Graph()
|
| 28 |
+
|
| 29 |
+
Gnodes = set(G)
|
| 30 |
+
|
| 31 |
+
# check for connected graph while processing first node
|
| 32 |
+
all_paths_iter = nx.all_pairs_dijkstra(G, weight=weight)
|
| 33 |
+
u, (distance, path) = next(all_paths_iter)
|
| 34 |
+
if Gnodes - set(distance):
|
| 35 |
+
msg = "G is not a connected graph. metric_closure is not defined."
|
| 36 |
+
raise nx.NetworkXError(msg)
|
| 37 |
+
Gnodes.remove(u)
|
| 38 |
+
for v in Gnodes:
|
| 39 |
+
M.add_edge(u, v, distance=distance[v], path=path[v])
|
| 40 |
+
|
| 41 |
+
# first node done -- now process the rest
|
| 42 |
+
for u, (distance, path) in all_paths_iter:
|
| 43 |
+
Gnodes.remove(u)
|
| 44 |
+
for v in Gnodes:
|
| 45 |
+
M.add_edge(u, v, distance=distance[v], path=path[v])
|
| 46 |
+
|
| 47 |
+
return M
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def _mehlhorn_steiner_tree(G, terminal_nodes, weight):
|
| 51 |
+
paths = nx.multi_source_dijkstra_path(G, terminal_nodes)
|
| 52 |
+
|
| 53 |
+
d_1 = {}
|
| 54 |
+
s = {}
|
| 55 |
+
for v in G.nodes():
|
| 56 |
+
s[v] = paths[v][0]
|
| 57 |
+
d_1[(v, s[v])] = len(paths[v]) - 1
|
| 58 |
+
|
| 59 |
+
# G1-G4 names match those from the Mehlhorn 1988 paper.
|
| 60 |
+
G_1_prime = nx.Graph()
|
| 61 |
+
for u, v, data in G.edges(data=True):
|
| 62 |
+
su, sv = s[u], s[v]
|
| 63 |
+
weight_here = d_1[(u, su)] + data.get(weight, 1) + d_1[(v, sv)]
|
| 64 |
+
if not G_1_prime.has_edge(su, sv):
|
| 65 |
+
G_1_prime.add_edge(su, sv, weight=weight_here)
|
| 66 |
+
else:
|
| 67 |
+
new_weight = min(weight_here, G_1_prime[su][sv]["weight"])
|
| 68 |
+
G_1_prime.add_edge(su, sv, weight=new_weight)
|
| 69 |
+
|
| 70 |
+
G_2 = nx.minimum_spanning_edges(G_1_prime, data=True)
|
| 71 |
+
|
| 72 |
+
G_3 = nx.Graph()
|
| 73 |
+
for u, v, d in G_2:
|
| 74 |
+
path = nx.shortest_path(G, u, v, weight)
|
| 75 |
+
for n1, n2 in pairwise(path):
|
| 76 |
+
G_3.add_edge(n1, n2)
|
| 77 |
+
|
| 78 |
+
G_3_mst = list(nx.minimum_spanning_edges(G_3, data=False))
|
| 79 |
+
if G.is_multigraph():
|
| 80 |
+
G_3_mst = (
|
| 81 |
+
(u, v, min(G[u][v], key=lambda k: G[u][v][k][weight])) for u, v in G_3_mst
|
| 82 |
+
)
|
| 83 |
+
G_4 = G.edge_subgraph(G_3_mst).copy()
|
| 84 |
+
_remove_nonterminal_leaves(G_4, terminal_nodes)
|
| 85 |
+
return G_4.edges()
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def _kou_steiner_tree(G, terminal_nodes, weight):
|
| 89 |
+
# H is the subgraph induced by terminal_nodes in the metric closure M of G.
|
| 90 |
+
M = metric_closure(G, weight=weight)
|
| 91 |
+
H = M.subgraph(terminal_nodes)
|
| 92 |
+
|
| 93 |
+
# Use the 'distance' attribute of each edge provided by M.
|
| 94 |
+
mst_edges = nx.minimum_spanning_edges(H, weight="distance", data=True)
|
| 95 |
+
|
| 96 |
+
# Create an iterator over each edge in each shortest path; repeats are okay
|
| 97 |
+
mst_all_edges = chain.from_iterable(pairwise(d["path"]) for u, v, d in mst_edges)
|
| 98 |
+
if G.is_multigraph():
|
| 99 |
+
mst_all_edges = (
|
| 100 |
+
(u, v, min(G[u][v], key=lambda k: G[u][v][k][weight]))
|
| 101 |
+
for u, v in mst_all_edges
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Find the MST again, over this new set of edges
|
| 105 |
+
G_S = G.edge_subgraph(mst_all_edges)
|
| 106 |
+
T_S = nx.minimum_spanning_edges(G_S, weight="weight", data=False)
|
| 107 |
+
|
| 108 |
+
# Leaf nodes that are not terminal might still remain; remove them here
|
| 109 |
+
T_H = G.edge_subgraph(T_S).copy()
|
| 110 |
+
_remove_nonterminal_leaves(T_H, terminal_nodes)
|
| 111 |
+
|
| 112 |
+
return T_H.edges()
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def _remove_nonterminal_leaves(G, terminals):
|
| 116 |
+
terminal_set = set(terminals)
|
| 117 |
+
leaves = {n for n in G if len(set(G[n]) - {n}) == 1}
|
| 118 |
+
nonterminal_leaves = leaves - terminal_set
|
| 119 |
+
|
| 120 |
+
while nonterminal_leaves:
|
| 121 |
+
# Removing a node may create new non-terminal leaves, so we limit
|
| 122 |
+
# search for candidate non-terminal nodes to neighbors of current
|
| 123 |
+
# non-terminal nodes
|
| 124 |
+
candidate_leaves = set.union(*(set(G[n]) for n in nonterminal_leaves))
|
| 125 |
+
candidate_leaves -= nonterminal_leaves | terminal_set
|
| 126 |
+
# Remove current set of non-terminal nodes
|
| 127 |
+
G.remove_nodes_from(nonterminal_leaves)
|
| 128 |
+
# Find any new non-terminal nodes from the set of candidates
|
| 129 |
+
leaves = {n for n in candidate_leaves if len(set(G[n]) - {n}) == 1}
|
| 130 |
+
nonterminal_leaves = leaves - terminal_set
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
ALGORITHMS = {
|
| 134 |
+
"kou": _kou_steiner_tree,
|
| 135 |
+
"mehlhorn": _mehlhorn_steiner_tree,
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
@not_implemented_for("directed")
|
| 140 |
+
@nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
|
| 141 |
+
def steiner_tree(G, terminal_nodes, weight="weight", method=None):
|
| 142 |
+
r"""Return an approximation to the minimum Steiner tree of a graph.
|
| 143 |
+
|
| 144 |
+
The minimum Steiner tree of `G` w.r.t a set of `terminal_nodes` (also *S*)
|
| 145 |
+
is a tree within `G` that spans those nodes and has minimum size (sum of
|
| 146 |
+
edge weights) among all such trees.
|
| 147 |
+
|
| 148 |
+
The approximation algorithm is specified with the `method` keyword
|
| 149 |
+
argument. All three available algorithms produce a tree whose weight is
|
| 150 |
+
within a ``(2 - (2 / l))`` factor of the weight of the optimal Steiner tree,
|
| 151 |
+
where ``l`` is the minimum number of leaf nodes across all possible Steiner
|
| 152 |
+
trees.
|
| 153 |
+
|
| 154 |
+
* ``"kou"`` [2]_ (runtime $O(|S| |V|^2)$) computes the minimum spanning tree of
|
| 155 |
+
the subgraph of the metric closure of *G* induced by the terminal nodes,
|
| 156 |
+
where the metric closure of *G* is the complete graph in which each edge is
|
| 157 |
+
weighted by the shortest path distance between the nodes in *G*.
|
| 158 |
+
|
| 159 |
+
* ``"mehlhorn"`` [3]_ (runtime $O(|E|+|V|\log|V|)$) modifies Kou et al.'s
|
| 160 |
+
algorithm, beginning by finding the closest terminal node for each
|
| 161 |
+
non-terminal. This data is used to create a complete graph containing only
|
| 162 |
+
the terminal nodes, in which edge is weighted with the shortest path
|
| 163 |
+
distance between them. The algorithm then proceeds in the same way as Kou
|
| 164 |
+
et al..
|
| 165 |
+
|
| 166 |
+
Parameters
|
| 167 |
+
----------
|
| 168 |
+
G : NetworkX graph
|
| 169 |
+
|
| 170 |
+
terminal_nodes : list
|
| 171 |
+
A list of terminal nodes for which minimum steiner tree is
|
| 172 |
+
to be found.
|
| 173 |
+
|
| 174 |
+
weight : string (default = 'weight')
|
| 175 |
+
Use the edge attribute specified by this string as the edge weight.
|
| 176 |
+
Any edge attribute not present defaults to 1.
|
| 177 |
+
|
| 178 |
+
method : string, optional (default = 'mehlhorn')
|
| 179 |
+
The algorithm to use to approximate the Steiner tree.
|
| 180 |
+
Supported options: 'kou', 'mehlhorn'.
|
| 181 |
+
Other inputs produce a ValueError.
|
| 182 |
+
|
| 183 |
+
Returns
|
| 184 |
+
-------
|
| 185 |
+
NetworkX graph
|
| 186 |
+
Approximation to the minimum steiner tree of `G` induced by
|
| 187 |
+
`terminal_nodes` .
|
| 188 |
+
|
| 189 |
+
Raises
|
| 190 |
+
------
|
| 191 |
+
NetworkXNotImplemented
|
| 192 |
+
If `G` is directed.
|
| 193 |
+
|
| 194 |
+
ValueError
|
| 195 |
+
If the specified `method` is not supported.
|
| 196 |
+
|
| 197 |
+
Notes
|
| 198 |
+
-----
|
| 199 |
+
For multigraphs, the edge between two nodes with minimum weight is the
|
| 200 |
+
edge put into the Steiner tree.
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
References
|
| 204 |
+
----------
|
| 205 |
+
.. [1] Steiner_tree_problem on Wikipedia.
|
| 206 |
+
https://en.wikipedia.org/wiki/Steiner_tree_problem
|
| 207 |
+
.. [2] Kou, L., G. Markowsky, and L. Berman. 1981.
|
| 208 |
+
‘A Fast Algorithm for Steiner Trees’.
|
| 209 |
+
Acta Informatica 15 (2): 141–45.
|
| 210 |
+
https://doi.org/10.1007/BF00288961.
|
| 211 |
+
.. [3] Mehlhorn, Kurt. 1988.
|
| 212 |
+
‘A Faster Approximation Algorithm for the Steiner Problem in Graphs’.
|
| 213 |
+
Information Processing Letters 27 (3): 125–28.
|
| 214 |
+
https://doi.org/10.1016/0020-0190(88)90066-X.
|
| 215 |
+
"""
|
| 216 |
+
if method is None:
|
| 217 |
+
method = "mehlhorn"
|
| 218 |
+
|
| 219 |
+
try:
|
| 220 |
+
algo = ALGORITHMS[method]
|
| 221 |
+
except KeyError as e:
|
| 222 |
+
raise ValueError(f"{method} is not a valid choice for an algorithm.") from e
|
| 223 |
+
|
| 224 |
+
edges = algo(G, terminal_nodes, weight)
|
| 225 |
+
# For multigraph we should add the minimal weight edge keys
|
| 226 |
+
if G.is_multigraph():
|
| 227 |
+
edges = (
|
| 228 |
+
(u, v, min(G[u][v], key=lambda k: G[u][v][k][weight])) for u, v in edges
|
| 229 |
+
)
|
| 230 |
+
T = G.edge_subgraph(edges)
|
| 231 |
+
return T
|
.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/traveling_salesman.py
ADDED
|
@@ -0,0 +1,1501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
=================================
|
| 3 |
+
Travelling Salesman Problem (TSP)
|
| 4 |
+
=================================
|
| 5 |
+
|
| 6 |
+
Implementation of approximate algorithms
|
| 7 |
+
for solving and approximating the TSP problem.
|
| 8 |
+
|
| 9 |
+
Categories of algorithms which are implemented:
|
| 10 |
+
|
| 11 |
+
- Christofides (provides a 3/2-approximation of TSP)
|
| 12 |
+
- Greedy
|
| 13 |
+
- Simulated Annealing (SA)
|
| 14 |
+
- Threshold Accepting (TA)
|
| 15 |
+
- Asadpour Asymmetric Traveling Salesman Algorithm
|
| 16 |
+
|
| 17 |
+
The Travelling Salesman Problem tries to find, given the weight
|
| 18 |
+
(distance) between all points where a salesman has to visit, the
|
| 19 |
+
route so that:
|
| 20 |
+
|
| 21 |
+
- The total distance (cost) which the salesman travels is minimized.
|
| 22 |
+
- The salesman returns to the starting point.
|
| 23 |
+
- Note that for a complete graph, the salesman visits each point once.
|
| 24 |
+
|
| 25 |
+
The function `travelling_salesman_problem` allows for incomplete
|
| 26 |
+
graphs by finding all-pairs shortest paths, effectively converting
|
| 27 |
+
the problem to a complete graph problem. It calls one of the
|
| 28 |
+
approximate methods on that problem and then converts the result
|
| 29 |
+
back to the original graph using the previously found shortest paths.
|
| 30 |
+
|
| 31 |
+
TSP is an NP-hard problem in combinatorial optimization,
|
| 32 |
+
important in operations research and theoretical computer science.
|
| 33 |
+
|
| 34 |
+
http://en.wikipedia.org/wiki/Travelling_salesman_problem
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
import math
|
| 38 |
+
|
| 39 |
+
import networkx as nx
|
| 40 |
+
from networkx.algorithms.tree.mst import random_spanning_tree
|
| 41 |
+
from networkx.utils import not_implemented_for, pairwise, py_random_state
|
| 42 |
+
|
| 43 |
+
__all__ = [
|
| 44 |
+
"traveling_salesman_problem",
|
| 45 |
+
"christofides",
|
| 46 |
+
"asadpour_atsp",
|
| 47 |
+
"greedy_tsp",
|
| 48 |
+
"simulated_annealing_tsp",
|
| 49 |
+
"threshold_accepting_tsp",
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def swap_two_nodes(soln, seed):
|
| 54 |
+
"""Swap two nodes in `soln` to give a neighbor solution.
|
| 55 |
+
|
| 56 |
+
Parameters
|
| 57 |
+
----------
|
| 58 |
+
soln : list of nodes
|
| 59 |
+
Current cycle of nodes
|
| 60 |
+
|
| 61 |
+
seed : integer, random_state, or None (default)
|
| 62 |
+
Indicator of random number generation state.
|
| 63 |
+
See :ref:`Randomness<randomness>`.
|
| 64 |
+
|
| 65 |
+
Returns
|
| 66 |
+
-------
|
| 67 |
+
list
|
| 68 |
+
The solution after move is applied. (A neighbor solution.)
|
| 69 |
+
|
| 70 |
+
Notes
|
| 71 |
+
-----
|
| 72 |
+
This function assumes that the incoming list `soln` is a cycle
|
| 73 |
+
(that the first and last element are the same) and also that
|
| 74 |
+
we don't want any move to change the first node in the list
|
| 75 |
+
(and thus not the last node either).
|
| 76 |
+
|
| 77 |
+
The input list is changed as well as returned. Make a copy if needed.
|
| 78 |
+
|
| 79 |
+
See Also
|
| 80 |
+
--------
|
| 81 |
+
move_one_node
|
| 82 |
+
"""
|
| 83 |
+
a, b = seed.sample(range(1, len(soln) - 1), k=2)
|
| 84 |
+
soln[a], soln[b] = soln[b], soln[a]
|
| 85 |
+
return soln
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def move_one_node(soln, seed):
|
| 89 |
+
"""Move one node to another position to give a neighbor solution.
|
| 90 |
+
|
| 91 |
+
The node to move and the position to move to are chosen randomly.
|
| 92 |
+
The first and last nodes are left untouched as soln must be a cycle
|
| 93 |
+
starting at that node.
|
| 94 |
+
|
| 95 |
+
Parameters
|
| 96 |
+
----------
|
| 97 |
+
soln : list of nodes
|
| 98 |
+
Current cycle of nodes
|
| 99 |
+
|
| 100 |
+
seed : integer, random_state, or None (default)
|
| 101 |
+
Indicator of random number generation state.
|
| 102 |
+
See :ref:`Randomness<randomness>`.
|
| 103 |
+
|
| 104 |
+
Returns
|
| 105 |
+
-------
|
| 106 |
+
list
|
| 107 |
+
The solution after move is applied. (A neighbor solution.)
|
| 108 |
+
|
| 109 |
+
Notes
|
| 110 |
+
-----
|
| 111 |
+
This function assumes that the incoming list `soln` is a cycle
|
| 112 |
+
(that the first and last element are the same) and also that
|
| 113 |
+
we don't want any move to change the first node in the list
|
| 114 |
+
(and thus not the last node either).
|
| 115 |
+
|
| 116 |
+
The input list is changed as well as returned. Make a copy if needed.
|
| 117 |
+
|
| 118 |
+
See Also
|
| 119 |
+
--------
|
| 120 |
+
swap_two_nodes
|
| 121 |
+
"""
|
| 122 |
+
a, b = seed.sample(range(1, len(soln) - 1), k=2)
|
| 123 |
+
soln.insert(b, soln.pop(a))
|
| 124 |
+
return soln
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
@not_implemented_for("directed")
|
| 128 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 129 |
+
def christofides(G, weight="weight", tree=None):
|
| 130 |
+
"""Approximate a solution of the traveling salesman problem
|
| 131 |
+
|
| 132 |
+
Compute a 3/2-approximation of the traveling salesman problem
|
| 133 |
+
in a complete undirected graph using Christofides [1]_ algorithm.
|
| 134 |
+
|
| 135 |
+
Parameters
|
| 136 |
+
----------
|
| 137 |
+
G : Graph
|
| 138 |
+
`G` should be a complete weighted undirected graph.
|
| 139 |
+
The distance between all pairs of nodes should be included.
|
| 140 |
+
|
| 141 |
+
weight : string, optional (default="weight")
|
| 142 |
+
Edge data key corresponding to the edge weight.
|
| 143 |
+
If any edge does not have this attribute the weight is set to 1.
|
| 144 |
+
|
| 145 |
+
tree : NetworkX graph or None (default: None)
|
| 146 |
+
A minimum spanning tree of G. Or, if None, the minimum spanning
|
| 147 |
+
tree is computed using :func:`networkx.minimum_spanning_tree`
|
| 148 |
+
|
| 149 |
+
Returns
|
| 150 |
+
-------
|
| 151 |
+
list
|
| 152 |
+
List of nodes in `G` along a cycle with a 3/2-approximation of
|
| 153 |
+
the minimal Hamiltonian cycle.
|
| 154 |
+
|
| 155 |
+
References
|
| 156 |
+
----------
|
| 157 |
+
.. [1] Christofides, Nicos. "Worst-case analysis of a new heuristic for
|
| 158 |
+
the travelling salesman problem." No. RR-388. Carnegie-Mellon Univ
|
| 159 |
+
Pittsburgh Pa Management Sciences Research Group, 1976.
|
| 160 |
+
"""
|
| 161 |
+
# Remove selfloops if necessary
|
| 162 |
+
loop_nodes = nx.nodes_with_selfloops(G)
|
| 163 |
+
try:
|
| 164 |
+
node = next(loop_nodes)
|
| 165 |
+
except StopIteration:
|
| 166 |
+
pass
|
| 167 |
+
else:
|
| 168 |
+
G = G.copy()
|
| 169 |
+
G.remove_edge(node, node)
|
| 170 |
+
G.remove_edges_from((n, n) for n in loop_nodes)
|
| 171 |
+
# Check that G is a complete graph
|
| 172 |
+
N = len(G) - 1
|
| 173 |
+
# This check ignores selfloops which is what we want here.
|
| 174 |
+
if any(len(nbrdict) != N for n, nbrdict in G.adj.items()):
|
| 175 |
+
raise nx.NetworkXError("G must be a complete graph.")
|
| 176 |
+
|
| 177 |
+
if tree is None:
|
| 178 |
+
tree = nx.minimum_spanning_tree(G, weight=weight)
|
| 179 |
+
L = G.copy()
|
| 180 |
+
L.remove_nodes_from([v for v, degree in tree.degree if not (degree % 2)])
|
| 181 |
+
MG = nx.MultiGraph()
|
| 182 |
+
MG.add_edges_from(tree.edges)
|
| 183 |
+
edges = nx.min_weight_matching(L, weight=weight)
|
| 184 |
+
MG.add_edges_from(edges)
|
| 185 |
+
return _shortcutting(nx.eulerian_circuit(MG))
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _shortcutting(circuit):
|
| 189 |
+
"""Remove duplicate nodes in the path"""
|
| 190 |
+
nodes = []
|
| 191 |
+
for u, v in circuit:
|
| 192 |
+
if v in nodes:
|
| 193 |
+
continue
|
| 194 |
+
if not nodes:
|
| 195 |
+
nodes.append(u)
|
| 196 |
+
nodes.append(v)
|
| 197 |
+
nodes.append(nodes[0])
|
| 198 |
+
return nodes
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 202 |
+
def traveling_salesman_problem(
|
| 203 |
+
G, weight="weight", nodes=None, cycle=True, method=None, **kwargs
|
| 204 |
+
):
|
| 205 |
+
"""Find the shortest path in `G` connecting specified nodes
|
| 206 |
+
|
| 207 |
+
This function allows approximate solution to the traveling salesman
|
| 208 |
+
problem on networks that are not complete graphs and/or where the
|
| 209 |
+
salesman does not need to visit all nodes.
|
| 210 |
+
|
| 211 |
+
This function proceeds in two steps. First, it creates a complete
|
| 212 |
+
graph using the all-pairs shortest_paths between nodes in `nodes`.
|
| 213 |
+
Edge weights in the new graph are the lengths of the paths
|
| 214 |
+
between each pair of nodes in the original graph.
|
| 215 |
+
Second, an algorithm (default: `christofides` for undirected and
|
| 216 |
+
`asadpour_atsp` for directed) is used to approximate the minimal Hamiltonian
|
| 217 |
+
cycle on this new graph. The available algorithms are:
|
| 218 |
+
|
| 219 |
+
- christofides
|
| 220 |
+
- greedy_tsp
|
| 221 |
+
- simulated_annealing_tsp
|
| 222 |
+
- threshold_accepting_tsp
|
| 223 |
+
- asadpour_atsp
|
| 224 |
+
|
| 225 |
+
Once the Hamiltonian Cycle is found, this function post-processes to
|
| 226 |
+
accommodate the structure of the original graph. If `cycle` is ``False``,
|
| 227 |
+
the biggest weight edge is removed to make a Hamiltonian path.
|
| 228 |
+
Then each edge on the new complete graph used for that analysis is
|
| 229 |
+
replaced by the shortest_path between those nodes on the original graph.
|
| 230 |
+
If the input graph `G` includes edges with weights that do not adhere to
|
| 231 |
+
the triangle inequality, such as when `G` is not a complete graph (i.e
|
| 232 |
+
length of non-existent edges is infinity), then the returned path may
|
| 233 |
+
contain some repeating nodes (other than the starting node).
|
| 234 |
+
|
| 235 |
+
Parameters
|
| 236 |
+
----------
|
| 237 |
+
G : NetworkX graph
|
| 238 |
+
A possibly weighted graph
|
| 239 |
+
|
| 240 |
+
nodes : collection of nodes (default=G.nodes)
|
| 241 |
+
collection (list, set, etc.) of nodes to visit
|
| 242 |
+
|
| 243 |
+
weight : string, optional (default="weight")
|
| 244 |
+
Edge data key corresponding to the edge weight.
|
| 245 |
+
If any edge does not have this attribute the weight is set to 1.
|
| 246 |
+
|
| 247 |
+
cycle : bool (default: True)
|
| 248 |
+
Indicates whether a cycle should be returned, or a path.
|
| 249 |
+
Note: the cycle is the approximate minimal cycle.
|
| 250 |
+
The path simply removes the biggest edge in that cycle.
|
| 251 |
+
|
| 252 |
+
method : function (default: None)
|
| 253 |
+
A function that returns a cycle on all nodes and approximates
|
| 254 |
+
the solution to the traveling salesman problem on a complete
|
| 255 |
+
graph. The returned cycle is then used to find a corresponding
|
| 256 |
+
solution on `G`. `method` should be callable; take inputs
|
| 257 |
+
`G`, and `weight`; and return a list of nodes along the cycle.
|
| 258 |
+
|
| 259 |
+
Provided options include :func:`christofides`, :func:`greedy_tsp`,
|
| 260 |
+
:func:`simulated_annealing_tsp` and :func:`threshold_accepting_tsp`.
|
| 261 |
+
|
| 262 |
+
If `method is None`: use :func:`christofides` for undirected `G` and
|
| 263 |
+
:func:`asadpour_atsp` for directed `G`.
|
| 264 |
+
|
| 265 |
+
**kwargs : dict
|
| 266 |
+
Other keyword arguments to be passed to the `method` function passed in.
|
| 267 |
+
|
| 268 |
+
Returns
|
| 269 |
+
-------
|
| 270 |
+
list
|
| 271 |
+
List of nodes in `G` along a path with an approximation of the minimal
|
| 272 |
+
path through `nodes`.
|
| 273 |
+
|
| 274 |
+
Raises
|
| 275 |
+
------
|
| 276 |
+
NetworkXError
|
| 277 |
+
If `G` is a directed graph it has to be strongly connected or the
|
| 278 |
+
complete version cannot be generated.
|
| 279 |
+
|
| 280 |
+
Examples
|
| 281 |
+
--------
|
| 282 |
+
>>> tsp = nx.approximation.traveling_salesman_problem
|
| 283 |
+
>>> G = nx.cycle_graph(9)
|
| 284 |
+
>>> G[4][5]["weight"] = 5 # all other weights are 1
|
| 285 |
+
>>> tsp(G, nodes=[3, 6])
|
| 286 |
+
[3, 2, 1, 0, 8, 7, 6, 7, 8, 0, 1, 2, 3]
|
| 287 |
+
>>> path = tsp(G, cycle=False)
|
| 288 |
+
>>> path in ([4, 3, 2, 1, 0, 8, 7, 6, 5], [5, 6, 7, 8, 0, 1, 2, 3, 4])
|
| 289 |
+
True
|
| 290 |
+
|
| 291 |
+
While no longer required, you can still build (curry) your own function
|
| 292 |
+
to provide parameter values to the methods.
|
| 293 |
+
|
| 294 |
+
>>> SA_tsp = nx.approximation.simulated_annealing_tsp
|
| 295 |
+
>>> method = lambda G, weight: SA_tsp(G, "greedy", weight=weight, temp=500)
|
| 296 |
+
>>> path = tsp(G, cycle=False, method=method)
|
| 297 |
+
>>> path in ([4, 3, 2, 1, 0, 8, 7, 6, 5], [5, 6, 7, 8, 0, 1, 2, 3, 4])
|
| 298 |
+
True
|
| 299 |
+
|
| 300 |
+
Otherwise, pass other keyword arguments directly into the tsp function.
|
| 301 |
+
|
| 302 |
+
>>> path = tsp(
|
| 303 |
+
... G,
|
| 304 |
+
... cycle=False,
|
| 305 |
+
... method=nx.approximation.simulated_annealing_tsp,
|
| 306 |
+
... init_cycle="greedy",
|
| 307 |
+
... temp=500,
|
| 308 |
+
... )
|
| 309 |
+
>>> path in ([4, 3, 2, 1, 0, 8, 7, 6, 5], [5, 6, 7, 8, 0, 1, 2, 3, 4])
|
| 310 |
+
True
|
| 311 |
+
"""
|
| 312 |
+
if method is None:
|
| 313 |
+
if G.is_directed():
|
| 314 |
+
method = asadpour_atsp
|
| 315 |
+
else:
|
| 316 |
+
method = christofides
|
| 317 |
+
if nodes is None:
|
| 318 |
+
nodes = list(G.nodes)
|
| 319 |
+
|
| 320 |
+
dist = {}
|
| 321 |
+
path = {}
|
| 322 |
+
for n, (d, p) in nx.all_pairs_dijkstra(G, weight=weight):
|
| 323 |
+
dist[n] = d
|
| 324 |
+
path[n] = p
|
| 325 |
+
|
| 326 |
+
if G.is_directed():
|
| 327 |
+
# If the graph is not strongly connected, raise an exception
|
| 328 |
+
if not nx.is_strongly_connected(G):
|
| 329 |
+
raise nx.NetworkXError("G is not strongly connected")
|
| 330 |
+
GG = nx.DiGraph()
|
| 331 |
+
else:
|
| 332 |
+
GG = nx.Graph()
|
| 333 |
+
for u in nodes:
|
| 334 |
+
for v in nodes:
|
| 335 |
+
if u == v:
|
| 336 |
+
continue
|
| 337 |
+
GG.add_edge(u, v, weight=dist[u][v])
|
| 338 |
+
|
| 339 |
+
best_GG = method(GG, weight=weight, **kwargs)
|
| 340 |
+
|
| 341 |
+
if not cycle:
|
| 342 |
+
# find and remove the biggest edge
|
| 343 |
+
(u, v) = max(pairwise(best_GG), key=lambda x: dist[x[0]][x[1]])
|
| 344 |
+
pos = best_GG.index(u) + 1
|
| 345 |
+
while best_GG[pos] != v:
|
| 346 |
+
pos = best_GG[pos:].index(u) + 1
|
| 347 |
+
best_GG = best_GG[pos:-1] + best_GG[:pos]
|
| 348 |
+
|
| 349 |
+
best_path = []
|
| 350 |
+
for u, v in pairwise(best_GG):
|
| 351 |
+
best_path.extend(path[u][v][:-1])
|
| 352 |
+
best_path.append(v)
|
| 353 |
+
return best_path
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
@not_implemented_for("undirected")
|
| 357 |
+
@py_random_state(2)
|
| 358 |
+
@nx._dispatchable(edge_attrs="weight", mutates_input=True)
|
| 359 |
+
def asadpour_atsp(G, weight="weight", seed=None, source=None):
|
| 360 |
+
"""
|
| 361 |
+
Returns an approximate solution to the traveling salesman problem.
|
| 362 |
+
|
| 363 |
+
This approximate solution is one of the best known approximations for the
|
| 364 |
+
asymmetric traveling salesman problem developed by Asadpour et al,
|
| 365 |
+
[1]_. The algorithm first solves the Held-Karp relaxation to find a lower
|
| 366 |
+
bound for the weight of the cycle. Next, it constructs an exponential
|
| 367 |
+
distribution of undirected spanning trees where the probability of an
|
| 368 |
+
edge being in the tree corresponds to the weight of that edge using a
|
| 369 |
+
maximum entropy rounding scheme. Next we sample that distribution
|
| 370 |
+
$2 \\lceil \\ln n \\rceil$ times and save the minimum sampled tree once the
|
| 371 |
+
direction of the arcs is added back to the edges. Finally, we augment
|
| 372 |
+
then short circuit that graph to find the approximate tour for the
|
| 373 |
+
salesman.
|
| 374 |
+
|
| 375 |
+
Parameters
|
| 376 |
+
----------
|
| 377 |
+
G : nx.DiGraph
|
| 378 |
+
The graph should be a complete weighted directed graph. The
|
| 379 |
+
distance between all paris of nodes should be included and the triangle
|
| 380 |
+
inequality should hold. That is, the direct edge between any two nodes
|
| 381 |
+
should be the path of least cost.
|
| 382 |
+
|
| 383 |
+
weight : string, optional (default="weight")
|
| 384 |
+
Edge data key corresponding to the edge weight.
|
| 385 |
+
If any edge does not have this attribute the weight is set to 1.
|
| 386 |
+
|
| 387 |
+
seed : integer, random_state, or None (default)
|
| 388 |
+
Indicator of random number generation state.
|
| 389 |
+
See :ref:`Randomness<randomness>`.
|
| 390 |
+
|
| 391 |
+
source : node label (default=`None`)
|
| 392 |
+
If given, return the cycle starting and ending at the given node.
|
| 393 |
+
|
| 394 |
+
Returns
|
| 395 |
+
-------
|
| 396 |
+
cycle : list of nodes
|
| 397 |
+
Returns the cycle (list of nodes) that a salesman can follow to minimize
|
| 398 |
+
the total weight of the trip.
|
| 399 |
+
|
| 400 |
+
Raises
|
| 401 |
+
------
|
| 402 |
+
NetworkXError
|
| 403 |
+
If `G` is not complete or has less than two nodes, the algorithm raises
|
| 404 |
+
an exception.
|
| 405 |
+
|
| 406 |
+
NetworkXError
|
| 407 |
+
If `source` is not `None` and is not a node in `G`, the algorithm raises
|
| 408 |
+
an exception.
|
| 409 |
+
|
| 410 |
+
NetworkXNotImplemented
|
| 411 |
+
If `G` is an undirected graph.
|
| 412 |
+
|
| 413 |
+
References
|
| 414 |
+
----------
|
| 415 |
+
.. [1] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi,
|
| 416 |
+
An o(log n/log log n)-approximation algorithm for the asymmetric
|
| 417 |
+
traveling salesman problem, Operations research, 65 (2017),
|
| 418 |
+
pp. 1043–1061
|
| 419 |
+
|
| 420 |
+
Examples
|
| 421 |
+
--------
|
| 422 |
+
>>> import networkx as nx
|
| 423 |
+
>>> import networkx.algorithms.approximation as approx
|
| 424 |
+
>>> G = nx.complete_graph(3, create_using=nx.DiGraph)
|
| 425 |
+
>>> nx.set_edge_attributes(
|
| 426 |
+
... G,
|
| 427 |
+
... {(0, 1): 2, (1, 2): 2, (2, 0): 2, (0, 2): 1, (2, 1): 1, (1, 0): 1},
|
| 428 |
+
... "weight",
|
| 429 |
+
... )
|
| 430 |
+
>>> tour = approx.asadpour_atsp(G, source=0)
|
| 431 |
+
>>> tour
|
| 432 |
+
[0, 2, 1, 0]
|
| 433 |
+
"""
|
| 434 |
+
from math import ceil, exp
|
| 435 |
+
from math import log as ln
|
| 436 |
+
|
| 437 |
+
# Check that G is a complete graph
|
| 438 |
+
N = len(G) - 1
|
| 439 |
+
if N < 2:
|
| 440 |
+
raise nx.NetworkXError("G must have at least two nodes")
|
| 441 |
+
# This check ignores selfloops which is what we want here.
|
| 442 |
+
if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()):
|
| 443 |
+
raise nx.NetworkXError("G is not a complete DiGraph")
|
| 444 |
+
# Check that the source vertex, if given, is in the graph
|
| 445 |
+
if source is not None and source not in G.nodes:
|
| 446 |
+
raise nx.NetworkXError("Given source node not in G.")
|
| 447 |
+
|
| 448 |
+
opt_hk, z_star = held_karp_ascent(G, weight)
|
| 449 |
+
|
| 450 |
+
# Test to see if the ascent method found an integer solution or a fractional
|
| 451 |
+
# solution. If it is integral then z_star is a nx.Graph, otherwise it is
|
| 452 |
+
# a dict
|
| 453 |
+
if not isinstance(z_star, dict):
|
| 454 |
+
# Here we are using the shortcutting method to go from the list of edges
|
| 455 |
+
# returned from eulerian_circuit to a list of nodes
|
| 456 |
+
return _shortcutting(nx.eulerian_circuit(z_star, source=source))
|
| 457 |
+
|
| 458 |
+
# Create the undirected support of z_star
|
| 459 |
+
z_support = nx.MultiGraph()
|
| 460 |
+
for u, v in z_star:
|
| 461 |
+
if (u, v) not in z_support.edges:
|
| 462 |
+
edge_weight = min(G[u][v][weight], G[v][u][weight])
|
| 463 |
+
z_support.add_edge(u, v, **{weight: edge_weight})
|
| 464 |
+
|
| 465 |
+
# Create the exponential distribution of spanning trees
|
| 466 |
+
gamma = spanning_tree_distribution(z_support, z_star)
|
| 467 |
+
|
| 468 |
+
# Write the lambda values to the edges of z_support
|
| 469 |
+
z_support = nx.Graph(z_support)
|
| 470 |
+
lambda_dict = {(u, v): exp(gamma[(u, v)]) for u, v in z_support.edges()}
|
| 471 |
+
nx.set_edge_attributes(z_support, lambda_dict, "weight")
|
| 472 |
+
del gamma, lambda_dict
|
| 473 |
+
|
| 474 |
+
# Sample 2 * ceil( ln(n) ) spanning trees and record the minimum one
|
| 475 |
+
minimum_sampled_tree = None
|
| 476 |
+
minimum_sampled_tree_weight = math.inf
|
| 477 |
+
for _ in range(2 * ceil(ln(G.number_of_nodes()))):
|
| 478 |
+
sampled_tree = random_spanning_tree(z_support, "weight", seed=seed)
|
| 479 |
+
sampled_tree_weight = sampled_tree.size(weight)
|
| 480 |
+
if sampled_tree_weight < minimum_sampled_tree_weight:
|
| 481 |
+
minimum_sampled_tree = sampled_tree.copy()
|
| 482 |
+
minimum_sampled_tree_weight = sampled_tree_weight
|
| 483 |
+
|
| 484 |
+
# Orient the edges in that tree to keep the cost of the tree the same.
|
| 485 |
+
t_star = nx.MultiDiGraph()
|
| 486 |
+
for u, v, d in minimum_sampled_tree.edges(data=weight):
|
| 487 |
+
if d == G[u][v][weight]:
|
| 488 |
+
t_star.add_edge(u, v, **{weight: d})
|
| 489 |
+
else:
|
| 490 |
+
t_star.add_edge(v, u, **{weight: d})
|
| 491 |
+
|
| 492 |
+
# Find the node demands needed to neutralize the flow of t_star in G
|
| 493 |
+
node_demands = {n: t_star.out_degree(n) - t_star.in_degree(n) for n in t_star}
|
| 494 |
+
nx.set_node_attributes(G, node_demands, "demand")
|
| 495 |
+
|
| 496 |
+
# Find the min_cost_flow
|
| 497 |
+
flow_dict = nx.min_cost_flow(G, "demand")
|
| 498 |
+
|
| 499 |
+
# Build the flow into t_star
|
| 500 |
+
for source, values in flow_dict.items():
|
| 501 |
+
for target in values:
|
| 502 |
+
if (source, target) not in t_star.edges and values[target] > 0:
|
| 503 |
+
# IF values[target] > 0 we have to add that many edges
|
| 504 |
+
for _ in range(values[target]):
|
| 505 |
+
t_star.add_edge(source, target)
|
| 506 |
+
|
| 507 |
+
# Return the shortcut eulerian circuit
|
| 508 |
+
circuit = nx.eulerian_circuit(t_star, source=source)
|
| 509 |
+
return _shortcutting(circuit)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
@nx._dispatchable(edge_attrs="weight", mutates_input=True, returns_graph=True)
|
| 513 |
+
def held_karp_ascent(G, weight="weight"):
|
| 514 |
+
"""
|
| 515 |
+
Minimizes the Held-Karp relaxation of the TSP for `G`
|
| 516 |
+
|
| 517 |
+
Solves the Held-Karp relaxation of the input complete digraph and scales
|
| 518 |
+
the output solution for use in the Asadpour [1]_ ASTP algorithm.
|
| 519 |
+
|
| 520 |
+
The Held-Karp relaxation defines the lower bound for solutions to the
|
| 521 |
+
ATSP, although it does return a fractional solution. This is used in the
|
| 522 |
+
Asadpour algorithm as an initial solution which is later rounded to a
|
| 523 |
+
integral tree within the spanning tree polytopes. This function solves
|
| 524 |
+
the relaxation with the branch and bound method in [2]_.
|
| 525 |
+
|
| 526 |
+
Parameters
|
| 527 |
+
----------
|
| 528 |
+
G : nx.DiGraph
|
| 529 |
+
The graph should be a complete weighted directed graph.
|
| 530 |
+
The distance between all paris of nodes should be included.
|
| 531 |
+
|
| 532 |
+
weight : string, optional (default="weight")
|
| 533 |
+
Edge data key corresponding to the edge weight.
|
| 534 |
+
If any edge does not have this attribute the weight is set to 1.
|
| 535 |
+
|
| 536 |
+
Returns
|
| 537 |
+
-------
|
| 538 |
+
OPT : float
|
| 539 |
+
The cost for the optimal solution to the Held-Karp relaxation
|
| 540 |
+
z : dict or nx.Graph
|
| 541 |
+
A symmetrized and scaled version of the optimal solution to the
|
| 542 |
+
Held-Karp relaxation for use in the Asadpour algorithm.
|
| 543 |
+
|
| 544 |
+
If an integral solution is found, then that is an optimal solution for
|
| 545 |
+
the ATSP problem and that is returned instead.
|
| 546 |
+
|
| 547 |
+
References
|
| 548 |
+
----------
|
| 549 |
+
.. [1] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi,
|
| 550 |
+
An o(log n/log log n)-approximation algorithm for the asymmetric
|
| 551 |
+
traveling salesman problem, Operations research, 65 (2017),
|
| 552 |
+
pp. 1043–1061
|
| 553 |
+
|
| 554 |
+
.. [2] M. Held, R. M. Karp, The traveling-salesman problem and minimum
|
| 555 |
+
spanning trees, Operations Research, 1970-11-01, Vol. 18 (6),
|
| 556 |
+
pp.1138-1162
|
| 557 |
+
"""
|
| 558 |
+
import numpy as np
|
| 559 |
+
from scipy import optimize
|
| 560 |
+
|
| 561 |
+
def k_pi():
|
| 562 |
+
"""
|
| 563 |
+
Find the set of minimum 1-Arborescences for G at point pi.
|
| 564 |
+
|
| 565 |
+
Returns
|
| 566 |
+
-------
|
| 567 |
+
Set
|
| 568 |
+
The set of minimum 1-Arborescences
|
| 569 |
+
"""
|
| 570 |
+
# Create a copy of G without vertex 1.
|
| 571 |
+
G_1 = G.copy()
|
| 572 |
+
minimum_1_arborescences = set()
|
| 573 |
+
minimum_1_arborescence_weight = math.inf
|
| 574 |
+
|
| 575 |
+
# node is node '1' in the Held and Karp paper
|
| 576 |
+
n = next(G.__iter__())
|
| 577 |
+
G_1.remove_node(n)
|
| 578 |
+
|
| 579 |
+
# Iterate over the spanning arborescences of the graph until we know
|
| 580 |
+
# that we have found the minimum 1-arborescences. My proposed strategy
|
| 581 |
+
# is to find the most extensive root to connect to from 'node 1' and
|
| 582 |
+
# the least expensive one. We then iterate over arborescences until
|
| 583 |
+
# the cost of the basic arborescence is the cost of the minimum one
|
| 584 |
+
# plus the difference between the most and least expensive roots,
|
| 585 |
+
# that way the cost of connecting 'node 1' will by definition not by
|
| 586 |
+
# minimum
|
| 587 |
+
min_root = {"node": None, weight: math.inf}
|
| 588 |
+
max_root = {"node": None, weight: -math.inf}
|
| 589 |
+
for u, v, d in G.edges(n, data=True):
|
| 590 |
+
if d[weight] < min_root[weight]:
|
| 591 |
+
min_root = {"node": v, weight: d[weight]}
|
| 592 |
+
if d[weight] > max_root[weight]:
|
| 593 |
+
max_root = {"node": v, weight: d[weight]}
|
| 594 |
+
|
| 595 |
+
min_in_edge = min(G.in_edges(n, data=True), key=lambda x: x[2][weight])
|
| 596 |
+
min_root[weight] = min_root[weight] + min_in_edge[2][weight]
|
| 597 |
+
max_root[weight] = max_root[weight] + min_in_edge[2][weight]
|
| 598 |
+
|
| 599 |
+
min_arb_weight = math.inf
|
| 600 |
+
for arb in nx.ArborescenceIterator(G_1):
|
| 601 |
+
arb_weight = arb.size(weight)
|
| 602 |
+
if min_arb_weight == math.inf:
|
| 603 |
+
min_arb_weight = arb_weight
|
| 604 |
+
elif arb_weight > min_arb_weight + max_root[weight] - min_root[weight]:
|
| 605 |
+
break
|
| 606 |
+
# We have to pick the root node of the arborescence for the out
|
| 607 |
+
# edge of the first vertex as that is the only node without an
|
| 608 |
+
# edge directed into it.
|
| 609 |
+
for N, deg in arb.in_degree:
|
| 610 |
+
if deg == 0:
|
| 611 |
+
# root found
|
| 612 |
+
arb.add_edge(n, N, **{weight: G[n][N][weight]})
|
| 613 |
+
arb_weight += G[n][N][weight]
|
| 614 |
+
break
|
| 615 |
+
|
| 616 |
+
# We can pick the minimum weight in-edge for the vertex with
|
| 617 |
+
# a cycle. If there are multiple edges with the same, minimum
|
| 618 |
+
# weight, We need to add all of them.
|
| 619 |
+
#
|
| 620 |
+
# Delete the edge (N, v) so that we cannot pick it.
|
| 621 |
+
edge_data = G[N][n]
|
| 622 |
+
G.remove_edge(N, n)
|
| 623 |
+
min_weight = min(G.in_edges(n, data=weight), key=lambda x: x[2])[2]
|
| 624 |
+
min_edges = [
|
| 625 |
+
(u, v, d) for u, v, d in G.in_edges(n, data=weight) if d == min_weight
|
| 626 |
+
]
|
| 627 |
+
for u, v, d in min_edges:
|
| 628 |
+
new_arb = arb.copy()
|
| 629 |
+
new_arb.add_edge(u, v, **{weight: d})
|
| 630 |
+
new_arb_weight = arb_weight + d
|
| 631 |
+
# Check to see the weight of the arborescence, if it is a
|
| 632 |
+
# new minimum, clear all of the old potential minimum
|
| 633 |
+
# 1-arborescences and add this is the only one. If its
|
| 634 |
+
# weight is above the known minimum, do not add it.
|
| 635 |
+
if new_arb_weight < minimum_1_arborescence_weight:
|
| 636 |
+
minimum_1_arborescences.clear()
|
| 637 |
+
minimum_1_arborescence_weight = new_arb_weight
|
| 638 |
+
# We have a 1-arborescence, add it to the set
|
| 639 |
+
if new_arb_weight == minimum_1_arborescence_weight:
|
| 640 |
+
minimum_1_arborescences.add(new_arb)
|
| 641 |
+
G.add_edge(N, n, **edge_data)
|
| 642 |
+
|
| 643 |
+
return minimum_1_arborescences
|
| 644 |
+
|
| 645 |
+
def direction_of_ascent():
|
| 646 |
+
"""
|
| 647 |
+
Find the direction of ascent at point pi.
|
| 648 |
+
|
| 649 |
+
See [1]_ for more information.
|
| 650 |
+
|
| 651 |
+
Returns
|
| 652 |
+
-------
|
| 653 |
+
dict
|
| 654 |
+
A mapping from the nodes of the graph which represents the direction
|
| 655 |
+
of ascent.
|
| 656 |
+
|
| 657 |
+
References
|
| 658 |
+
----------
|
| 659 |
+
.. [1] M. Held, R. M. Karp, The traveling-salesman problem and minimum
|
| 660 |
+
spanning trees, Operations Research, 1970-11-01, Vol. 18 (6),
|
| 661 |
+
pp.1138-1162
|
| 662 |
+
"""
|
| 663 |
+
# 1. Set d equal to the zero n-vector.
|
| 664 |
+
d = {}
|
| 665 |
+
for n in G:
|
| 666 |
+
d[n] = 0
|
| 667 |
+
del n
|
| 668 |
+
# 2. Find a 1-Arborescence T^k such that k is in K(pi, d).
|
| 669 |
+
minimum_1_arborescences = k_pi()
|
| 670 |
+
while True:
|
| 671 |
+
# Reduce K(pi) to K(pi, d)
|
| 672 |
+
# Find the arborescence in K(pi) which increases the lest in
|
| 673 |
+
# direction d
|
| 674 |
+
min_k_d_weight = math.inf
|
| 675 |
+
min_k_d = None
|
| 676 |
+
for arborescence in minimum_1_arborescences:
|
| 677 |
+
weighted_cost = 0
|
| 678 |
+
for n, deg in arborescence.degree:
|
| 679 |
+
weighted_cost += d[n] * (deg - 2)
|
| 680 |
+
if weighted_cost < min_k_d_weight:
|
| 681 |
+
min_k_d_weight = weighted_cost
|
| 682 |
+
min_k_d = arborescence
|
| 683 |
+
|
| 684 |
+
# 3. If sum of d_i * v_{i, k} is greater than zero, terminate
|
| 685 |
+
if min_k_d_weight > 0:
|
| 686 |
+
return d, min_k_d
|
| 687 |
+
# 4. d_i = d_i + v_{i, k}
|
| 688 |
+
for n, deg in min_k_d.degree:
|
| 689 |
+
d[n] += deg - 2
|
| 690 |
+
# Check that we do not need to terminate because the direction
|
| 691 |
+
# of ascent does not exist. This is done with linear
|
| 692 |
+
# programming.
|
| 693 |
+
c = np.full(len(minimum_1_arborescences), -1, dtype=int)
|
| 694 |
+
a_eq = np.empty((len(G) + 1, len(minimum_1_arborescences)), dtype=int)
|
| 695 |
+
b_eq = np.zeros(len(G) + 1, dtype=int)
|
| 696 |
+
b_eq[len(G)] = 1
|
| 697 |
+
for arb_count, arborescence in enumerate(minimum_1_arborescences):
|
| 698 |
+
n_count = len(G) - 1
|
| 699 |
+
for n, deg in arborescence.degree:
|
| 700 |
+
a_eq[n_count][arb_count] = deg - 2
|
| 701 |
+
n_count -= 1
|
| 702 |
+
a_eq[len(G)][arb_count] = 1
|
| 703 |
+
program_result = optimize.linprog(
|
| 704 |
+
c, A_eq=a_eq, b_eq=b_eq, method="highs-ipm"
|
| 705 |
+
)
|
| 706 |
+
# If the constants exist, then the direction of ascent doesn't
|
| 707 |
+
if program_result.success:
|
| 708 |
+
# There is no direction of ascent
|
| 709 |
+
return None, minimum_1_arborescences
|
| 710 |
+
|
| 711 |
+
# 5. GO TO 2
|
| 712 |
+
|
| 713 |
+
def find_epsilon(k, d):
|
| 714 |
+
"""
|
| 715 |
+
Given the direction of ascent at pi, find the maximum distance we can go
|
| 716 |
+
in that direction.
|
| 717 |
+
|
| 718 |
+
Parameters
|
| 719 |
+
----------
|
| 720 |
+
k_xy : set
|
| 721 |
+
The set of 1-arborescences which have the minimum rate of increase
|
| 722 |
+
in the direction of ascent
|
| 723 |
+
|
| 724 |
+
d : dict
|
| 725 |
+
The direction of ascent
|
| 726 |
+
|
| 727 |
+
Returns
|
| 728 |
+
-------
|
| 729 |
+
float
|
| 730 |
+
The distance we can travel in direction `d`
|
| 731 |
+
"""
|
| 732 |
+
min_epsilon = math.inf
|
| 733 |
+
for e_u, e_v, e_w in G.edges(data=weight):
|
| 734 |
+
if (e_u, e_v) in k.edges:
|
| 735 |
+
continue
|
| 736 |
+
# Now, I have found a condition which MUST be true for the edges to
|
| 737 |
+
# be a valid substitute. The edge in the graph which is the
|
| 738 |
+
# substitute is the one with the same terminated end. This can be
|
| 739 |
+
# checked rather simply.
|
| 740 |
+
#
|
| 741 |
+
# Find the edge within k which is the substitute. Because k is a
|
| 742 |
+
# 1-arborescence, we know that they is only one such edges
|
| 743 |
+
# leading into every vertex.
|
| 744 |
+
if len(k.in_edges(e_v, data=weight)) > 1:
|
| 745 |
+
raise Exception
|
| 746 |
+
sub_u, sub_v, sub_w = next(k.in_edges(e_v, data=weight).__iter__())
|
| 747 |
+
k.add_edge(e_u, e_v, **{weight: e_w})
|
| 748 |
+
k.remove_edge(sub_u, sub_v)
|
| 749 |
+
if (
|
| 750 |
+
max(d for n, d in k.in_degree()) <= 1
|
| 751 |
+
and len(G) == k.number_of_edges()
|
| 752 |
+
and nx.is_weakly_connected(k)
|
| 753 |
+
):
|
| 754 |
+
# Ascent method calculation
|
| 755 |
+
if d[sub_u] == d[e_u] or sub_w == e_w:
|
| 756 |
+
# Revert to the original graph
|
| 757 |
+
k.remove_edge(e_u, e_v)
|
| 758 |
+
k.add_edge(sub_u, sub_v, **{weight: sub_w})
|
| 759 |
+
continue
|
| 760 |
+
epsilon = (sub_w - e_w) / (d[e_u] - d[sub_u])
|
| 761 |
+
if 0 < epsilon < min_epsilon:
|
| 762 |
+
min_epsilon = epsilon
|
| 763 |
+
# Revert to the original graph
|
| 764 |
+
k.remove_edge(e_u, e_v)
|
| 765 |
+
k.add_edge(sub_u, sub_v, **{weight: sub_w})
|
| 766 |
+
|
| 767 |
+
return min_epsilon
|
| 768 |
+
|
| 769 |
+
# I have to know that the elements in pi correspond to the correct elements
|
| 770 |
+
# in the direction of ascent, even if the node labels are not integers.
|
| 771 |
+
# Thus, I will use dictionaries to made that mapping.
|
| 772 |
+
pi_dict = {}
|
| 773 |
+
for n in G:
|
| 774 |
+
pi_dict[n] = 0
|
| 775 |
+
del n
|
| 776 |
+
original_edge_weights = {}
|
| 777 |
+
for u, v, d in G.edges(data=True):
|
| 778 |
+
original_edge_weights[(u, v)] = d[weight]
|
| 779 |
+
dir_ascent, k_d = direction_of_ascent()
|
| 780 |
+
while dir_ascent is not None:
|
| 781 |
+
max_distance = find_epsilon(k_d, dir_ascent)
|
| 782 |
+
for n, v in dir_ascent.items():
|
| 783 |
+
pi_dict[n] += max_distance * v
|
| 784 |
+
for u, v, d in G.edges(data=True):
|
| 785 |
+
d[weight] = original_edge_weights[(u, v)] + pi_dict[u]
|
| 786 |
+
dir_ascent, k_d = direction_of_ascent()
|
| 787 |
+
nx._clear_cache(G)
|
| 788 |
+
# k_d is no longer an individual 1-arborescence but rather a set of
|
| 789 |
+
# minimal 1-arborescences at the maximum point of the polytope and should
|
| 790 |
+
# be reflected as such
|
| 791 |
+
k_max = k_d
|
| 792 |
+
|
| 793 |
+
# Search for a cycle within k_max. If a cycle exists, return it as the
|
| 794 |
+
# solution
|
| 795 |
+
for k in k_max:
|
| 796 |
+
if len([n for n in k if k.degree(n) == 2]) == G.order():
|
| 797 |
+
# Tour found
|
| 798 |
+
# TODO: this branch does not restore original_edge_weights of G!
|
| 799 |
+
return k.size(weight), k
|
| 800 |
+
|
| 801 |
+
# Write the original edge weights back to G and every member of k_max at
|
| 802 |
+
# the maximum point. Also average the number of times that edge appears in
|
| 803 |
+
# the set of minimal 1-arborescences.
|
| 804 |
+
x_star = {}
|
| 805 |
+
size_k_max = len(k_max)
|
| 806 |
+
for u, v, d in G.edges(data=True):
|
| 807 |
+
edge_count = 0
|
| 808 |
+
d[weight] = original_edge_weights[(u, v)]
|
| 809 |
+
for k in k_max:
|
| 810 |
+
if (u, v) in k.edges():
|
| 811 |
+
edge_count += 1
|
| 812 |
+
k[u][v][weight] = original_edge_weights[(u, v)]
|
| 813 |
+
x_star[(u, v)] = edge_count / size_k_max
|
| 814 |
+
# Now symmetrize the edges in x_star and scale them according to (5) in
|
| 815 |
+
# reference [1]
|
| 816 |
+
z_star = {}
|
| 817 |
+
scale_factor = (G.order() - 1) / G.order()
|
| 818 |
+
for u, v in x_star:
|
| 819 |
+
frequency = x_star[(u, v)] + x_star[(v, u)]
|
| 820 |
+
if frequency > 0:
|
| 821 |
+
z_star[(u, v)] = scale_factor * frequency
|
| 822 |
+
del x_star
|
| 823 |
+
# Return the optimal weight and the z dict
|
| 824 |
+
return next(k_max.__iter__()).size(weight), z_star
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
@nx._dispatchable
|
| 828 |
+
def spanning_tree_distribution(G, z):
|
| 829 |
+
"""
|
| 830 |
+
Find the asadpour exponential distribution of spanning trees.
|
| 831 |
+
|
| 832 |
+
Solves the Maximum Entropy Convex Program in the Asadpour algorithm [1]_
|
| 833 |
+
using the approach in section 7 to build an exponential distribution of
|
| 834 |
+
undirected spanning trees.
|
| 835 |
+
|
| 836 |
+
This algorithm ensures that the probability of any edge in a spanning
|
| 837 |
+
tree is proportional to the sum of the probabilities of the tress
|
| 838 |
+
containing that edge over the sum of the probabilities of all spanning
|
| 839 |
+
trees of the graph.
|
| 840 |
+
|
| 841 |
+
Parameters
|
| 842 |
+
----------
|
| 843 |
+
G : nx.MultiGraph
|
| 844 |
+
The undirected support graph for the Held Karp relaxation
|
| 845 |
+
|
| 846 |
+
z : dict
|
| 847 |
+
The output of `held_karp_ascent()`, a scaled version of the Held-Karp
|
| 848 |
+
solution.
|
| 849 |
+
|
| 850 |
+
Returns
|
| 851 |
+
-------
|
| 852 |
+
gamma : dict
|
| 853 |
+
The probability distribution which approximately preserves the marginal
|
| 854 |
+
probabilities of `z`.
|
| 855 |
+
"""
|
| 856 |
+
from math import exp
|
| 857 |
+
from math import log as ln
|
| 858 |
+
|
| 859 |
+
def q(e):
|
| 860 |
+
"""
|
| 861 |
+
The value of q(e) is described in the Asadpour paper is "the
|
| 862 |
+
probability that edge e will be included in a spanning tree T that is
|
| 863 |
+
chosen with probability proportional to exp(gamma(T))" which
|
| 864 |
+
basically means that it is the total probability of the edge appearing
|
| 865 |
+
across the whole distribution.
|
| 866 |
+
|
| 867 |
+
Parameters
|
| 868 |
+
----------
|
| 869 |
+
e : tuple
|
| 870 |
+
The `(u, v)` tuple describing the edge we are interested in
|
| 871 |
+
|
| 872 |
+
Returns
|
| 873 |
+
-------
|
| 874 |
+
float
|
| 875 |
+
The probability that a spanning tree chosen according to the
|
| 876 |
+
current values of gamma will include edge `e`.
|
| 877 |
+
"""
|
| 878 |
+
# Create the laplacian matrices
|
| 879 |
+
for u, v, d in G.edges(data=True):
|
| 880 |
+
d[lambda_key] = exp(gamma[(u, v)])
|
| 881 |
+
G_Kirchhoff = nx.total_spanning_tree_weight(G, lambda_key)
|
| 882 |
+
G_e = nx.contracted_edge(G, e, self_loops=False)
|
| 883 |
+
G_e_Kirchhoff = nx.total_spanning_tree_weight(G_e, lambda_key)
|
| 884 |
+
|
| 885 |
+
# Multiply by the weight of the contracted edge since it is not included
|
| 886 |
+
# in the total weight of the contracted graph.
|
| 887 |
+
return exp(gamma[(e[0], e[1])]) * G_e_Kirchhoff / G_Kirchhoff
|
| 888 |
+
|
| 889 |
+
# initialize gamma to the zero dict
|
| 890 |
+
gamma = {}
|
| 891 |
+
for u, v, _ in G.edges:
|
| 892 |
+
gamma[(u, v)] = 0
|
| 893 |
+
|
| 894 |
+
# set epsilon
|
| 895 |
+
EPSILON = 0.2
|
| 896 |
+
|
| 897 |
+
# pick an edge attribute name that is unlikely to be in the graph
|
| 898 |
+
lambda_key = "spanning_tree_distribution's secret attribute name for lambda"
|
| 899 |
+
|
| 900 |
+
while True:
|
| 901 |
+
# We need to know that know that no values of q_e are greater than
|
| 902 |
+
# (1 + epsilon) * z_e, however changing one gamma value can increase the
|
| 903 |
+
# value of a different q_e, so we have to complete the for loop without
|
| 904 |
+
# changing anything for the condition to be meet
|
| 905 |
+
in_range_count = 0
|
| 906 |
+
# Search for an edge with q_e > (1 + epsilon) * z_e
|
| 907 |
+
for u, v in gamma:
|
| 908 |
+
e = (u, v)
|
| 909 |
+
q_e = q(e)
|
| 910 |
+
z_e = z[e]
|
| 911 |
+
if q_e > (1 + EPSILON) * z_e:
|
| 912 |
+
delta = ln(
|
| 913 |
+
(q_e * (1 - (1 + EPSILON / 2) * z_e))
|
| 914 |
+
/ ((1 - q_e) * (1 + EPSILON / 2) * z_e)
|
| 915 |
+
)
|
| 916 |
+
gamma[e] -= delta
|
| 917 |
+
# Check that delta had the desired effect
|
| 918 |
+
new_q_e = q(e)
|
| 919 |
+
desired_q_e = (1 + EPSILON / 2) * z_e
|
| 920 |
+
if round(new_q_e, 8) != round(desired_q_e, 8):
|
| 921 |
+
raise nx.NetworkXError(
|
| 922 |
+
f"Unable to modify probability for edge ({u}, {v})"
|
| 923 |
+
)
|
| 924 |
+
else:
|
| 925 |
+
in_range_count += 1
|
| 926 |
+
# Check if the for loop terminated without changing any gamma
|
| 927 |
+
if in_range_count == len(gamma):
|
| 928 |
+
break
|
| 929 |
+
|
| 930 |
+
# Remove the new edge attributes
|
| 931 |
+
for _, _, d in G.edges(data=True):
|
| 932 |
+
if lambda_key in d:
|
| 933 |
+
del d[lambda_key]
|
| 934 |
+
|
| 935 |
+
return gamma
|
| 936 |
+
|
| 937 |
+
|
| 938 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 939 |
+
def greedy_tsp(G, weight="weight", source=None):
|
| 940 |
+
"""Return a low cost cycle starting at `source` and its cost.
|
| 941 |
+
|
| 942 |
+
This approximates a solution to the traveling salesman problem.
|
| 943 |
+
It finds a cycle of all the nodes that a salesman can visit in order
|
| 944 |
+
to visit many nodes while minimizing total distance.
|
| 945 |
+
It uses a simple greedy algorithm.
|
| 946 |
+
In essence, this function returns a large cycle given a source point
|
| 947 |
+
for which the total cost of the cycle is minimized.
|
| 948 |
+
|
| 949 |
+
Parameters
|
| 950 |
+
----------
|
| 951 |
+
G : Graph
|
| 952 |
+
The Graph should be a complete weighted undirected graph.
|
| 953 |
+
The distance between all pairs of nodes should be included.
|
| 954 |
+
|
| 955 |
+
weight : string, optional (default="weight")
|
| 956 |
+
Edge data key corresponding to the edge weight.
|
| 957 |
+
If any edge does not have this attribute the weight is set to 1.
|
| 958 |
+
|
| 959 |
+
source : node, optional (default: first node in list(G))
|
| 960 |
+
Starting node. If None, defaults to ``next(iter(G))``
|
| 961 |
+
|
| 962 |
+
Returns
|
| 963 |
+
-------
|
| 964 |
+
cycle : list of nodes
|
| 965 |
+
Returns the cycle (list of nodes) that a salesman
|
| 966 |
+
can follow to minimize total weight of the trip.
|
| 967 |
+
|
| 968 |
+
Raises
|
| 969 |
+
------
|
| 970 |
+
NetworkXError
|
| 971 |
+
If `G` is not complete, the algorithm raises an exception.
|
| 972 |
+
|
| 973 |
+
Examples
|
| 974 |
+
--------
|
| 975 |
+
>>> from networkx.algorithms import approximation as approx
|
| 976 |
+
>>> G = nx.DiGraph()
|
| 977 |
+
>>> G.add_weighted_edges_from(
|
| 978 |
+
... {
|
| 979 |
+
... ("A", "B", 3),
|
| 980 |
+
... ("A", "C", 17),
|
| 981 |
+
... ("A", "D", 14),
|
| 982 |
+
... ("B", "A", 3),
|
| 983 |
+
... ("B", "C", 12),
|
| 984 |
+
... ("B", "D", 16),
|
| 985 |
+
... ("C", "A", 13),
|
| 986 |
+
... ("C", "B", 12),
|
| 987 |
+
... ("C", "D", 4),
|
| 988 |
+
... ("D", "A", 14),
|
| 989 |
+
... ("D", "B", 15),
|
| 990 |
+
... ("D", "C", 2),
|
| 991 |
+
... }
|
| 992 |
+
... )
|
| 993 |
+
>>> cycle = approx.greedy_tsp(G, source="D")
|
| 994 |
+
>>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle))
|
| 995 |
+
>>> cycle
|
| 996 |
+
['D', 'C', 'B', 'A', 'D']
|
| 997 |
+
>>> cost
|
| 998 |
+
31
|
| 999 |
+
|
| 1000 |
+
Notes
|
| 1001 |
+
-----
|
| 1002 |
+
This implementation of a greedy algorithm is based on the following:
|
| 1003 |
+
|
| 1004 |
+
- The algorithm adds a node to the solution at every iteration.
|
| 1005 |
+
- The algorithm selects a node not already in the cycle whose connection
|
| 1006 |
+
to the previous node adds the least cost to the cycle.
|
| 1007 |
+
|
| 1008 |
+
A greedy algorithm does not always give the best solution.
|
| 1009 |
+
However, it can construct a first feasible solution which can
|
| 1010 |
+
be passed as a parameter to an iterative improvement algorithm such
|
| 1011 |
+
as Simulated Annealing, or Threshold Accepting.
|
| 1012 |
+
|
| 1013 |
+
Time complexity: It has a running time $O(|V|^2)$
|
| 1014 |
+
"""
|
| 1015 |
+
# Check that G is a complete graph
|
| 1016 |
+
N = len(G) - 1
|
| 1017 |
+
# This check ignores selfloops which is what we want here.
|
| 1018 |
+
if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()):
|
| 1019 |
+
raise nx.NetworkXError("G must be a complete graph.")
|
| 1020 |
+
|
| 1021 |
+
if source is None:
|
| 1022 |
+
source = nx.utils.arbitrary_element(G)
|
| 1023 |
+
|
| 1024 |
+
if G.number_of_nodes() == 2:
|
| 1025 |
+
neighbor = next(G.neighbors(source))
|
| 1026 |
+
return [source, neighbor, source]
|
| 1027 |
+
|
| 1028 |
+
nodeset = set(G)
|
| 1029 |
+
nodeset.remove(source)
|
| 1030 |
+
cycle = [source]
|
| 1031 |
+
next_node = source
|
| 1032 |
+
while nodeset:
|
| 1033 |
+
nbrdict = G[next_node]
|
| 1034 |
+
next_node = min(nodeset, key=lambda n: nbrdict[n].get(weight, 1))
|
| 1035 |
+
cycle.append(next_node)
|
| 1036 |
+
nodeset.remove(next_node)
|
| 1037 |
+
cycle.append(cycle[0])
|
| 1038 |
+
return cycle
|
| 1039 |
+
|
| 1040 |
+
|
| 1041 |
+
@py_random_state(9)
|
| 1042 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 1043 |
+
def simulated_annealing_tsp(
|
| 1044 |
+
G,
|
| 1045 |
+
init_cycle,
|
| 1046 |
+
weight="weight",
|
| 1047 |
+
source=None,
|
| 1048 |
+
temp=100,
|
| 1049 |
+
move="1-1",
|
| 1050 |
+
max_iterations=10,
|
| 1051 |
+
N_inner=100,
|
| 1052 |
+
alpha=0.01,
|
| 1053 |
+
seed=None,
|
| 1054 |
+
):
|
| 1055 |
+
"""Returns an approximate solution to the traveling salesman problem.
|
| 1056 |
+
|
| 1057 |
+
This function uses simulated annealing to approximate the minimal cost
|
| 1058 |
+
cycle through the nodes. Starting from a suboptimal solution, simulated
|
| 1059 |
+
annealing perturbs that solution, occasionally accepting changes that make
|
| 1060 |
+
the solution worse to escape from a locally optimal solution. The chance
|
| 1061 |
+
of accepting such changes decreases over the iterations to encourage
|
| 1062 |
+
an optimal result. In summary, the function returns a cycle starting
|
| 1063 |
+
at `source` for which the total cost is minimized. It also returns the cost.
|
| 1064 |
+
|
| 1065 |
+
The chance of accepting a proposed change is related to a parameter called
|
| 1066 |
+
the temperature (annealing has a physical analogue of steel hardening
|
| 1067 |
+
as it cools). As the temperature is reduced, the chance of moves that
|
| 1068 |
+
increase cost goes down.
|
| 1069 |
+
|
| 1070 |
+
Parameters
|
| 1071 |
+
----------
|
| 1072 |
+
G : Graph
|
| 1073 |
+
`G` should be a complete weighted graph.
|
| 1074 |
+
The distance between all pairs of nodes should be included.
|
| 1075 |
+
|
| 1076 |
+
init_cycle : list of all nodes or "greedy"
|
| 1077 |
+
The initial solution (a cycle through all nodes returning to the start).
|
| 1078 |
+
This argument has no default to make you think about it.
|
| 1079 |
+
If "greedy", use `greedy_tsp(G, weight)`.
|
| 1080 |
+
Other common starting cycles are `list(G) + [next(iter(G))]` or the final
|
| 1081 |
+
result of `simulated_annealing_tsp` when doing `threshold_accepting_tsp`.
|
| 1082 |
+
|
| 1083 |
+
weight : string, optional (default="weight")
|
| 1084 |
+
Edge data key corresponding to the edge weight.
|
| 1085 |
+
If any edge does not have this attribute the weight is set to 1.
|
| 1086 |
+
|
| 1087 |
+
source : node, optional (default: first node in list(G))
|
| 1088 |
+
Starting node. If None, defaults to ``next(iter(G))``
|
| 1089 |
+
|
| 1090 |
+
temp : int, optional (default=100)
|
| 1091 |
+
The algorithm's temperature parameter. It represents the initial
|
| 1092 |
+
value of temperature
|
| 1093 |
+
|
| 1094 |
+
move : "1-1" or "1-0" or function, optional (default="1-1")
|
| 1095 |
+
Indicator of what move to use when finding new trial solutions.
|
| 1096 |
+
Strings indicate two special built-in moves:
|
| 1097 |
+
|
| 1098 |
+
- "1-1": 1-1 exchange which transposes the position
|
| 1099 |
+
of two elements of the current solution.
|
| 1100 |
+
The function called is :func:`swap_two_nodes`.
|
| 1101 |
+
For example if we apply 1-1 exchange in the solution
|
| 1102 |
+
``A = [3, 2, 1, 4, 3]``
|
| 1103 |
+
we can get the following by the transposition of 1 and 4 elements:
|
| 1104 |
+
``A' = [3, 2, 4, 1, 3]``
|
| 1105 |
+
- "1-0": 1-0 exchange which moves an node in the solution
|
| 1106 |
+
to a new position.
|
| 1107 |
+
The function called is :func:`move_one_node`.
|
| 1108 |
+
For example if we apply 1-0 exchange in the solution
|
| 1109 |
+
``A = [3, 2, 1, 4, 3]``
|
| 1110 |
+
we can transfer the fourth element to the second position:
|
| 1111 |
+
``A' = [3, 4, 2, 1, 3]``
|
| 1112 |
+
|
| 1113 |
+
You may provide your own functions to enact a move from
|
| 1114 |
+
one solution to a neighbor solution. The function must take
|
| 1115 |
+
the solution as input along with a `seed` input to control
|
| 1116 |
+
random number generation (see the `seed` input here).
|
| 1117 |
+
Your function should maintain the solution as a cycle with
|
| 1118 |
+
equal first and last node and all others appearing once.
|
| 1119 |
+
Your function should return the new solution.
|
| 1120 |
+
|
| 1121 |
+
max_iterations : int, optional (default=10)
|
| 1122 |
+
Declared done when this number of consecutive iterations of
|
| 1123 |
+
the outer loop occurs without any change in the best cost solution.
|
| 1124 |
+
|
| 1125 |
+
N_inner : int, optional (default=100)
|
| 1126 |
+
The number of iterations of the inner loop.
|
| 1127 |
+
|
| 1128 |
+
alpha : float between (0, 1), optional (default=0.01)
|
| 1129 |
+
Percentage of temperature decrease in each iteration
|
| 1130 |
+
of outer loop
|
| 1131 |
+
|
| 1132 |
+
seed : integer, random_state, or None (default)
|
| 1133 |
+
Indicator of random number generation state.
|
| 1134 |
+
See :ref:`Randomness<randomness>`.
|
| 1135 |
+
|
| 1136 |
+
Returns
|
| 1137 |
+
-------
|
| 1138 |
+
cycle : list of nodes
|
| 1139 |
+
Returns the cycle (list of nodes) that a salesman
|
| 1140 |
+
can follow to minimize total weight of the trip.
|
| 1141 |
+
|
| 1142 |
+
Raises
|
| 1143 |
+
------
|
| 1144 |
+
NetworkXError
|
| 1145 |
+
If `G` is not complete the algorithm raises an exception.
|
| 1146 |
+
|
| 1147 |
+
Examples
|
| 1148 |
+
--------
|
| 1149 |
+
>>> from networkx.algorithms import approximation as approx
|
| 1150 |
+
>>> G = nx.DiGraph()
|
| 1151 |
+
>>> G.add_weighted_edges_from(
|
| 1152 |
+
... {
|
| 1153 |
+
... ("A", "B", 3),
|
| 1154 |
+
... ("A", "C", 17),
|
| 1155 |
+
... ("A", "D", 14),
|
| 1156 |
+
... ("B", "A", 3),
|
| 1157 |
+
... ("B", "C", 12),
|
| 1158 |
+
... ("B", "D", 16),
|
| 1159 |
+
... ("C", "A", 13),
|
| 1160 |
+
... ("C", "B", 12),
|
| 1161 |
+
... ("C", "D", 4),
|
| 1162 |
+
... ("D", "A", 14),
|
| 1163 |
+
... ("D", "B", 15),
|
| 1164 |
+
... ("D", "C", 2),
|
| 1165 |
+
... }
|
| 1166 |
+
... )
|
| 1167 |
+
>>> cycle = approx.simulated_annealing_tsp(G, "greedy", source="D")
|
| 1168 |
+
>>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle))
|
| 1169 |
+
>>> cycle
|
| 1170 |
+
['D', 'C', 'B', 'A', 'D']
|
| 1171 |
+
>>> cost
|
| 1172 |
+
31
|
| 1173 |
+
>>> incycle = ["D", "B", "A", "C", "D"]
|
| 1174 |
+
>>> cycle = approx.simulated_annealing_tsp(G, incycle, source="D")
|
| 1175 |
+
>>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle))
|
| 1176 |
+
>>> cycle
|
| 1177 |
+
['D', 'C', 'B', 'A', 'D']
|
| 1178 |
+
>>> cost
|
| 1179 |
+
31
|
| 1180 |
+
|
| 1181 |
+
Notes
|
| 1182 |
+
-----
|
| 1183 |
+
Simulated Annealing is a metaheuristic local search algorithm.
|
| 1184 |
+
The main characteristic of this algorithm is that it accepts
|
| 1185 |
+
even solutions which lead to the increase of the cost in order
|
| 1186 |
+
to escape from low quality local optimal solutions.
|
| 1187 |
+
|
| 1188 |
+
This algorithm needs an initial solution. If not provided, it is
|
| 1189 |
+
constructed by a simple greedy algorithm. At every iteration, the
|
| 1190 |
+
algorithm selects thoughtfully a neighbor solution.
|
| 1191 |
+
Consider $c(x)$ cost of current solution and $c(x')$ cost of a
|
| 1192 |
+
neighbor solution.
|
| 1193 |
+
If $c(x') - c(x) <= 0$ then the neighbor solution becomes the current
|
| 1194 |
+
solution for the next iteration. Otherwise, the algorithm accepts
|
| 1195 |
+
the neighbor solution with probability $p = exp - ([c(x') - c(x)] / temp)$.
|
| 1196 |
+
Otherwise the current solution is retained.
|
| 1197 |
+
|
| 1198 |
+
`temp` is a parameter of the algorithm and represents temperature.
|
| 1199 |
+
|
| 1200 |
+
Time complexity:
|
| 1201 |
+
For $N_i$ iterations of the inner loop and $N_o$ iterations of the
|
| 1202 |
+
outer loop, this algorithm has running time $O(N_i * N_o * |V|)$.
|
| 1203 |
+
|
| 1204 |
+
For more information and how the algorithm is inspired see:
|
| 1205 |
+
http://en.wikipedia.org/wiki/Simulated_annealing
|
| 1206 |
+
"""
|
| 1207 |
+
if move == "1-1":
|
| 1208 |
+
move = swap_two_nodes
|
| 1209 |
+
elif move == "1-0":
|
| 1210 |
+
move = move_one_node
|
| 1211 |
+
if init_cycle == "greedy":
|
| 1212 |
+
# Construct an initial solution using a greedy algorithm.
|
| 1213 |
+
cycle = greedy_tsp(G, weight=weight, source=source)
|
| 1214 |
+
if G.number_of_nodes() == 2:
|
| 1215 |
+
return cycle
|
| 1216 |
+
|
| 1217 |
+
else:
|
| 1218 |
+
cycle = list(init_cycle)
|
| 1219 |
+
if source is None:
|
| 1220 |
+
source = cycle[0]
|
| 1221 |
+
elif source != cycle[0]:
|
| 1222 |
+
raise nx.NetworkXError("source must be first node in init_cycle")
|
| 1223 |
+
if cycle[0] != cycle[-1]:
|
| 1224 |
+
raise nx.NetworkXError("init_cycle must be a cycle. (return to start)")
|
| 1225 |
+
|
| 1226 |
+
if len(cycle) - 1 != len(G) or len(set(G.nbunch_iter(cycle))) != len(G):
|
| 1227 |
+
raise nx.NetworkXError("init_cycle should be a cycle over all nodes in G.")
|
| 1228 |
+
|
| 1229 |
+
# Check that G is a complete graph
|
| 1230 |
+
N = len(G) - 1
|
| 1231 |
+
# This check ignores selfloops which is what we want here.
|
| 1232 |
+
if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()):
|
| 1233 |
+
raise nx.NetworkXError("G must be a complete graph.")
|
| 1234 |
+
|
| 1235 |
+
if G.number_of_nodes() == 2:
|
| 1236 |
+
neighbor = next(G.neighbors(source))
|
| 1237 |
+
return [source, neighbor, source]
|
| 1238 |
+
|
| 1239 |
+
# Find the cost of initial solution
|
| 1240 |
+
cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(cycle))
|
| 1241 |
+
|
| 1242 |
+
count = 0
|
| 1243 |
+
best_cycle = cycle.copy()
|
| 1244 |
+
best_cost = cost
|
| 1245 |
+
while count <= max_iterations and temp > 0:
|
| 1246 |
+
count += 1
|
| 1247 |
+
for i in range(N_inner):
|
| 1248 |
+
adj_sol = move(cycle, seed)
|
| 1249 |
+
adj_cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(adj_sol))
|
| 1250 |
+
delta = adj_cost - cost
|
| 1251 |
+
if delta <= 0:
|
| 1252 |
+
# Set current solution the adjacent solution.
|
| 1253 |
+
cycle = adj_sol
|
| 1254 |
+
cost = adj_cost
|
| 1255 |
+
|
| 1256 |
+
if cost < best_cost:
|
| 1257 |
+
count = 0
|
| 1258 |
+
best_cycle = cycle.copy()
|
| 1259 |
+
best_cost = cost
|
| 1260 |
+
else:
|
| 1261 |
+
# Accept even a worse solution with probability p.
|
| 1262 |
+
p = math.exp(-delta / temp)
|
| 1263 |
+
if p >= seed.random():
|
| 1264 |
+
cycle = adj_sol
|
| 1265 |
+
cost = adj_cost
|
| 1266 |
+
temp -= temp * alpha
|
| 1267 |
+
|
| 1268 |
+
return best_cycle
|
| 1269 |
+
|
| 1270 |
+
|
| 1271 |
+
@py_random_state(9)
|
| 1272 |
+
@nx._dispatchable(edge_attrs="weight")
|
| 1273 |
+
def threshold_accepting_tsp(
|
| 1274 |
+
G,
|
| 1275 |
+
init_cycle,
|
| 1276 |
+
weight="weight",
|
| 1277 |
+
source=None,
|
| 1278 |
+
threshold=1,
|
| 1279 |
+
move="1-1",
|
| 1280 |
+
max_iterations=10,
|
| 1281 |
+
N_inner=100,
|
| 1282 |
+
alpha=0.1,
|
| 1283 |
+
seed=None,
|
| 1284 |
+
):
|
| 1285 |
+
"""Returns an approximate solution to the traveling salesman problem.
|
| 1286 |
+
|
| 1287 |
+
This function uses threshold accepting methods to approximate the minimal cost
|
| 1288 |
+
cycle through the nodes. Starting from a suboptimal solution, threshold
|
| 1289 |
+
accepting methods perturb that solution, accepting any changes that make
|
| 1290 |
+
the solution no worse than increasing by a threshold amount. Improvements
|
| 1291 |
+
in cost are accepted, but so are changes leading to small increases in cost.
|
| 1292 |
+
This allows the solution to leave suboptimal local minima in solution space.
|
| 1293 |
+
The threshold is decreased slowly as iterations proceed helping to ensure
|
| 1294 |
+
an optimum. In summary, the function returns a cycle starting at `source`
|
| 1295 |
+
for which the total cost is minimized.
|
| 1296 |
+
|
| 1297 |
+
Parameters
|
| 1298 |
+
----------
|
| 1299 |
+
G : Graph
|
| 1300 |
+
`G` should be a complete weighted graph.
|
| 1301 |
+
The distance between all pairs of nodes should be included.
|
| 1302 |
+
|
| 1303 |
+
init_cycle : list or "greedy"
|
| 1304 |
+
The initial solution (a cycle through all nodes returning to the start).
|
| 1305 |
+
This argument has no default to make you think about it.
|
| 1306 |
+
If "greedy", use `greedy_tsp(G, weight)`.
|
| 1307 |
+
Other common starting cycles are `list(G) + [next(iter(G))]` or the final
|
| 1308 |
+
result of `simulated_annealing_tsp` when doing `threshold_accepting_tsp`.
|
| 1309 |
+
|
| 1310 |
+
weight : string, optional (default="weight")
|
| 1311 |
+
Edge data key corresponding to the edge weight.
|
| 1312 |
+
If any edge does not have this attribute the weight is set to 1.
|
| 1313 |
+
|
| 1314 |
+
source : node, optional (default: first node in list(G))
|
| 1315 |
+
Starting node. If None, defaults to ``next(iter(G))``
|
| 1316 |
+
|
| 1317 |
+
threshold : int, optional (default=1)
|
| 1318 |
+
The algorithm's threshold parameter. It represents the initial
|
| 1319 |
+
threshold's value
|
| 1320 |
+
|
| 1321 |
+
move : "1-1" or "1-0" or function, optional (default="1-1")
|
| 1322 |
+
Indicator of what move to use when finding new trial solutions.
|
| 1323 |
+
Strings indicate two special built-in moves:
|
| 1324 |
+
|
| 1325 |
+
- "1-1": 1-1 exchange which transposes the position
|
| 1326 |
+
of two elements of the current solution.
|
| 1327 |
+
The function called is :func:`swap_two_nodes`.
|
| 1328 |
+
For example if we apply 1-1 exchange in the solution
|
| 1329 |
+
``A = [3, 2, 1, 4, 3]``
|
| 1330 |
+
we can get the following by the transposition of 1 and 4 elements:
|
| 1331 |
+
``A' = [3, 2, 4, 1, 3]``
|
| 1332 |
+
- "1-0": 1-0 exchange which moves an node in the solution
|
| 1333 |
+
to a new position.
|
| 1334 |
+
The function called is :func:`move_one_node`.
|
| 1335 |
+
For example if we apply 1-0 exchange in the solution
|
| 1336 |
+
``A = [3, 2, 1, 4, 3]``
|
| 1337 |
+
we can transfer the fourth element to the second position:
|
| 1338 |
+
``A' = [3, 4, 2, 1, 3]``
|
| 1339 |
+
|
| 1340 |
+
You may provide your own functions to enact a move from
|
| 1341 |
+
one solution to a neighbor solution. The function must take
|
| 1342 |
+
the solution as input along with a `seed` input to control
|
| 1343 |
+
random number generation (see the `seed` input here).
|
| 1344 |
+
Your function should maintain the solution as a cycle with
|
| 1345 |
+
equal first and last node and all others appearing once.
|
| 1346 |
+
Your function should return the new solution.
|
| 1347 |
+
|
| 1348 |
+
max_iterations : int, optional (default=10)
|
| 1349 |
+
Declared done when this number of consecutive iterations of
|
| 1350 |
+
the outer loop occurs without any change in the best cost solution.
|
| 1351 |
+
|
| 1352 |
+
N_inner : int, optional (default=100)
|
| 1353 |
+
The number of iterations of the inner loop.
|
| 1354 |
+
|
| 1355 |
+
alpha : float between (0, 1), optional (default=0.1)
|
| 1356 |
+
Percentage of threshold decrease when there is at
|
| 1357 |
+
least one acceptance of a neighbor solution.
|
| 1358 |
+
If no inner loop moves are accepted the threshold remains unchanged.
|
| 1359 |
+
|
| 1360 |
+
seed : integer, random_state, or None (default)
|
| 1361 |
+
Indicator of random number generation state.
|
| 1362 |
+
See :ref:`Randomness<randomness>`.
|
| 1363 |
+
|
| 1364 |
+
Returns
|
| 1365 |
+
-------
|
| 1366 |
+
cycle : list of nodes
|
| 1367 |
+
Returns the cycle (list of nodes) that a salesman
|
| 1368 |
+
can follow to minimize total weight of the trip.
|
| 1369 |
+
|
| 1370 |
+
Raises
|
| 1371 |
+
------
|
| 1372 |
+
NetworkXError
|
| 1373 |
+
If `G` is not complete the algorithm raises an exception.
|
| 1374 |
+
|
| 1375 |
+
Examples
|
| 1376 |
+
--------
|
| 1377 |
+
>>> from networkx.algorithms import approximation as approx
|
| 1378 |
+
>>> G = nx.DiGraph()
|
| 1379 |
+
>>> G.add_weighted_edges_from(
|
| 1380 |
+
... {
|
| 1381 |
+
... ("A", "B", 3),
|
| 1382 |
+
... ("A", "C", 17),
|
| 1383 |
+
... ("A", "D", 14),
|
| 1384 |
+
... ("B", "A", 3),
|
| 1385 |
+
... ("B", "C", 12),
|
| 1386 |
+
... ("B", "D", 16),
|
| 1387 |
+
... ("C", "A", 13),
|
| 1388 |
+
... ("C", "B", 12),
|
| 1389 |
+
... ("C", "D", 4),
|
| 1390 |
+
... ("D", "A", 14),
|
| 1391 |
+
... ("D", "B", 15),
|
| 1392 |
+
... ("D", "C", 2),
|
| 1393 |
+
... }
|
| 1394 |
+
... )
|
| 1395 |
+
>>> cycle = approx.threshold_accepting_tsp(G, "greedy", source="D")
|
| 1396 |
+
>>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle))
|
| 1397 |
+
>>> cycle
|
| 1398 |
+
['D', 'C', 'B', 'A', 'D']
|
| 1399 |
+
>>> cost
|
| 1400 |
+
31
|
| 1401 |
+
>>> incycle = ["D", "B", "A", "C", "D"]
|
| 1402 |
+
>>> cycle = approx.threshold_accepting_tsp(G, incycle, source="D")
|
| 1403 |
+
>>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle))
|
| 1404 |
+
>>> cycle
|
| 1405 |
+
['D', 'C', 'B', 'A', 'D']
|
| 1406 |
+
>>> cost
|
| 1407 |
+
31
|
| 1408 |
+
|
| 1409 |
+
Notes
|
| 1410 |
+
-----
|
| 1411 |
+
Threshold Accepting is a metaheuristic local search algorithm.
|
| 1412 |
+
The main characteristic of this algorithm is that it accepts
|
| 1413 |
+
even solutions which lead to the increase of the cost in order
|
| 1414 |
+
to escape from low quality local optimal solutions.
|
| 1415 |
+
|
| 1416 |
+
This algorithm needs an initial solution. This solution can be
|
| 1417 |
+
constructed by a simple greedy algorithm. At every iteration, it
|
| 1418 |
+
selects thoughtfully a neighbor solution.
|
| 1419 |
+
Consider $c(x)$ cost of current solution and $c(x')$ cost of
|
| 1420 |
+
neighbor solution.
|
| 1421 |
+
If $c(x') - c(x) <= threshold$ then the neighbor solution becomes the current
|
| 1422 |
+
solution for the next iteration, where the threshold is named threshold.
|
| 1423 |
+
|
| 1424 |
+
In comparison to the Simulated Annealing algorithm, the Threshold
|
| 1425 |
+
Accepting algorithm does not accept very low quality solutions
|
| 1426 |
+
(due to the presence of the threshold value). In the case of
|
| 1427 |
+
Simulated Annealing, even a very low quality solution can
|
| 1428 |
+
be accepted with probability $p$.
|
| 1429 |
+
|
| 1430 |
+
Time complexity:
|
| 1431 |
+
It has a running time $O(m * n * |V|)$ where $m$ and $n$ are the number
|
| 1432 |
+
of times the outer and inner loop run respectively.
|
| 1433 |
+
|
| 1434 |
+
For more information and how algorithm is inspired see:
|
| 1435 |
+
https://doi.org/10.1016/0021-9991(90)90201-B
|
| 1436 |
+
|
| 1437 |
+
See Also
|
| 1438 |
+
--------
|
| 1439 |
+
simulated_annealing_tsp
|
| 1440 |
+
|
| 1441 |
+
"""
|
| 1442 |
+
if move == "1-1":
|
| 1443 |
+
move = swap_two_nodes
|
| 1444 |
+
elif move == "1-0":
|
| 1445 |
+
move = move_one_node
|
| 1446 |
+
if init_cycle == "greedy":
|
| 1447 |
+
# Construct an initial solution using a greedy algorithm.
|
| 1448 |
+
cycle = greedy_tsp(G, weight=weight, source=source)
|
| 1449 |
+
if G.number_of_nodes() == 2:
|
| 1450 |
+
return cycle
|
| 1451 |
+
|
| 1452 |
+
else:
|
| 1453 |
+
cycle = list(init_cycle)
|
| 1454 |
+
if source is None:
|
| 1455 |
+
source = cycle[0]
|
| 1456 |
+
elif source != cycle[0]:
|
| 1457 |
+
raise nx.NetworkXError("source must be first node in init_cycle")
|
| 1458 |
+
if cycle[0] != cycle[-1]:
|
| 1459 |
+
raise nx.NetworkXError("init_cycle must be a cycle. (return to start)")
|
| 1460 |
+
|
| 1461 |
+
if len(cycle) - 1 != len(G) or len(set(G.nbunch_iter(cycle))) != len(G):
|
| 1462 |
+
raise nx.NetworkXError("init_cycle is not all and only nodes.")
|
| 1463 |
+
|
| 1464 |
+
# Check that G is a complete graph
|
| 1465 |
+
N = len(G) - 1
|
| 1466 |
+
# This check ignores selfloops which is what we want here.
|
| 1467 |
+
if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()):
|
| 1468 |
+
raise nx.NetworkXError("G must be a complete graph.")
|
| 1469 |
+
|
| 1470 |
+
if G.number_of_nodes() == 2:
|
| 1471 |
+
neighbor = list(G.neighbors(source))[0]
|
| 1472 |
+
return [source, neighbor, source]
|
| 1473 |
+
|
| 1474 |
+
# Find the cost of initial solution
|
| 1475 |
+
cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(cycle))
|
| 1476 |
+
|
| 1477 |
+
count = 0
|
| 1478 |
+
best_cycle = cycle.copy()
|
| 1479 |
+
best_cost = cost
|
| 1480 |
+
while count <= max_iterations:
|
| 1481 |
+
count += 1
|
| 1482 |
+
accepted = False
|
| 1483 |
+
for i in range(N_inner):
|
| 1484 |
+
adj_sol = move(cycle, seed)
|
| 1485 |
+
adj_cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(adj_sol))
|
| 1486 |
+
delta = adj_cost - cost
|
| 1487 |
+
if delta <= threshold:
|
| 1488 |
+
accepted = True
|
| 1489 |
+
|
| 1490 |
+
# Set current solution the adjacent solution.
|
| 1491 |
+
cycle = adj_sol
|
| 1492 |
+
cost = adj_cost
|
| 1493 |
+
|
| 1494 |
+
if cost < best_cost:
|
| 1495 |
+
count = 0
|
| 1496 |
+
best_cycle = cycle.copy()
|
| 1497 |
+
best_cost = cost
|
| 1498 |
+
if accepted:
|
| 1499 |
+
threshold -= threshold * alpha
|
| 1500 |
+
|
| 1501 |
+
return best_cycle
|
.venv/lib/python3.11/site-packages/networkx/algorithms/broadcasting.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Routines to calculate the broadcast time of certain graphs.
|
| 2 |
+
|
| 3 |
+
Broadcasting is an information dissemination problem in which a node in a graph,
|
| 4 |
+
called the originator, must distribute a message to all other nodes by placing
|
| 5 |
+
a series of calls along the edges of the graph. Once informed, other nodes aid
|
| 6 |
+
the originator in distributing the message.
|
| 7 |
+
|
| 8 |
+
The broadcasting must be completed as quickly as possible subject to the
|
| 9 |
+
following constraints:
|
| 10 |
+
- Each call requires one unit of time.
|
| 11 |
+
- A node can only participate in one call per unit of time.
|
| 12 |
+
- Each call only involves two adjacent nodes: a sender and a receiver.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
import networkx as nx
|
| 16 |
+
from networkx import NetworkXError
|
| 17 |
+
from networkx.utils import not_implemented_for
|
| 18 |
+
|
| 19 |
+
__all__ = [
|
| 20 |
+
"tree_broadcast_center",
|
| 21 |
+
"tree_broadcast_time",
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def _get_max_broadcast_value(G, U, v, values):
|
| 26 |
+
adj = sorted(set(G.neighbors(v)) & U, key=values.get, reverse=True)
|
| 27 |
+
return max(values[u] + i for i, u in enumerate(adj, start=1))
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def _get_broadcast_centers(G, v, values, target):
|
| 31 |
+
adj = sorted(G.neighbors(v), key=values.get, reverse=True)
|
| 32 |
+
j = next(i for i, u in enumerate(adj, start=1) if values[u] + i == target)
|
| 33 |
+
return set([v] + adj[:j])
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@not_implemented_for("directed")
|
| 37 |
+
@not_implemented_for("multigraph")
|
| 38 |
+
@nx._dispatchable
|
| 39 |
+
def tree_broadcast_center(G):
|
| 40 |
+
"""Return the Broadcast Center of the tree `G`.
|
| 41 |
+
|
| 42 |
+
The broadcast center of a graph G denotes the set of nodes having
|
| 43 |
+
minimum broadcast time [1]_. This is a linear algorithm for determining
|
| 44 |
+
the broadcast center of a tree with ``N`` nodes, as a by-product it also
|
| 45 |
+
determines the broadcast time from the broadcast center.
|
| 46 |
+
|
| 47 |
+
Parameters
|
| 48 |
+
----------
|
| 49 |
+
G : undirected graph
|
| 50 |
+
The graph should be an undirected tree
|
| 51 |
+
|
| 52 |
+
Returns
|
| 53 |
+
-------
|
| 54 |
+
BC : (int, set) tuple
|
| 55 |
+
minimum broadcast number of the tree, set of broadcast centers
|
| 56 |
+
|
| 57 |
+
Raises
|
| 58 |
+
------
|
| 59 |
+
NetworkXNotImplemented
|
| 60 |
+
If the graph is directed or is a multigraph.
|
| 61 |
+
|
| 62 |
+
References
|
| 63 |
+
----------
|
| 64 |
+
.. [1] Slater, P.J., Cockayne, E.J., Hedetniemi, S.T,
|
| 65 |
+
Information dissemination in trees. SIAM J.Comput. 10(4), 692–701 (1981)
|
| 66 |
+
"""
|
| 67 |
+
# Assert that the graph G is a tree
|
| 68 |
+
if not nx.is_tree(G):
|
| 69 |
+
NetworkXError("Input graph is not a tree")
|
| 70 |
+
# step 0
|
| 71 |
+
if G.number_of_nodes() == 2:
|
| 72 |
+
return 1, set(G.nodes())
|
| 73 |
+
if G.number_of_nodes() == 1:
|
| 74 |
+
return 0, set(G.nodes())
|
| 75 |
+
|
| 76 |
+
# step 1
|
| 77 |
+
U = {node for node, deg in G.degree if deg == 1}
|
| 78 |
+
values = {n: 0 for n in U}
|
| 79 |
+
T = G.copy()
|
| 80 |
+
T.remove_nodes_from(U)
|
| 81 |
+
|
| 82 |
+
# step 2
|
| 83 |
+
W = {node for node, deg in T.degree if deg == 1}
|
| 84 |
+
values.update((w, G.degree[w] - 1) for w in W)
|
| 85 |
+
|
| 86 |
+
# step 3
|
| 87 |
+
while T.number_of_nodes() >= 2:
|
| 88 |
+
# step 4
|
| 89 |
+
w = min(W, key=lambda n: values[n])
|
| 90 |
+
v = next(T.neighbors(w))
|
| 91 |
+
|
| 92 |
+
# step 5
|
| 93 |
+
U.add(w)
|
| 94 |
+
W.remove(w)
|
| 95 |
+
T.remove_node(w)
|
| 96 |
+
|
| 97 |
+
# step 6
|
| 98 |
+
if T.degree(v) == 1:
|
| 99 |
+
# update t(v)
|
| 100 |
+
values.update({v: _get_max_broadcast_value(G, U, v, values)})
|
| 101 |
+
W.add(v)
|
| 102 |
+
|
| 103 |
+
# step 7
|
| 104 |
+
v = nx.utils.arbitrary_element(T)
|
| 105 |
+
b_T = _get_max_broadcast_value(G, U, v, values)
|
| 106 |
+
return b_T, _get_broadcast_centers(G, v, values, b_T)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
@not_implemented_for("directed")
|
| 110 |
+
@not_implemented_for("multigraph")
|
| 111 |
+
@nx._dispatchable
|
| 112 |
+
def tree_broadcast_time(G, node=None):
|
| 113 |
+
"""Return the Broadcast Time of the tree `G`.
|
| 114 |
+
|
| 115 |
+
The minimum broadcast time of a node is defined as the minimum amount
|
| 116 |
+
of time required to complete broadcasting starting from the
|
| 117 |
+
originator. The broadcast time of a graph is the maximum over
|
| 118 |
+
all nodes of the minimum broadcast time from that node [1]_.
|
| 119 |
+
This function returns the minimum broadcast time of `node`.
|
| 120 |
+
If `node` is None the broadcast time for the graph is returned.
|
| 121 |
+
|
| 122 |
+
Parameters
|
| 123 |
+
----------
|
| 124 |
+
G : undirected graph
|
| 125 |
+
The graph should be an undirected tree
|
| 126 |
+
node: int, optional
|
| 127 |
+
index of starting node. If `None`, the algorithm returns the broadcast
|
| 128 |
+
time of the tree.
|
| 129 |
+
|
| 130 |
+
Returns
|
| 131 |
+
-------
|
| 132 |
+
BT : int
|
| 133 |
+
Broadcast Time of a node in a tree
|
| 134 |
+
|
| 135 |
+
Raises
|
| 136 |
+
------
|
| 137 |
+
NetworkXNotImplemented
|
| 138 |
+
If the graph is directed or is a multigraph.
|
| 139 |
+
|
| 140 |
+
References
|
| 141 |
+
----------
|
| 142 |
+
.. [1] Harutyunyan, H. A. and Li, Z.
|
| 143 |
+
"A Simple Construction of Broadcast Graphs."
|
| 144 |
+
In Computing and Combinatorics. COCOON 2019
|
| 145 |
+
(Ed. D. Z. Du and C. Tian.) Springer, pp. 240-253, 2019.
|
| 146 |
+
"""
|
| 147 |
+
b_T, b_C = tree_broadcast_center(G)
|
| 148 |
+
if node is not None:
|
| 149 |
+
return b_T + min(nx.shortest_path_length(G, node, u) for u in b_C)
|
| 150 |
+
dist_from_center = dict.fromkeys(G, len(G))
|
| 151 |
+
for u in b_C:
|
| 152 |
+
for v, dist in nx.shortest_path_length(G, u).items():
|
| 153 |
+
if dist < dist_from_center[v]:
|
| 154 |
+
dist_from_center[v] = dist
|
| 155 |
+
return b_T + max(dist_from_center.values())
|
.venv/lib/python3.11/site-packages/networkx/algorithms/dominating.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Functions for computing dominating sets in a graph."""
|
| 2 |
+
|
| 3 |
+
from itertools import chain
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
from networkx.utils import arbitrary_element
|
| 7 |
+
|
| 8 |
+
__all__ = ["dominating_set", "is_dominating_set"]
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@nx._dispatchable
|
| 12 |
+
def dominating_set(G, start_with=None):
|
| 13 |
+
r"""Finds a dominating set for the graph G.
|
| 14 |
+
|
| 15 |
+
A *dominating set* for a graph with node set *V* is a subset *D* of
|
| 16 |
+
*V* such that every node not in *D* is adjacent to at least one
|
| 17 |
+
member of *D* [1]_.
|
| 18 |
+
|
| 19 |
+
Parameters
|
| 20 |
+
----------
|
| 21 |
+
G : NetworkX graph
|
| 22 |
+
|
| 23 |
+
start_with : node (default=None)
|
| 24 |
+
Node to use as a starting point for the algorithm.
|
| 25 |
+
|
| 26 |
+
Returns
|
| 27 |
+
-------
|
| 28 |
+
D : set
|
| 29 |
+
A dominating set for G.
|
| 30 |
+
|
| 31 |
+
Notes
|
| 32 |
+
-----
|
| 33 |
+
This function is an implementation of algorithm 7 in [2]_ which
|
| 34 |
+
finds some dominating set, not necessarily the smallest one.
|
| 35 |
+
|
| 36 |
+
See also
|
| 37 |
+
--------
|
| 38 |
+
is_dominating_set
|
| 39 |
+
|
| 40 |
+
References
|
| 41 |
+
----------
|
| 42 |
+
.. [1] https://en.wikipedia.org/wiki/Dominating_set
|
| 43 |
+
|
| 44 |
+
.. [2] Abdol-Hossein Esfahanian. Connectivity Algorithms.
|
| 45 |
+
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
|
| 46 |
+
|
| 47 |
+
"""
|
| 48 |
+
all_nodes = set(G)
|
| 49 |
+
if start_with is None:
|
| 50 |
+
start_with = arbitrary_element(all_nodes)
|
| 51 |
+
if start_with not in G:
|
| 52 |
+
raise nx.NetworkXError(f"node {start_with} is not in G")
|
| 53 |
+
dominating_set = {start_with}
|
| 54 |
+
dominated_nodes = set(G[start_with])
|
| 55 |
+
remaining_nodes = all_nodes - dominated_nodes - dominating_set
|
| 56 |
+
while remaining_nodes:
|
| 57 |
+
# Choose an arbitrary node and determine its undominated neighbors.
|
| 58 |
+
v = remaining_nodes.pop()
|
| 59 |
+
undominated_nbrs = set(G[v]) - dominating_set
|
| 60 |
+
# Add the node to the dominating set and the neighbors to the
|
| 61 |
+
# dominated set. Finally, remove all of those nodes from the set
|
| 62 |
+
# of remaining nodes.
|
| 63 |
+
dominating_set.add(v)
|
| 64 |
+
dominated_nodes |= undominated_nbrs
|
| 65 |
+
remaining_nodes -= undominated_nbrs
|
| 66 |
+
return dominating_set
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
@nx._dispatchable
|
| 70 |
+
def is_dominating_set(G, nbunch):
|
| 71 |
+
"""Checks if `nbunch` is a dominating set for `G`.
|
| 72 |
+
|
| 73 |
+
A *dominating set* for a graph with node set *V* is a subset *D* of
|
| 74 |
+
*V* such that every node not in *D* is adjacent to at least one
|
| 75 |
+
member of *D* [1]_.
|
| 76 |
+
|
| 77 |
+
Parameters
|
| 78 |
+
----------
|
| 79 |
+
G : NetworkX graph
|
| 80 |
+
|
| 81 |
+
nbunch : iterable
|
| 82 |
+
An iterable of nodes in the graph `G`.
|
| 83 |
+
|
| 84 |
+
See also
|
| 85 |
+
--------
|
| 86 |
+
dominating_set
|
| 87 |
+
|
| 88 |
+
References
|
| 89 |
+
----------
|
| 90 |
+
.. [1] https://en.wikipedia.org/wiki/Dominating_set
|
| 91 |
+
|
| 92 |
+
"""
|
| 93 |
+
testset = {n for n in nbunch if n in G}
|
| 94 |
+
nbrs = set(chain.from_iterable(G[n] for n in testset))
|
| 95 |
+
return len(set(G) - testset - nbrs) == 0
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (642 Bytes). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/boykovkolmogorov.cpython-311.pyc
ADDED
|
Binary file (15.9 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/capacityscaling.cpython-311.pyc
ADDED
|
Binary file (19.8 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/dinitz_alg.cpython-311.pyc
ADDED
|
Binary file (9.78 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/edmondskarp.cpython-311.pyc
ADDED
|
Binary file (9.5 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/gomory_hu.cpython-311.pyc
ADDED
|
Binary file (7.09 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/maxflow.cpython-311.pyc
ADDED
|
Binary file (23.7 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/mincost.cpython-311.pyc
ADDED
|
Binary file (14.2 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/networksimplex.cpython-311.pyc
ADDED
|
Binary file (32.3 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/preflowpush.cpython-311.pyc
ADDED
|
Binary file (17.5 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/shortestaugmentingpath.cpython-311.pyc
ADDED
|
Binary file (11.2 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (9.78 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/edmondskarp.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Edmonds-Karp algorithm for maximum flow problems.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
from networkx.algorithms.flow.utils import build_residual_network
|
| 7 |
+
|
| 8 |
+
__all__ = ["edmonds_karp"]
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def edmonds_karp_core(R, s, t, cutoff):
|
| 12 |
+
"""Implementation of the Edmonds-Karp algorithm."""
|
| 13 |
+
R_nodes = R.nodes
|
| 14 |
+
R_pred = R.pred
|
| 15 |
+
R_succ = R.succ
|
| 16 |
+
|
| 17 |
+
inf = R.graph["inf"]
|
| 18 |
+
|
| 19 |
+
def augment(path):
|
| 20 |
+
"""Augment flow along a path from s to t."""
|
| 21 |
+
# Determine the path residual capacity.
|
| 22 |
+
flow = inf
|
| 23 |
+
it = iter(path)
|
| 24 |
+
u = next(it)
|
| 25 |
+
for v in it:
|
| 26 |
+
attr = R_succ[u][v]
|
| 27 |
+
flow = min(flow, attr["capacity"] - attr["flow"])
|
| 28 |
+
u = v
|
| 29 |
+
if flow * 2 > inf:
|
| 30 |
+
raise nx.NetworkXUnbounded("Infinite capacity path, flow unbounded above.")
|
| 31 |
+
# Augment flow along the path.
|
| 32 |
+
it = iter(path)
|
| 33 |
+
u = next(it)
|
| 34 |
+
for v in it:
|
| 35 |
+
R_succ[u][v]["flow"] += flow
|
| 36 |
+
R_succ[v][u]["flow"] -= flow
|
| 37 |
+
u = v
|
| 38 |
+
return flow
|
| 39 |
+
|
| 40 |
+
def bidirectional_bfs():
|
| 41 |
+
"""Bidirectional breadth-first search for an augmenting path."""
|
| 42 |
+
pred = {s: None}
|
| 43 |
+
q_s = [s]
|
| 44 |
+
succ = {t: None}
|
| 45 |
+
q_t = [t]
|
| 46 |
+
while True:
|
| 47 |
+
q = []
|
| 48 |
+
if len(q_s) <= len(q_t):
|
| 49 |
+
for u in q_s:
|
| 50 |
+
for v, attr in R_succ[u].items():
|
| 51 |
+
if v not in pred and attr["flow"] < attr["capacity"]:
|
| 52 |
+
pred[v] = u
|
| 53 |
+
if v in succ:
|
| 54 |
+
return v, pred, succ
|
| 55 |
+
q.append(v)
|
| 56 |
+
if not q:
|
| 57 |
+
return None, None, None
|
| 58 |
+
q_s = q
|
| 59 |
+
else:
|
| 60 |
+
for u in q_t:
|
| 61 |
+
for v, attr in R_pred[u].items():
|
| 62 |
+
if v not in succ and attr["flow"] < attr["capacity"]:
|
| 63 |
+
succ[v] = u
|
| 64 |
+
if v in pred:
|
| 65 |
+
return v, pred, succ
|
| 66 |
+
q.append(v)
|
| 67 |
+
if not q:
|
| 68 |
+
return None, None, None
|
| 69 |
+
q_t = q
|
| 70 |
+
|
| 71 |
+
# Look for shortest augmenting paths using breadth-first search.
|
| 72 |
+
flow_value = 0
|
| 73 |
+
while flow_value < cutoff:
|
| 74 |
+
v, pred, succ = bidirectional_bfs()
|
| 75 |
+
if pred is None:
|
| 76 |
+
break
|
| 77 |
+
path = [v]
|
| 78 |
+
# Trace a path from s to v.
|
| 79 |
+
u = v
|
| 80 |
+
while u != s:
|
| 81 |
+
u = pred[u]
|
| 82 |
+
path.append(u)
|
| 83 |
+
path.reverse()
|
| 84 |
+
# Trace a path from v to t.
|
| 85 |
+
u = v
|
| 86 |
+
while u != t:
|
| 87 |
+
u = succ[u]
|
| 88 |
+
path.append(u)
|
| 89 |
+
flow_value += augment(path)
|
| 90 |
+
|
| 91 |
+
return flow_value
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def edmonds_karp_impl(G, s, t, capacity, residual, cutoff):
|
| 95 |
+
"""Implementation of the Edmonds-Karp algorithm."""
|
| 96 |
+
if s not in G:
|
| 97 |
+
raise nx.NetworkXError(f"node {str(s)} not in graph")
|
| 98 |
+
if t not in G:
|
| 99 |
+
raise nx.NetworkXError(f"node {str(t)} not in graph")
|
| 100 |
+
if s == t:
|
| 101 |
+
raise nx.NetworkXError("source and sink are the same node")
|
| 102 |
+
|
| 103 |
+
if residual is None:
|
| 104 |
+
R = build_residual_network(G, capacity)
|
| 105 |
+
else:
|
| 106 |
+
R = residual
|
| 107 |
+
|
| 108 |
+
# Initialize/reset the residual network.
|
| 109 |
+
for u in R:
|
| 110 |
+
for e in R[u].values():
|
| 111 |
+
e["flow"] = 0
|
| 112 |
+
|
| 113 |
+
if cutoff is None:
|
| 114 |
+
cutoff = float("inf")
|
| 115 |
+
R.graph["flow_value"] = edmonds_karp_core(R, s, t, cutoff)
|
| 116 |
+
|
| 117 |
+
return R
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
@nx._dispatchable(edge_attrs={"capacity": float("inf")}, returns_graph=True)
|
| 121 |
+
def edmonds_karp(
|
| 122 |
+
G, s, t, capacity="capacity", residual=None, value_only=False, cutoff=None
|
| 123 |
+
):
|
| 124 |
+
"""Find a maximum single-commodity flow using the Edmonds-Karp algorithm.
|
| 125 |
+
|
| 126 |
+
This function returns the residual network resulting after computing
|
| 127 |
+
the maximum flow. See below for details about the conventions
|
| 128 |
+
NetworkX uses for defining residual networks.
|
| 129 |
+
|
| 130 |
+
This algorithm has a running time of $O(n m^2)$ for $n$ nodes and $m$
|
| 131 |
+
edges.
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
Parameters
|
| 135 |
+
----------
|
| 136 |
+
G : NetworkX graph
|
| 137 |
+
Edges of the graph are expected to have an attribute called
|
| 138 |
+
'capacity'. If this attribute is not present, the edge is
|
| 139 |
+
considered to have infinite capacity.
|
| 140 |
+
|
| 141 |
+
s : node
|
| 142 |
+
Source node for the flow.
|
| 143 |
+
|
| 144 |
+
t : node
|
| 145 |
+
Sink node for the flow.
|
| 146 |
+
|
| 147 |
+
capacity : string
|
| 148 |
+
Edges of the graph G are expected to have an attribute capacity
|
| 149 |
+
that indicates how much flow the edge can support. If this
|
| 150 |
+
attribute is not present, the edge is considered to have
|
| 151 |
+
infinite capacity. Default value: 'capacity'.
|
| 152 |
+
|
| 153 |
+
residual : NetworkX graph
|
| 154 |
+
Residual network on which the algorithm is to be executed. If None, a
|
| 155 |
+
new residual network is created. Default value: None.
|
| 156 |
+
|
| 157 |
+
value_only : bool
|
| 158 |
+
If True compute only the value of the maximum flow. This parameter
|
| 159 |
+
will be ignored by this algorithm because it is not applicable.
|
| 160 |
+
|
| 161 |
+
cutoff : integer, float
|
| 162 |
+
If specified, the algorithm will terminate when the flow value reaches
|
| 163 |
+
or exceeds the cutoff. In this case, it may be unable to immediately
|
| 164 |
+
determine a minimum cut. Default value: None.
|
| 165 |
+
|
| 166 |
+
Returns
|
| 167 |
+
-------
|
| 168 |
+
R : NetworkX DiGraph
|
| 169 |
+
Residual network after computing the maximum flow.
|
| 170 |
+
|
| 171 |
+
Raises
|
| 172 |
+
------
|
| 173 |
+
NetworkXError
|
| 174 |
+
The algorithm does not support MultiGraph and MultiDiGraph. If
|
| 175 |
+
the input graph is an instance of one of these two classes, a
|
| 176 |
+
NetworkXError is raised.
|
| 177 |
+
|
| 178 |
+
NetworkXUnbounded
|
| 179 |
+
If the graph has a path of infinite capacity, the value of a
|
| 180 |
+
feasible flow on the graph is unbounded above and the function
|
| 181 |
+
raises a NetworkXUnbounded.
|
| 182 |
+
|
| 183 |
+
See also
|
| 184 |
+
--------
|
| 185 |
+
:meth:`maximum_flow`
|
| 186 |
+
:meth:`minimum_cut`
|
| 187 |
+
:meth:`preflow_push`
|
| 188 |
+
:meth:`shortest_augmenting_path`
|
| 189 |
+
|
| 190 |
+
Notes
|
| 191 |
+
-----
|
| 192 |
+
The residual network :samp:`R` from an input graph :samp:`G` has the
|
| 193 |
+
same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
|
| 194 |
+
of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
|
| 195 |
+
self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
|
| 196 |
+
in :samp:`G`.
|
| 197 |
+
|
| 198 |
+
For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
|
| 199 |
+
is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
|
| 200 |
+
in :samp:`G` or zero otherwise. If the capacity is infinite,
|
| 201 |
+
:samp:`R[u][v]['capacity']` will have a high arbitrary finite value
|
| 202 |
+
that does not affect the solution of the problem. This value is stored in
|
| 203 |
+
:samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
|
| 204 |
+
:samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
|
| 205 |
+
satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.
|
| 206 |
+
|
| 207 |
+
The flow value, defined as the total flow into :samp:`t`, the sink, is
|
| 208 |
+
stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not
|
| 209 |
+
specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such
|
| 210 |
+
that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
|
| 211 |
+
:samp:`s`-:samp:`t` cut.
|
| 212 |
+
|
| 213 |
+
Examples
|
| 214 |
+
--------
|
| 215 |
+
>>> from networkx.algorithms.flow import edmonds_karp
|
| 216 |
+
|
| 217 |
+
The functions that implement flow algorithms and output a residual
|
| 218 |
+
network, such as this one, are not imported to the base NetworkX
|
| 219 |
+
namespace, so you have to explicitly import them from the flow package.
|
| 220 |
+
|
| 221 |
+
>>> G = nx.DiGraph()
|
| 222 |
+
>>> G.add_edge("x", "a", capacity=3.0)
|
| 223 |
+
>>> G.add_edge("x", "b", capacity=1.0)
|
| 224 |
+
>>> G.add_edge("a", "c", capacity=3.0)
|
| 225 |
+
>>> G.add_edge("b", "c", capacity=5.0)
|
| 226 |
+
>>> G.add_edge("b", "d", capacity=4.0)
|
| 227 |
+
>>> G.add_edge("d", "e", capacity=2.0)
|
| 228 |
+
>>> G.add_edge("c", "y", capacity=2.0)
|
| 229 |
+
>>> G.add_edge("e", "y", capacity=3.0)
|
| 230 |
+
>>> R = edmonds_karp(G, "x", "y")
|
| 231 |
+
>>> flow_value = nx.maximum_flow_value(G, "x", "y")
|
| 232 |
+
>>> flow_value
|
| 233 |
+
3.0
|
| 234 |
+
>>> flow_value == R.graph["flow_value"]
|
| 235 |
+
True
|
| 236 |
+
|
| 237 |
+
"""
|
| 238 |
+
R = edmonds_karp_impl(G, s, t, capacity, residual, cutoff)
|
| 239 |
+
R.graph["algorithm"] = "edmonds_karp"
|
| 240 |
+
nx._clear_cache(R)
|
| 241 |
+
return R
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/mincost.py
ADDED
|
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Minimum cost flow algorithms on directed connected graphs.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
__all__ = ["min_cost_flow_cost", "min_cost_flow", "cost_of_flow", "max_flow_min_cost"]
|
| 6 |
+
|
| 7 |
+
import networkx as nx
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@nx._dispatchable(
|
| 11 |
+
node_attrs="demand", edge_attrs={"capacity": float("inf"), "weight": 0}
|
| 12 |
+
)
|
| 13 |
+
def min_cost_flow_cost(G, demand="demand", capacity="capacity", weight="weight"):
|
| 14 |
+
r"""Find the cost of a minimum cost flow satisfying all demands in digraph G.
|
| 15 |
+
|
| 16 |
+
G is a digraph with edge costs and capacities and in which nodes
|
| 17 |
+
have demand, i.e., they want to send or receive some amount of
|
| 18 |
+
flow. A negative demand means that the node wants to send flow, a
|
| 19 |
+
positive demand means that the node want to receive flow. A flow on
|
| 20 |
+
the digraph G satisfies all demand if the net flow into each node
|
| 21 |
+
is equal to the demand of that node.
|
| 22 |
+
|
| 23 |
+
Parameters
|
| 24 |
+
----------
|
| 25 |
+
G : NetworkX graph
|
| 26 |
+
DiGraph on which a minimum cost flow satisfying all demands is
|
| 27 |
+
to be found.
|
| 28 |
+
|
| 29 |
+
demand : string
|
| 30 |
+
Nodes of the graph G are expected to have an attribute demand
|
| 31 |
+
that indicates how much flow a node wants to send (negative
|
| 32 |
+
demand) or receive (positive demand). Note that the sum of the
|
| 33 |
+
demands should be 0 otherwise the problem in not feasible. If
|
| 34 |
+
this attribute is not present, a node is considered to have 0
|
| 35 |
+
demand. Default value: 'demand'.
|
| 36 |
+
|
| 37 |
+
capacity : string
|
| 38 |
+
Edges of the graph G are expected to have an attribute capacity
|
| 39 |
+
that indicates how much flow the edge can support. If this
|
| 40 |
+
attribute is not present, the edge is considered to have
|
| 41 |
+
infinite capacity. Default value: 'capacity'.
|
| 42 |
+
|
| 43 |
+
weight : string
|
| 44 |
+
Edges of the graph G are expected to have an attribute weight
|
| 45 |
+
that indicates the cost incurred by sending one unit of flow on
|
| 46 |
+
that edge. If not present, the weight is considered to be 0.
|
| 47 |
+
Default value: 'weight'.
|
| 48 |
+
|
| 49 |
+
Returns
|
| 50 |
+
-------
|
| 51 |
+
flowCost : integer, float
|
| 52 |
+
Cost of a minimum cost flow satisfying all demands.
|
| 53 |
+
|
| 54 |
+
Raises
|
| 55 |
+
------
|
| 56 |
+
NetworkXError
|
| 57 |
+
This exception is raised if the input graph is not directed or
|
| 58 |
+
not connected.
|
| 59 |
+
|
| 60 |
+
NetworkXUnfeasible
|
| 61 |
+
This exception is raised in the following situations:
|
| 62 |
+
|
| 63 |
+
* The sum of the demands is not zero. Then, there is no
|
| 64 |
+
flow satisfying all demands.
|
| 65 |
+
* There is no flow satisfying all demand.
|
| 66 |
+
|
| 67 |
+
NetworkXUnbounded
|
| 68 |
+
This exception is raised if the digraph G has a cycle of
|
| 69 |
+
negative cost and infinite capacity. Then, the cost of a flow
|
| 70 |
+
satisfying all demands is unbounded below.
|
| 71 |
+
|
| 72 |
+
See also
|
| 73 |
+
--------
|
| 74 |
+
cost_of_flow, max_flow_min_cost, min_cost_flow, network_simplex
|
| 75 |
+
|
| 76 |
+
Notes
|
| 77 |
+
-----
|
| 78 |
+
This algorithm is not guaranteed to work if edge weights or demands
|
| 79 |
+
are floating point numbers (overflows and roundoff errors can
|
| 80 |
+
cause problems). As a workaround you can use integer numbers by
|
| 81 |
+
multiplying the relevant edge attributes by a convenient
|
| 82 |
+
constant factor (eg 100).
|
| 83 |
+
|
| 84 |
+
Examples
|
| 85 |
+
--------
|
| 86 |
+
A simple example of a min cost flow problem.
|
| 87 |
+
|
| 88 |
+
>>> G = nx.DiGraph()
|
| 89 |
+
>>> G.add_node("a", demand=-5)
|
| 90 |
+
>>> G.add_node("d", demand=5)
|
| 91 |
+
>>> G.add_edge("a", "b", weight=3, capacity=4)
|
| 92 |
+
>>> G.add_edge("a", "c", weight=6, capacity=10)
|
| 93 |
+
>>> G.add_edge("b", "d", weight=1, capacity=9)
|
| 94 |
+
>>> G.add_edge("c", "d", weight=2, capacity=5)
|
| 95 |
+
>>> flowCost = nx.min_cost_flow_cost(G)
|
| 96 |
+
>>> flowCost
|
| 97 |
+
24
|
| 98 |
+
"""
|
| 99 |
+
return nx.network_simplex(G, demand=demand, capacity=capacity, weight=weight)[0]
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
@nx._dispatchable(
|
| 103 |
+
node_attrs="demand", edge_attrs={"capacity": float("inf"), "weight": 0}
|
| 104 |
+
)
|
| 105 |
+
def min_cost_flow(G, demand="demand", capacity="capacity", weight="weight"):
|
| 106 |
+
r"""Returns a minimum cost flow satisfying all demands in digraph G.
|
| 107 |
+
|
| 108 |
+
G is a digraph with edge costs and capacities and in which nodes
|
| 109 |
+
have demand, i.e., they want to send or receive some amount of
|
| 110 |
+
flow. A negative demand means that the node wants to send flow, a
|
| 111 |
+
positive demand means that the node want to receive flow. A flow on
|
| 112 |
+
the digraph G satisfies all demand if the net flow into each node
|
| 113 |
+
is equal to the demand of that node.
|
| 114 |
+
|
| 115 |
+
Parameters
|
| 116 |
+
----------
|
| 117 |
+
G : NetworkX graph
|
| 118 |
+
DiGraph on which a minimum cost flow satisfying all demands is
|
| 119 |
+
to be found.
|
| 120 |
+
|
| 121 |
+
demand : string
|
| 122 |
+
Nodes of the graph G are expected to have an attribute demand
|
| 123 |
+
that indicates how much flow a node wants to send (negative
|
| 124 |
+
demand) or receive (positive demand). Note that the sum of the
|
| 125 |
+
demands should be 0 otherwise the problem in not feasible. If
|
| 126 |
+
this attribute is not present, a node is considered to have 0
|
| 127 |
+
demand. Default value: 'demand'.
|
| 128 |
+
|
| 129 |
+
capacity : string
|
| 130 |
+
Edges of the graph G are expected to have an attribute capacity
|
| 131 |
+
that indicates how much flow the edge can support. If this
|
| 132 |
+
attribute is not present, the edge is considered to have
|
| 133 |
+
infinite capacity. Default value: 'capacity'.
|
| 134 |
+
|
| 135 |
+
weight : string
|
| 136 |
+
Edges of the graph G are expected to have an attribute weight
|
| 137 |
+
that indicates the cost incurred by sending one unit of flow on
|
| 138 |
+
that edge. If not present, the weight is considered to be 0.
|
| 139 |
+
Default value: 'weight'.
|
| 140 |
+
|
| 141 |
+
Returns
|
| 142 |
+
-------
|
| 143 |
+
flowDict : dictionary
|
| 144 |
+
Dictionary of dictionaries keyed by nodes such that
|
| 145 |
+
flowDict[u][v] is the flow edge (u, v).
|
| 146 |
+
|
| 147 |
+
Raises
|
| 148 |
+
------
|
| 149 |
+
NetworkXError
|
| 150 |
+
This exception is raised if the input graph is not directed or
|
| 151 |
+
not connected.
|
| 152 |
+
|
| 153 |
+
NetworkXUnfeasible
|
| 154 |
+
This exception is raised in the following situations:
|
| 155 |
+
|
| 156 |
+
* The sum of the demands is not zero. Then, there is no
|
| 157 |
+
flow satisfying all demands.
|
| 158 |
+
* There is no flow satisfying all demand.
|
| 159 |
+
|
| 160 |
+
NetworkXUnbounded
|
| 161 |
+
This exception is raised if the digraph G has a cycle of
|
| 162 |
+
negative cost and infinite capacity. Then, the cost of a flow
|
| 163 |
+
satisfying all demands is unbounded below.
|
| 164 |
+
|
| 165 |
+
See also
|
| 166 |
+
--------
|
| 167 |
+
cost_of_flow, max_flow_min_cost, min_cost_flow_cost, network_simplex
|
| 168 |
+
|
| 169 |
+
Notes
|
| 170 |
+
-----
|
| 171 |
+
This algorithm is not guaranteed to work if edge weights or demands
|
| 172 |
+
are floating point numbers (overflows and roundoff errors can
|
| 173 |
+
cause problems). As a workaround you can use integer numbers by
|
| 174 |
+
multiplying the relevant edge attributes by a convenient
|
| 175 |
+
constant factor (eg 100).
|
| 176 |
+
|
| 177 |
+
Examples
|
| 178 |
+
--------
|
| 179 |
+
A simple example of a min cost flow problem.
|
| 180 |
+
|
| 181 |
+
>>> G = nx.DiGraph()
|
| 182 |
+
>>> G.add_node("a", demand=-5)
|
| 183 |
+
>>> G.add_node("d", demand=5)
|
| 184 |
+
>>> G.add_edge("a", "b", weight=3, capacity=4)
|
| 185 |
+
>>> G.add_edge("a", "c", weight=6, capacity=10)
|
| 186 |
+
>>> G.add_edge("b", "d", weight=1, capacity=9)
|
| 187 |
+
>>> G.add_edge("c", "d", weight=2, capacity=5)
|
| 188 |
+
>>> flowDict = nx.min_cost_flow(G)
|
| 189 |
+
>>> flowDict
|
| 190 |
+
{'a': {'b': 4, 'c': 1}, 'd': {}, 'b': {'d': 4}, 'c': {'d': 1}}
|
| 191 |
+
"""
|
| 192 |
+
return nx.network_simplex(G, demand=demand, capacity=capacity, weight=weight)[1]
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
@nx._dispatchable(edge_attrs={"weight": 0})
|
| 196 |
+
def cost_of_flow(G, flowDict, weight="weight"):
|
| 197 |
+
"""Compute the cost of the flow given by flowDict on graph G.
|
| 198 |
+
|
| 199 |
+
Note that this function does not check for the validity of the
|
| 200 |
+
flow flowDict. This function will fail if the graph G and the
|
| 201 |
+
flow don't have the same edge set.
|
| 202 |
+
|
| 203 |
+
Parameters
|
| 204 |
+
----------
|
| 205 |
+
G : NetworkX graph
|
| 206 |
+
DiGraph on which a minimum cost flow satisfying all demands is
|
| 207 |
+
to be found.
|
| 208 |
+
|
| 209 |
+
weight : string
|
| 210 |
+
Edges of the graph G are expected to have an attribute weight
|
| 211 |
+
that indicates the cost incurred by sending one unit of flow on
|
| 212 |
+
that edge. If not present, the weight is considered to be 0.
|
| 213 |
+
Default value: 'weight'.
|
| 214 |
+
|
| 215 |
+
flowDict : dictionary
|
| 216 |
+
Dictionary of dictionaries keyed by nodes such that
|
| 217 |
+
flowDict[u][v] is the flow edge (u, v).
|
| 218 |
+
|
| 219 |
+
Returns
|
| 220 |
+
-------
|
| 221 |
+
cost : Integer, float
|
| 222 |
+
The total cost of the flow. This is given by the sum over all
|
| 223 |
+
edges of the product of the edge's flow and the edge's weight.
|
| 224 |
+
|
| 225 |
+
See also
|
| 226 |
+
--------
|
| 227 |
+
max_flow_min_cost, min_cost_flow, min_cost_flow_cost, network_simplex
|
| 228 |
+
|
| 229 |
+
Notes
|
| 230 |
+
-----
|
| 231 |
+
This algorithm is not guaranteed to work if edge weights or demands
|
| 232 |
+
are floating point numbers (overflows and roundoff errors can
|
| 233 |
+
cause problems). As a workaround you can use integer numbers by
|
| 234 |
+
multiplying the relevant edge attributes by a convenient
|
| 235 |
+
constant factor (eg 100).
|
| 236 |
+
|
| 237 |
+
Examples
|
| 238 |
+
--------
|
| 239 |
+
>>> G = nx.DiGraph()
|
| 240 |
+
>>> G.add_node("a", demand=-5)
|
| 241 |
+
>>> G.add_node("d", demand=5)
|
| 242 |
+
>>> G.add_edge("a", "b", weight=3, capacity=4)
|
| 243 |
+
>>> G.add_edge("a", "c", weight=6, capacity=10)
|
| 244 |
+
>>> G.add_edge("b", "d", weight=1, capacity=9)
|
| 245 |
+
>>> G.add_edge("c", "d", weight=2, capacity=5)
|
| 246 |
+
>>> flowDict = nx.min_cost_flow(G)
|
| 247 |
+
>>> flowDict
|
| 248 |
+
{'a': {'b': 4, 'c': 1}, 'd': {}, 'b': {'d': 4}, 'c': {'d': 1}}
|
| 249 |
+
>>> nx.cost_of_flow(G, flowDict)
|
| 250 |
+
24
|
| 251 |
+
"""
|
| 252 |
+
return sum((flowDict[u][v] * d.get(weight, 0) for u, v, d in G.edges(data=True)))
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
@nx._dispatchable(edge_attrs={"capacity": float("inf"), "weight": 0})
|
| 256 |
+
def max_flow_min_cost(G, s, t, capacity="capacity", weight="weight"):
|
| 257 |
+
"""Returns a maximum (s, t)-flow of minimum cost.
|
| 258 |
+
|
| 259 |
+
G is a digraph with edge costs and capacities. There is a source
|
| 260 |
+
node s and a sink node t. This function finds a maximum flow from
|
| 261 |
+
s to t whose total cost is minimized.
|
| 262 |
+
|
| 263 |
+
Parameters
|
| 264 |
+
----------
|
| 265 |
+
G : NetworkX graph
|
| 266 |
+
DiGraph on which a minimum cost flow satisfying all demands is
|
| 267 |
+
to be found.
|
| 268 |
+
|
| 269 |
+
s: node label
|
| 270 |
+
Source of the flow.
|
| 271 |
+
|
| 272 |
+
t: node label
|
| 273 |
+
Destination of the flow.
|
| 274 |
+
|
| 275 |
+
capacity: string
|
| 276 |
+
Edges of the graph G are expected to have an attribute capacity
|
| 277 |
+
that indicates how much flow the edge can support. If this
|
| 278 |
+
attribute is not present, the edge is considered to have
|
| 279 |
+
infinite capacity. Default value: 'capacity'.
|
| 280 |
+
|
| 281 |
+
weight: string
|
| 282 |
+
Edges of the graph G are expected to have an attribute weight
|
| 283 |
+
that indicates the cost incurred by sending one unit of flow on
|
| 284 |
+
that edge. If not present, the weight is considered to be 0.
|
| 285 |
+
Default value: 'weight'.
|
| 286 |
+
|
| 287 |
+
Returns
|
| 288 |
+
-------
|
| 289 |
+
flowDict: dictionary
|
| 290 |
+
Dictionary of dictionaries keyed by nodes such that
|
| 291 |
+
flowDict[u][v] is the flow edge (u, v).
|
| 292 |
+
|
| 293 |
+
Raises
|
| 294 |
+
------
|
| 295 |
+
NetworkXError
|
| 296 |
+
This exception is raised if the input graph is not directed or
|
| 297 |
+
not connected.
|
| 298 |
+
|
| 299 |
+
NetworkXUnbounded
|
| 300 |
+
This exception is raised if there is an infinite capacity path
|
| 301 |
+
from s to t in G. In this case there is no maximum flow. This
|
| 302 |
+
exception is also raised if the digraph G has a cycle of
|
| 303 |
+
negative cost and infinite capacity. Then, the cost of a flow
|
| 304 |
+
is unbounded below.
|
| 305 |
+
|
| 306 |
+
See also
|
| 307 |
+
--------
|
| 308 |
+
cost_of_flow, min_cost_flow, min_cost_flow_cost, network_simplex
|
| 309 |
+
|
| 310 |
+
Notes
|
| 311 |
+
-----
|
| 312 |
+
This algorithm is not guaranteed to work if edge weights or demands
|
| 313 |
+
are floating point numbers (overflows and roundoff errors can
|
| 314 |
+
cause problems). As a workaround you can use integer numbers by
|
| 315 |
+
multiplying the relevant edge attributes by a convenient
|
| 316 |
+
constant factor (eg 100).
|
| 317 |
+
|
| 318 |
+
Examples
|
| 319 |
+
--------
|
| 320 |
+
>>> G = nx.DiGraph()
|
| 321 |
+
>>> G.add_edges_from(
|
| 322 |
+
... [
|
| 323 |
+
... (1, 2, {"capacity": 12, "weight": 4}),
|
| 324 |
+
... (1, 3, {"capacity": 20, "weight": 6}),
|
| 325 |
+
... (2, 3, {"capacity": 6, "weight": -3}),
|
| 326 |
+
... (2, 6, {"capacity": 14, "weight": 1}),
|
| 327 |
+
... (3, 4, {"weight": 9}),
|
| 328 |
+
... (3, 5, {"capacity": 10, "weight": 5}),
|
| 329 |
+
... (4, 2, {"capacity": 19, "weight": 13}),
|
| 330 |
+
... (4, 5, {"capacity": 4, "weight": 0}),
|
| 331 |
+
... (5, 7, {"capacity": 28, "weight": 2}),
|
| 332 |
+
... (6, 5, {"capacity": 11, "weight": 1}),
|
| 333 |
+
... (6, 7, {"weight": 8}),
|
| 334 |
+
... (7, 4, {"capacity": 6, "weight": 6}),
|
| 335 |
+
... ]
|
| 336 |
+
... )
|
| 337 |
+
>>> mincostFlow = nx.max_flow_min_cost(G, 1, 7)
|
| 338 |
+
>>> mincost = nx.cost_of_flow(G, mincostFlow)
|
| 339 |
+
>>> mincost
|
| 340 |
+
373
|
| 341 |
+
>>> from networkx.algorithms.flow import maximum_flow
|
| 342 |
+
>>> maxFlow = maximum_flow(G, 1, 7)[1]
|
| 343 |
+
>>> nx.cost_of_flow(G, maxFlow) >= mincost
|
| 344 |
+
True
|
| 345 |
+
>>> mincostFlowValue = sum((mincostFlow[u][7] for u in G.predecessors(7))) - sum(
|
| 346 |
+
... (mincostFlow[7][v] for v in G.successors(7))
|
| 347 |
+
... )
|
| 348 |
+
>>> mincostFlowValue == nx.maximum_flow_value(G, 1, 7)
|
| 349 |
+
True
|
| 350 |
+
|
| 351 |
+
"""
|
| 352 |
+
maxFlow = nx.maximum_flow_value(G, s, t, capacity=capacity)
|
| 353 |
+
H = nx.DiGraph(G)
|
| 354 |
+
H.add_node(s, demand=-maxFlow)
|
| 355 |
+
H.add_node(t, demand=maxFlow)
|
| 356 |
+
return min_cost_flow(H, capacity=capacity, weight=weight)
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/shortestaugmentingpath.py
ADDED
|
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Shortest augmenting path algorithm for maximum flow problems.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from collections import deque
|
| 6 |
+
|
| 7 |
+
import networkx as nx
|
| 8 |
+
|
| 9 |
+
from .edmondskarp import edmonds_karp_core
|
| 10 |
+
from .utils import CurrentEdge, build_residual_network
|
| 11 |
+
|
| 12 |
+
__all__ = ["shortest_augmenting_path"]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def shortest_augmenting_path_impl(G, s, t, capacity, residual, two_phase, cutoff):
|
| 16 |
+
"""Implementation of the shortest augmenting path algorithm."""
|
| 17 |
+
if s not in G:
|
| 18 |
+
raise nx.NetworkXError(f"node {str(s)} not in graph")
|
| 19 |
+
if t not in G:
|
| 20 |
+
raise nx.NetworkXError(f"node {str(t)} not in graph")
|
| 21 |
+
if s == t:
|
| 22 |
+
raise nx.NetworkXError("source and sink are the same node")
|
| 23 |
+
|
| 24 |
+
if residual is None:
|
| 25 |
+
R = build_residual_network(G, capacity)
|
| 26 |
+
else:
|
| 27 |
+
R = residual
|
| 28 |
+
|
| 29 |
+
R_nodes = R.nodes
|
| 30 |
+
R_pred = R.pred
|
| 31 |
+
R_succ = R.succ
|
| 32 |
+
|
| 33 |
+
# Initialize/reset the residual network.
|
| 34 |
+
for u in R:
|
| 35 |
+
for e in R_succ[u].values():
|
| 36 |
+
e["flow"] = 0
|
| 37 |
+
|
| 38 |
+
# Initialize heights of the nodes.
|
| 39 |
+
heights = {t: 0}
|
| 40 |
+
q = deque([(t, 0)])
|
| 41 |
+
while q:
|
| 42 |
+
u, height = q.popleft()
|
| 43 |
+
height += 1
|
| 44 |
+
for v, attr in R_pred[u].items():
|
| 45 |
+
if v not in heights and attr["flow"] < attr["capacity"]:
|
| 46 |
+
heights[v] = height
|
| 47 |
+
q.append((v, height))
|
| 48 |
+
|
| 49 |
+
if s not in heights:
|
| 50 |
+
# t is not reachable from s in the residual network. The maximum flow
|
| 51 |
+
# must be zero.
|
| 52 |
+
R.graph["flow_value"] = 0
|
| 53 |
+
return R
|
| 54 |
+
|
| 55 |
+
n = len(G)
|
| 56 |
+
m = R.size() / 2
|
| 57 |
+
|
| 58 |
+
# Initialize heights and 'current edge' data structures of the nodes.
|
| 59 |
+
for u in R:
|
| 60 |
+
R_nodes[u]["height"] = heights[u] if u in heights else n
|
| 61 |
+
R_nodes[u]["curr_edge"] = CurrentEdge(R_succ[u])
|
| 62 |
+
|
| 63 |
+
# Initialize counts of nodes in each level.
|
| 64 |
+
counts = [0] * (2 * n - 1)
|
| 65 |
+
for u in R:
|
| 66 |
+
counts[R_nodes[u]["height"]] += 1
|
| 67 |
+
|
| 68 |
+
inf = R.graph["inf"]
|
| 69 |
+
|
| 70 |
+
def augment(path):
|
| 71 |
+
"""Augment flow along a path from s to t."""
|
| 72 |
+
# Determine the path residual capacity.
|
| 73 |
+
flow = inf
|
| 74 |
+
it = iter(path)
|
| 75 |
+
u = next(it)
|
| 76 |
+
for v in it:
|
| 77 |
+
attr = R_succ[u][v]
|
| 78 |
+
flow = min(flow, attr["capacity"] - attr["flow"])
|
| 79 |
+
u = v
|
| 80 |
+
if flow * 2 > inf:
|
| 81 |
+
raise nx.NetworkXUnbounded("Infinite capacity path, flow unbounded above.")
|
| 82 |
+
# Augment flow along the path.
|
| 83 |
+
it = iter(path)
|
| 84 |
+
u = next(it)
|
| 85 |
+
for v in it:
|
| 86 |
+
R_succ[u][v]["flow"] += flow
|
| 87 |
+
R_succ[v][u]["flow"] -= flow
|
| 88 |
+
u = v
|
| 89 |
+
return flow
|
| 90 |
+
|
| 91 |
+
def relabel(u):
|
| 92 |
+
"""Relabel a node to create an admissible edge."""
|
| 93 |
+
height = n - 1
|
| 94 |
+
for v, attr in R_succ[u].items():
|
| 95 |
+
if attr["flow"] < attr["capacity"]:
|
| 96 |
+
height = min(height, R_nodes[v]["height"])
|
| 97 |
+
return height + 1
|
| 98 |
+
|
| 99 |
+
if cutoff is None:
|
| 100 |
+
cutoff = float("inf")
|
| 101 |
+
|
| 102 |
+
# Phase 1: Look for shortest augmenting paths using depth-first search.
|
| 103 |
+
|
| 104 |
+
flow_value = 0
|
| 105 |
+
path = [s]
|
| 106 |
+
u = s
|
| 107 |
+
d = n if not two_phase else int(min(m**0.5, 2 * n ** (2.0 / 3)))
|
| 108 |
+
done = R_nodes[s]["height"] >= d
|
| 109 |
+
while not done:
|
| 110 |
+
height = R_nodes[u]["height"]
|
| 111 |
+
curr_edge = R_nodes[u]["curr_edge"]
|
| 112 |
+
# Depth-first search for the next node on the path to t.
|
| 113 |
+
while True:
|
| 114 |
+
v, attr = curr_edge.get()
|
| 115 |
+
if height == R_nodes[v]["height"] + 1 and attr["flow"] < attr["capacity"]:
|
| 116 |
+
# Advance to the next node following an admissible edge.
|
| 117 |
+
path.append(v)
|
| 118 |
+
u = v
|
| 119 |
+
break
|
| 120 |
+
try:
|
| 121 |
+
curr_edge.move_to_next()
|
| 122 |
+
except StopIteration:
|
| 123 |
+
counts[height] -= 1
|
| 124 |
+
if counts[height] == 0:
|
| 125 |
+
# Gap heuristic: If relabeling causes a level to become
|
| 126 |
+
# empty, a minimum cut has been identified. The algorithm
|
| 127 |
+
# can now be terminated.
|
| 128 |
+
R.graph["flow_value"] = flow_value
|
| 129 |
+
return R
|
| 130 |
+
height = relabel(u)
|
| 131 |
+
if u == s and height >= d:
|
| 132 |
+
if not two_phase:
|
| 133 |
+
# t is disconnected from s in the residual network. No
|
| 134 |
+
# more augmenting paths exist.
|
| 135 |
+
R.graph["flow_value"] = flow_value
|
| 136 |
+
return R
|
| 137 |
+
else:
|
| 138 |
+
# t is at least d steps away from s. End of phase 1.
|
| 139 |
+
done = True
|
| 140 |
+
break
|
| 141 |
+
counts[height] += 1
|
| 142 |
+
R_nodes[u]["height"] = height
|
| 143 |
+
if u != s:
|
| 144 |
+
# After relabeling, the last edge on the path is no longer
|
| 145 |
+
# admissible. Retreat one step to look for an alternative.
|
| 146 |
+
path.pop()
|
| 147 |
+
u = path[-1]
|
| 148 |
+
break
|
| 149 |
+
if u == t:
|
| 150 |
+
# t is reached. Augment flow along the path and reset it for a new
|
| 151 |
+
# depth-first search.
|
| 152 |
+
flow_value += augment(path)
|
| 153 |
+
if flow_value >= cutoff:
|
| 154 |
+
R.graph["flow_value"] = flow_value
|
| 155 |
+
return R
|
| 156 |
+
path = [s]
|
| 157 |
+
u = s
|
| 158 |
+
|
| 159 |
+
# Phase 2: Look for shortest augmenting paths using breadth-first search.
|
| 160 |
+
flow_value += edmonds_karp_core(R, s, t, cutoff - flow_value)
|
| 161 |
+
|
| 162 |
+
R.graph["flow_value"] = flow_value
|
| 163 |
+
return R
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
@nx._dispatchable(edge_attrs={"capacity": float("inf")}, returns_graph=True)
|
| 167 |
+
def shortest_augmenting_path(
|
| 168 |
+
G,
|
| 169 |
+
s,
|
| 170 |
+
t,
|
| 171 |
+
capacity="capacity",
|
| 172 |
+
residual=None,
|
| 173 |
+
value_only=False,
|
| 174 |
+
two_phase=False,
|
| 175 |
+
cutoff=None,
|
| 176 |
+
):
|
| 177 |
+
r"""Find a maximum single-commodity flow using the shortest augmenting path
|
| 178 |
+
algorithm.
|
| 179 |
+
|
| 180 |
+
This function returns the residual network resulting after computing
|
| 181 |
+
the maximum flow. See below for details about the conventions
|
| 182 |
+
NetworkX uses for defining residual networks.
|
| 183 |
+
|
| 184 |
+
This algorithm has a running time of $O(n^2 m)$ for $n$ nodes and $m$
|
| 185 |
+
edges.
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
Parameters
|
| 189 |
+
----------
|
| 190 |
+
G : NetworkX graph
|
| 191 |
+
Edges of the graph are expected to have an attribute called
|
| 192 |
+
'capacity'. If this attribute is not present, the edge is
|
| 193 |
+
considered to have infinite capacity.
|
| 194 |
+
|
| 195 |
+
s : node
|
| 196 |
+
Source node for the flow.
|
| 197 |
+
|
| 198 |
+
t : node
|
| 199 |
+
Sink node for the flow.
|
| 200 |
+
|
| 201 |
+
capacity : string
|
| 202 |
+
Edges of the graph G are expected to have an attribute capacity
|
| 203 |
+
that indicates how much flow the edge can support. If this
|
| 204 |
+
attribute is not present, the edge is considered to have
|
| 205 |
+
infinite capacity. Default value: 'capacity'.
|
| 206 |
+
|
| 207 |
+
residual : NetworkX graph
|
| 208 |
+
Residual network on which the algorithm is to be executed. If None, a
|
| 209 |
+
new residual network is created. Default value: None.
|
| 210 |
+
|
| 211 |
+
value_only : bool
|
| 212 |
+
If True compute only the value of the maximum flow. This parameter
|
| 213 |
+
will be ignored by this algorithm because it is not applicable.
|
| 214 |
+
|
| 215 |
+
two_phase : bool
|
| 216 |
+
If True, a two-phase variant is used. The two-phase variant improves
|
| 217 |
+
the running time on unit-capacity networks from $O(nm)$ to
|
| 218 |
+
$O(\min(n^{2/3}, m^{1/2}) m)$. Default value: False.
|
| 219 |
+
|
| 220 |
+
cutoff : integer, float
|
| 221 |
+
If specified, the algorithm will terminate when the flow value reaches
|
| 222 |
+
or exceeds the cutoff. In this case, it may be unable to immediately
|
| 223 |
+
determine a minimum cut. Default value: None.
|
| 224 |
+
|
| 225 |
+
Returns
|
| 226 |
+
-------
|
| 227 |
+
R : NetworkX DiGraph
|
| 228 |
+
Residual network after computing the maximum flow.
|
| 229 |
+
|
| 230 |
+
Raises
|
| 231 |
+
------
|
| 232 |
+
NetworkXError
|
| 233 |
+
The algorithm does not support MultiGraph and MultiDiGraph. If
|
| 234 |
+
the input graph is an instance of one of these two classes, a
|
| 235 |
+
NetworkXError is raised.
|
| 236 |
+
|
| 237 |
+
NetworkXUnbounded
|
| 238 |
+
If the graph has a path of infinite capacity, the value of a
|
| 239 |
+
feasible flow on the graph is unbounded above and the function
|
| 240 |
+
raises a NetworkXUnbounded.
|
| 241 |
+
|
| 242 |
+
See also
|
| 243 |
+
--------
|
| 244 |
+
:meth:`maximum_flow`
|
| 245 |
+
:meth:`minimum_cut`
|
| 246 |
+
:meth:`edmonds_karp`
|
| 247 |
+
:meth:`preflow_push`
|
| 248 |
+
|
| 249 |
+
Notes
|
| 250 |
+
-----
|
| 251 |
+
The residual network :samp:`R` from an input graph :samp:`G` has the
|
| 252 |
+
same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
|
| 253 |
+
of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
|
| 254 |
+
self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
|
| 255 |
+
in :samp:`G`.
|
| 256 |
+
|
| 257 |
+
For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
|
| 258 |
+
is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
|
| 259 |
+
in :samp:`G` or zero otherwise. If the capacity is infinite,
|
| 260 |
+
:samp:`R[u][v]['capacity']` will have a high arbitrary finite value
|
| 261 |
+
that does not affect the solution of the problem. This value is stored in
|
| 262 |
+
:samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
|
| 263 |
+
:samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
|
| 264 |
+
satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.
|
| 265 |
+
|
| 266 |
+
The flow value, defined as the total flow into :samp:`t`, the sink, is
|
| 267 |
+
stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not
|
| 268 |
+
specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such
|
| 269 |
+
that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
|
| 270 |
+
:samp:`s`-:samp:`t` cut.
|
| 271 |
+
|
| 272 |
+
Examples
|
| 273 |
+
--------
|
| 274 |
+
>>> from networkx.algorithms.flow import shortest_augmenting_path
|
| 275 |
+
|
| 276 |
+
The functions that implement flow algorithms and output a residual
|
| 277 |
+
network, such as this one, are not imported to the base NetworkX
|
| 278 |
+
namespace, so you have to explicitly import them from the flow package.
|
| 279 |
+
|
| 280 |
+
>>> G = nx.DiGraph()
|
| 281 |
+
>>> G.add_edge("x", "a", capacity=3.0)
|
| 282 |
+
>>> G.add_edge("x", "b", capacity=1.0)
|
| 283 |
+
>>> G.add_edge("a", "c", capacity=3.0)
|
| 284 |
+
>>> G.add_edge("b", "c", capacity=5.0)
|
| 285 |
+
>>> G.add_edge("b", "d", capacity=4.0)
|
| 286 |
+
>>> G.add_edge("d", "e", capacity=2.0)
|
| 287 |
+
>>> G.add_edge("c", "y", capacity=2.0)
|
| 288 |
+
>>> G.add_edge("e", "y", capacity=3.0)
|
| 289 |
+
>>> R = shortest_augmenting_path(G, "x", "y")
|
| 290 |
+
>>> flow_value = nx.maximum_flow_value(G, "x", "y")
|
| 291 |
+
>>> flow_value
|
| 292 |
+
3.0
|
| 293 |
+
>>> flow_value == R.graph["flow_value"]
|
| 294 |
+
True
|
| 295 |
+
|
| 296 |
+
"""
|
| 297 |
+
R = shortest_augmenting_path_impl(G, s, t, capacity, residual, two_phase, cutoff)
|
| 298 |
+
R.graph["algorithm"] = "shortest_augmenting_path"
|
| 299 |
+
nx._clear_cache(R)
|
| 300 |
+
return R
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__init__.py
ADDED
|
File without changes
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (203 Bytes). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/test_gomory_hu.cpython-311.pyc
ADDED
|
Binary file (9.75 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/test_maxflow.cpython-311.pyc
ADDED
|
Binary file (30.4 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/test_maxflow_large_graph.cpython-311.pyc
ADDED
|
Binary file (7.79 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/test_mincost.cpython-311.pyc
ADDED
|
Binary file (30.4 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/__pycache__/test_networksimplex.cpython-311.pyc
ADDED
|
Binary file (21.6 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/test_gomory_hu.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from itertools import combinations
|
| 2 |
+
|
| 3 |
+
import pytest
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
from networkx.algorithms.flow import (
|
| 7 |
+
boykov_kolmogorov,
|
| 8 |
+
dinitz,
|
| 9 |
+
edmonds_karp,
|
| 10 |
+
preflow_push,
|
| 11 |
+
shortest_augmenting_path,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
flow_funcs = [
|
| 15 |
+
boykov_kolmogorov,
|
| 16 |
+
dinitz,
|
| 17 |
+
edmonds_karp,
|
| 18 |
+
preflow_push,
|
| 19 |
+
shortest_augmenting_path,
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class TestGomoryHuTree:
|
| 24 |
+
def minimum_edge_weight(self, T, u, v):
|
| 25 |
+
path = nx.shortest_path(T, u, v, weight="weight")
|
| 26 |
+
return min((T[u][v]["weight"], (u, v)) for (u, v) in zip(path, path[1:]))
|
| 27 |
+
|
| 28 |
+
def compute_cutset(self, G, T_orig, edge):
|
| 29 |
+
T = T_orig.copy()
|
| 30 |
+
T.remove_edge(*edge)
|
| 31 |
+
U, V = list(nx.connected_components(T))
|
| 32 |
+
cutset = set()
|
| 33 |
+
for x, nbrs in ((n, G[n]) for n in U):
|
| 34 |
+
cutset.update((x, y) for y in nbrs if y in V)
|
| 35 |
+
return cutset
|
| 36 |
+
|
| 37 |
+
def test_default_flow_function_karate_club_graph(self):
|
| 38 |
+
G = nx.karate_club_graph()
|
| 39 |
+
nx.set_edge_attributes(G, 1, "capacity")
|
| 40 |
+
T = nx.gomory_hu_tree(G)
|
| 41 |
+
assert nx.is_tree(T)
|
| 42 |
+
for u, v in combinations(G, 2):
|
| 43 |
+
cut_value, edge = self.minimum_edge_weight(T, u, v)
|
| 44 |
+
assert nx.minimum_cut_value(G, u, v) == cut_value
|
| 45 |
+
|
| 46 |
+
def test_karate_club_graph(self):
|
| 47 |
+
G = nx.karate_club_graph()
|
| 48 |
+
nx.set_edge_attributes(G, 1, "capacity")
|
| 49 |
+
for flow_func in flow_funcs:
|
| 50 |
+
T = nx.gomory_hu_tree(G, flow_func=flow_func)
|
| 51 |
+
assert nx.is_tree(T)
|
| 52 |
+
for u, v in combinations(G, 2):
|
| 53 |
+
cut_value, edge = self.minimum_edge_weight(T, u, v)
|
| 54 |
+
assert nx.minimum_cut_value(G, u, v) == cut_value
|
| 55 |
+
|
| 56 |
+
def test_davis_southern_women_graph(self):
|
| 57 |
+
G = nx.davis_southern_women_graph()
|
| 58 |
+
nx.set_edge_attributes(G, 1, "capacity")
|
| 59 |
+
for flow_func in flow_funcs:
|
| 60 |
+
T = nx.gomory_hu_tree(G, flow_func=flow_func)
|
| 61 |
+
assert nx.is_tree(T)
|
| 62 |
+
for u, v in combinations(G, 2):
|
| 63 |
+
cut_value, edge = self.minimum_edge_weight(T, u, v)
|
| 64 |
+
assert nx.minimum_cut_value(G, u, v) == cut_value
|
| 65 |
+
|
| 66 |
+
def test_florentine_families_graph(self):
|
| 67 |
+
G = nx.florentine_families_graph()
|
| 68 |
+
nx.set_edge_attributes(G, 1, "capacity")
|
| 69 |
+
for flow_func in flow_funcs:
|
| 70 |
+
T = nx.gomory_hu_tree(G, flow_func=flow_func)
|
| 71 |
+
assert nx.is_tree(T)
|
| 72 |
+
for u, v in combinations(G, 2):
|
| 73 |
+
cut_value, edge = self.minimum_edge_weight(T, u, v)
|
| 74 |
+
assert nx.minimum_cut_value(G, u, v) == cut_value
|
| 75 |
+
|
| 76 |
+
@pytest.mark.slow
|
| 77 |
+
def test_les_miserables_graph_cutset(self):
|
| 78 |
+
G = nx.les_miserables_graph()
|
| 79 |
+
nx.set_edge_attributes(G, 1, "capacity")
|
| 80 |
+
for flow_func in flow_funcs:
|
| 81 |
+
T = nx.gomory_hu_tree(G, flow_func=flow_func)
|
| 82 |
+
assert nx.is_tree(T)
|
| 83 |
+
for u, v in combinations(G, 2):
|
| 84 |
+
cut_value, edge = self.minimum_edge_weight(T, u, v)
|
| 85 |
+
assert nx.minimum_cut_value(G, u, v) == cut_value
|
| 86 |
+
|
| 87 |
+
def test_karate_club_graph_cutset(self):
|
| 88 |
+
G = nx.karate_club_graph()
|
| 89 |
+
nx.set_edge_attributes(G, 1, "capacity")
|
| 90 |
+
T = nx.gomory_hu_tree(G)
|
| 91 |
+
assert nx.is_tree(T)
|
| 92 |
+
u, v = 0, 33
|
| 93 |
+
cut_value, edge = self.minimum_edge_weight(T, u, v)
|
| 94 |
+
cutset = self.compute_cutset(G, T, edge)
|
| 95 |
+
assert cut_value == len(cutset)
|
| 96 |
+
|
| 97 |
+
def test_wikipedia_example(self):
|
| 98 |
+
# Example from https://en.wikipedia.org/wiki/Gomory%E2%80%93Hu_tree
|
| 99 |
+
G = nx.Graph()
|
| 100 |
+
G.add_weighted_edges_from(
|
| 101 |
+
(
|
| 102 |
+
(0, 1, 1),
|
| 103 |
+
(0, 2, 7),
|
| 104 |
+
(1, 2, 1),
|
| 105 |
+
(1, 3, 3),
|
| 106 |
+
(1, 4, 2),
|
| 107 |
+
(2, 4, 4),
|
| 108 |
+
(3, 4, 1),
|
| 109 |
+
(3, 5, 6),
|
| 110 |
+
(4, 5, 2),
|
| 111 |
+
)
|
| 112 |
+
)
|
| 113 |
+
for flow_func in flow_funcs:
|
| 114 |
+
T = nx.gomory_hu_tree(G, capacity="weight", flow_func=flow_func)
|
| 115 |
+
assert nx.is_tree(T)
|
| 116 |
+
for u, v in combinations(G, 2):
|
| 117 |
+
cut_value, edge = self.minimum_edge_weight(T, u, v)
|
| 118 |
+
assert nx.minimum_cut_value(G, u, v, capacity="weight") == cut_value
|
| 119 |
+
|
| 120 |
+
def test_directed_raises(self):
|
| 121 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
| 122 |
+
G = nx.DiGraph()
|
| 123 |
+
T = nx.gomory_hu_tree(G)
|
| 124 |
+
|
| 125 |
+
def test_empty_raises(self):
|
| 126 |
+
with pytest.raises(nx.NetworkXError):
|
| 127 |
+
G = nx.empty_graph()
|
| 128 |
+
T = nx.gomory_hu_tree(G)
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/test_maxflow.py
ADDED
|
@@ -0,0 +1,573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Maximum flow algorithms test suite."""
|
| 2 |
+
|
| 3 |
+
import pytest
|
| 4 |
+
|
| 5 |
+
import networkx as nx
|
| 6 |
+
from networkx.algorithms.flow import (
|
| 7 |
+
boykov_kolmogorov,
|
| 8 |
+
build_flow_dict,
|
| 9 |
+
build_residual_network,
|
| 10 |
+
dinitz,
|
| 11 |
+
edmonds_karp,
|
| 12 |
+
preflow_push,
|
| 13 |
+
shortest_augmenting_path,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
flow_funcs = {
|
| 17 |
+
boykov_kolmogorov,
|
| 18 |
+
dinitz,
|
| 19 |
+
edmonds_karp,
|
| 20 |
+
preflow_push,
|
| 21 |
+
shortest_augmenting_path,
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
max_min_funcs = {nx.maximum_flow, nx.minimum_cut}
|
| 25 |
+
flow_value_funcs = {nx.maximum_flow_value, nx.minimum_cut_value}
|
| 26 |
+
interface_funcs = max_min_funcs | flow_value_funcs
|
| 27 |
+
all_funcs = flow_funcs | interface_funcs
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def compute_cutset(G, partition):
|
| 31 |
+
reachable, non_reachable = partition
|
| 32 |
+
cutset = set()
|
| 33 |
+
for u, nbrs in ((n, G[n]) for n in reachable):
|
| 34 |
+
cutset.update((u, v) for v in nbrs if v in non_reachable)
|
| 35 |
+
return cutset
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def validate_flows(G, s, t, flowDict, solnValue, capacity, flow_func):
|
| 39 |
+
errmsg = f"Assertion failed in function: {flow_func.__name__}"
|
| 40 |
+
assert set(G) == set(flowDict), errmsg
|
| 41 |
+
for u in G:
|
| 42 |
+
assert set(G[u]) == set(flowDict[u]), errmsg
|
| 43 |
+
excess = {u: 0 for u in flowDict}
|
| 44 |
+
for u in flowDict:
|
| 45 |
+
for v, flow in flowDict[u].items():
|
| 46 |
+
if capacity in G[u][v]:
|
| 47 |
+
assert flow <= G[u][v][capacity]
|
| 48 |
+
assert flow >= 0, errmsg
|
| 49 |
+
excess[u] -= flow
|
| 50 |
+
excess[v] += flow
|
| 51 |
+
for u, exc in excess.items():
|
| 52 |
+
if u == s:
|
| 53 |
+
assert exc == -solnValue, errmsg
|
| 54 |
+
elif u == t:
|
| 55 |
+
assert exc == solnValue, errmsg
|
| 56 |
+
else:
|
| 57 |
+
assert exc == 0, errmsg
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def validate_cuts(G, s, t, solnValue, partition, capacity, flow_func):
|
| 61 |
+
errmsg = f"Assertion failed in function: {flow_func.__name__}"
|
| 62 |
+
assert all(n in G for n in partition[0]), errmsg
|
| 63 |
+
assert all(n in G for n in partition[1]), errmsg
|
| 64 |
+
cutset = compute_cutset(G, partition)
|
| 65 |
+
assert all(G.has_edge(u, v) for (u, v) in cutset), errmsg
|
| 66 |
+
assert solnValue == sum(G[u][v][capacity] for (u, v) in cutset), errmsg
|
| 67 |
+
H = G.copy()
|
| 68 |
+
H.remove_edges_from(cutset)
|
| 69 |
+
if not G.is_directed():
|
| 70 |
+
assert not nx.is_connected(H), errmsg
|
| 71 |
+
else:
|
| 72 |
+
assert not nx.is_strongly_connected(H), errmsg
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def compare_flows_and_cuts(G, s, t, solnValue, capacity="capacity"):
|
| 76 |
+
for flow_func in flow_funcs:
|
| 77 |
+
errmsg = f"Assertion failed in function: {flow_func.__name__}"
|
| 78 |
+
R = flow_func(G, s, t, capacity)
|
| 79 |
+
# Test both legacy and new implementations.
|
| 80 |
+
flow_value = R.graph["flow_value"]
|
| 81 |
+
flow_dict = build_flow_dict(G, R)
|
| 82 |
+
assert flow_value == solnValue, errmsg
|
| 83 |
+
validate_flows(G, s, t, flow_dict, solnValue, capacity, flow_func)
|
| 84 |
+
# Minimum cut
|
| 85 |
+
cut_value, partition = nx.minimum_cut(
|
| 86 |
+
G, s, t, capacity=capacity, flow_func=flow_func
|
| 87 |
+
)
|
| 88 |
+
validate_cuts(G, s, t, solnValue, partition, capacity, flow_func)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class TestMaxflowMinCutCommon:
|
| 92 |
+
def test_graph1(self):
|
| 93 |
+
# Trivial undirected graph
|
| 94 |
+
G = nx.Graph()
|
| 95 |
+
G.add_edge(1, 2, capacity=1.0)
|
| 96 |
+
|
| 97 |
+
# solution flows
|
| 98 |
+
# {1: {2: 1.0}, 2: {1: 1.0}}
|
| 99 |
+
|
| 100 |
+
compare_flows_and_cuts(G, 1, 2, 1.0)
|
| 101 |
+
|
| 102 |
+
def test_graph2(self):
|
| 103 |
+
# A more complex undirected graph
|
| 104 |
+
# adapted from https://web.archive.org/web/20220815055650/https://www.topcoder.com/thrive/articles/Maximum%20Flow:%20Part%20One
|
| 105 |
+
G = nx.Graph()
|
| 106 |
+
G.add_edge("x", "a", capacity=3.0)
|
| 107 |
+
G.add_edge("x", "b", capacity=1.0)
|
| 108 |
+
G.add_edge("a", "c", capacity=3.0)
|
| 109 |
+
G.add_edge("b", "c", capacity=5.0)
|
| 110 |
+
G.add_edge("b", "d", capacity=4.0)
|
| 111 |
+
G.add_edge("d", "e", capacity=2.0)
|
| 112 |
+
G.add_edge("c", "y", capacity=2.0)
|
| 113 |
+
G.add_edge("e", "y", capacity=3.0)
|
| 114 |
+
|
| 115 |
+
# H
|
| 116 |
+
# {
|
| 117 |
+
# "x": {"a": 3, "b": 1},
|
| 118 |
+
# "a": {"c": 3, "x": 3},
|
| 119 |
+
# "b": {"c": 1, "d": 2, "x": 1},
|
| 120 |
+
# "c": {"a": 3, "b": 1, "y": 2},
|
| 121 |
+
# "d": {"b": 2, "e": 2},
|
| 122 |
+
# "e": {"d": 2, "y": 2},
|
| 123 |
+
# "y": {"c": 2, "e": 2},
|
| 124 |
+
# }
|
| 125 |
+
|
| 126 |
+
compare_flows_and_cuts(G, "x", "y", 4.0)
|
| 127 |
+
|
| 128 |
+
def test_digraph1(self):
|
| 129 |
+
# The classic directed graph example
|
| 130 |
+
G = nx.DiGraph()
|
| 131 |
+
G.add_edge("a", "b", capacity=1000.0)
|
| 132 |
+
G.add_edge("a", "c", capacity=1000.0)
|
| 133 |
+
G.add_edge("b", "c", capacity=1.0)
|
| 134 |
+
G.add_edge("b", "d", capacity=1000.0)
|
| 135 |
+
G.add_edge("c", "d", capacity=1000.0)
|
| 136 |
+
|
| 137 |
+
# H
|
| 138 |
+
# {
|
| 139 |
+
# "a": {"b": 1000.0, "c": 1000.0},
|
| 140 |
+
# "b": {"c": 0, "d": 1000.0},
|
| 141 |
+
# "c": {"d": 1000.0},
|
| 142 |
+
# "d": {},
|
| 143 |
+
# }
|
| 144 |
+
|
| 145 |
+
compare_flows_and_cuts(G, "a", "d", 2000.0)
|
| 146 |
+
|
| 147 |
+
def test_digraph2(self):
|
| 148 |
+
# An example in which some edges end up with zero flow.
|
| 149 |
+
G = nx.DiGraph()
|
| 150 |
+
G.add_edge("s", "b", capacity=2)
|
| 151 |
+
G.add_edge("s", "c", capacity=1)
|
| 152 |
+
G.add_edge("c", "d", capacity=1)
|
| 153 |
+
G.add_edge("d", "a", capacity=1)
|
| 154 |
+
G.add_edge("b", "a", capacity=2)
|
| 155 |
+
G.add_edge("a", "t", capacity=2)
|
| 156 |
+
|
| 157 |
+
# H
|
| 158 |
+
# {
|
| 159 |
+
# "s": {"b": 2, "c": 0},
|
| 160 |
+
# "c": {"d": 0},
|
| 161 |
+
# "d": {"a": 0},
|
| 162 |
+
# "b": {"a": 2},
|
| 163 |
+
# "a": {"t": 2},
|
| 164 |
+
# "t": {},
|
| 165 |
+
# }
|
| 166 |
+
|
| 167 |
+
compare_flows_and_cuts(G, "s", "t", 2)
|
| 168 |
+
|
| 169 |
+
def test_digraph3(self):
|
| 170 |
+
# A directed graph example from Cormen et al.
|
| 171 |
+
G = nx.DiGraph()
|
| 172 |
+
G.add_edge("s", "v1", capacity=16.0)
|
| 173 |
+
G.add_edge("s", "v2", capacity=13.0)
|
| 174 |
+
G.add_edge("v1", "v2", capacity=10.0)
|
| 175 |
+
G.add_edge("v2", "v1", capacity=4.0)
|
| 176 |
+
G.add_edge("v1", "v3", capacity=12.0)
|
| 177 |
+
G.add_edge("v3", "v2", capacity=9.0)
|
| 178 |
+
G.add_edge("v2", "v4", capacity=14.0)
|
| 179 |
+
G.add_edge("v4", "v3", capacity=7.0)
|
| 180 |
+
G.add_edge("v3", "t", capacity=20.0)
|
| 181 |
+
G.add_edge("v4", "t", capacity=4.0)
|
| 182 |
+
|
| 183 |
+
# H
|
| 184 |
+
# {
|
| 185 |
+
# "s": {"v1": 12.0, "v2": 11.0},
|
| 186 |
+
# "v2": {"v1": 0, "v4": 11.0},
|
| 187 |
+
# "v1": {"v2": 0, "v3": 12.0},
|
| 188 |
+
# "v3": {"v2": 0, "t": 19.0},
|
| 189 |
+
# "v4": {"v3": 7.0, "t": 4.0},
|
| 190 |
+
# "t": {},
|
| 191 |
+
# }
|
| 192 |
+
|
| 193 |
+
compare_flows_and_cuts(G, "s", "t", 23.0)
|
| 194 |
+
|
| 195 |
+
def test_digraph4(self):
|
| 196 |
+
# A more complex directed graph
|
| 197 |
+
# from https://web.archive.org/web/20220815055650/https://www.topcoder.com/thrive/articles/Maximum%20Flow:%20Part%20One
|
| 198 |
+
G = nx.DiGraph()
|
| 199 |
+
G.add_edge("x", "a", capacity=3.0)
|
| 200 |
+
G.add_edge("x", "b", capacity=1.0)
|
| 201 |
+
G.add_edge("a", "c", capacity=3.0)
|
| 202 |
+
G.add_edge("b", "c", capacity=5.0)
|
| 203 |
+
G.add_edge("b", "d", capacity=4.0)
|
| 204 |
+
G.add_edge("d", "e", capacity=2.0)
|
| 205 |
+
G.add_edge("c", "y", capacity=2.0)
|
| 206 |
+
G.add_edge("e", "y", capacity=3.0)
|
| 207 |
+
|
| 208 |
+
# H
|
| 209 |
+
# {
|
| 210 |
+
# "x": {"a": 2.0, "b": 1.0},
|
| 211 |
+
# "a": {"c": 2.0},
|
| 212 |
+
# "b": {"c": 0, "d": 1.0},
|
| 213 |
+
# "c": {"y": 2.0},
|
| 214 |
+
# "d": {"e": 1.0},
|
| 215 |
+
# "e": {"y": 1.0},
|
| 216 |
+
# "y": {},
|
| 217 |
+
# }
|
| 218 |
+
|
| 219 |
+
compare_flows_and_cuts(G, "x", "y", 3.0)
|
| 220 |
+
|
| 221 |
+
def test_wikipedia_dinitz_example(self):
|
| 222 |
+
# Nice example from https://en.wikipedia.org/wiki/Dinic's_algorithm
|
| 223 |
+
G = nx.DiGraph()
|
| 224 |
+
G.add_edge("s", 1, capacity=10)
|
| 225 |
+
G.add_edge("s", 2, capacity=10)
|
| 226 |
+
G.add_edge(1, 3, capacity=4)
|
| 227 |
+
G.add_edge(1, 4, capacity=8)
|
| 228 |
+
G.add_edge(1, 2, capacity=2)
|
| 229 |
+
G.add_edge(2, 4, capacity=9)
|
| 230 |
+
G.add_edge(3, "t", capacity=10)
|
| 231 |
+
G.add_edge(4, 3, capacity=6)
|
| 232 |
+
G.add_edge(4, "t", capacity=10)
|
| 233 |
+
|
| 234 |
+
# solution flows
|
| 235 |
+
# {
|
| 236 |
+
# 1: {2: 0, 3: 4, 4: 6},
|
| 237 |
+
# 2: {4: 9},
|
| 238 |
+
# 3: {"t": 9},
|
| 239 |
+
# 4: {3: 5, "t": 10},
|
| 240 |
+
# "s": {1: 10, 2: 9},
|
| 241 |
+
# "t": {},
|
| 242 |
+
# }
|
| 243 |
+
|
| 244 |
+
compare_flows_and_cuts(G, "s", "t", 19)
|
| 245 |
+
|
| 246 |
+
def test_optional_capacity(self):
|
| 247 |
+
# Test optional capacity parameter.
|
| 248 |
+
G = nx.DiGraph()
|
| 249 |
+
G.add_edge("x", "a", spam=3.0)
|
| 250 |
+
G.add_edge("x", "b", spam=1.0)
|
| 251 |
+
G.add_edge("a", "c", spam=3.0)
|
| 252 |
+
G.add_edge("b", "c", spam=5.0)
|
| 253 |
+
G.add_edge("b", "d", spam=4.0)
|
| 254 |
+
G.add_edge("d", "e", spam=2.0)
|
| 255 |
+
G.add_edge("c", "y", spam=2.0)
|
| 256 |
+
G.add_edge("e", "y", spam=3.0)
|
| 257 |
+
|
| 258 |
+
# solution flows
|
| 259 |
+
# {
|
| 260 |
+
# "x": {"a": 2.0, "b": 1.0},
|
| 261 |
+
# "a": {"c": 2.0},
|
| 262 |
+
# "b": {"c": 0, "d": 1.0},
|
| 263 |
+
# "c": {"y": 2.0},
|
| 264 |
+
# "d": {"e": 1.0},
|
| 265 |
+
# "e": {"y": 1.0},
|
| 266 |
+
# "y": {},
|
| 267 |
+
# }
|
| 268 |
+
solnValue = 3.0
|
| 269 |
+
s = "x"
|
| 270 |
+
t = "y"
|
| 271 |
+
|
| 272 |
+
compare_flows_and_cuts(G, s, t, solnValue, capacity="spam")
|
| 273 |
+
|
| 274 |
+
def test_digraph_infcap_edges(self):
|
| 275 |
+
# DiGraph with infinite capacity edges
|
| 276 |
+
G = nx.DiGraph()
|
| 277 |
+
G.add_edge("s", "a")
|
| 278 |
+
G.add_edge("s", "b", capacity=30)
|
| 279 |
+
G.add_edge("a", "c", capacity=25)
|
| 280 |
+
G.add_edge("b", "c", capacity=12)
|
| 281 |
+
G.add_edge("a", "t", capacity=60)
|
| 282 |
+
G.add_edge("c", "t")
|
| 283 |
+
|
| 284 |
+
# H
|
| 285 |
+
# {
|
| 286 |
+
# "s": {"a": 85, "b": 12},
|
| 287 |
+
# "a": {"c": 25, "t": 60},
|
| 288 |
+
# "b": {"c": 12},
|
| 289 |
+
# "c": {"t": 37},
|
| 290 |
+
# "t": {},
|
| 291 |
+
# }
|
| 292 |
+
|
| 293 |
+
compare_flows_and_cuts(G, "s", "t", 97)
|
| 294 |
+
|
| 295 |
+
# DiGraph with infinite capacity digon
|
| 296 |
+
G = nx.DiGraph()
|
| 297 |
+
G.add_edge("s", "a", capacity=85)
|
| 298 |
+
G.add_edge("s", "b", capacity=30)
|
| 299 |
+
G.add_edge("a", "c")
|
| 300 |
+
G.add_edge("c", "a")
|
| 301 |
+
G.add_edge("b", "c", capacity=12)
|
| 302 |
+
G.add_edge("a", "t", capacity=60)
|
| 303 |
+
G.add_edge("c", "t", capacity=37)
|
| 304 |
+
|
| 305 |
+
# H
|
| 306 |
+
# {
|
| 307 |
+
# "s": {"a": 85, "b": 12},
|
| 308 |
+
# "a": {"c": 25, "t": 60},
|
| 309 |
+
# "c": {"a": 0, "t": 37},
|
| 310 |
+
# "b": {"c": 12},
|
| 311 |
+
# "t": {},
|
| 312 |
+
# }
|
| 313 |
+
|
| 314 |
+
compare_flows_and_cuts(G, "s", "t", 97)
|
| 315 |
+
|
| 316 |
+
def test_digraph_infcap_path(self):
|
| 317 |
+
# Graph with infinite capacity (s, t)-path
|
| 318 |
+
G = nx.DiGraph()
|
| 319 |
+
G.add_edge("s", "a")
|
| 320 |
+
G.add_edge("s", "b", capacity=30)
|
| 321 |
+
G.add_edge("a", "c")
|
| 322 |
+
G.add_edge("b", "c", capacity=12)
|
| 323 |
+
G.add_edge("a", "t", capacity=60)
|
| 324 |
+
G.add_edge("c", "t")
|
| 325 |
+
|
| 326 |
+
for flow_func in all_funcs:
|
| 327 |
+
pytest.raises(nx.NetworkXUnbounded, flow_func, G, "s", "t")
|
| 328 |
+
|
| 329 |
+
def test_graph_infcap_edges(self):
|
| 330 |
+
# Undirected graph with infinite capacity edges
|
| 331 |
+
G = nx.Graph()
|
| 332 |
+
G.add_edge("s", "a")
|
| 333 |
+
G.add_edge("s", "b", capacity=30)
|
| 334 |
+
G.add_edge("a", "c", capacity=25)
|
| 335 |
+
G.add_edge("b", "c", capacity=12)
|
| 336 |
+
G.add_edge("a", "t", capacity=60)
|
| 337 |
+
G.add_edge("c", "t")
|
| 338 |
+
|
| 339 |
+
# H
|
| 340 |
+
# {
|
| 341 |
+
# "s": {"a": 85, "b": 12},
|
| 342 |
+
# "a": {"c": 25, "s": 85, "t": 60},
|
| 343 |
+
# "b": {"c": 12, "s": 12},
|
| 344 |
+
# "c": {"a": 25, "b": 12, "t": 37},
|
| 345 |
+
# "t": {"a": 60, "c": 37},
|
| 346 |
+
# }
|
| 347 |
+
|
| 348 |
+
compare_flows_and_cuts(G, "s", "t", 97)
|
| 349 |
+
|
| 350 |
+
def test_digraph5(self):
|
| 351 |
+
# From ticket #429 by mfrasca.
|
| 352 |
+
G = nx.DiGraph()
|
| 353 |
+
G.add_edge("s", "a", capacity=2)
|
| 354 |
+
G.add_edge("s", "b", capacity=2)
|
| 355 |
+
G.add_edge("a", "b", capacity=5)
|
| 356 |
+
G.add_edge("a", "t", capacity=1)
|
| 357 |
+
G.add_edge("b", "a", capacity=1)
|
| 358 |
+
G.add_edge("b", "t", capacity=3)
|
| 359 |
+
# flow solution
|
| 360 |
+
# {
|
| 361 |
+
# "a": {"b": 1, "t": 1},
|
| 362 |
+
# "b": {"a": 0, "t": 3},
|
| 363 |
+
# "s": {"a": 2, "b": 2},
|
| 364 |
+
# "t": {},
|
| 365 |
+
# }
|
| 366 |
+
compare_flows_and_cuts(G, "s", "t", 4)
|
| 367 |
+
|
| 368 |
+
def test_disconnected(self):
|
| 369 |
+
G = nx.Graph()
|
| 370 |
+
G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
|
| 371 |
+
G.remove_node(1)
|
| 372 |
+
assert nx.maximum_flow_value(G, 0, 3) == 0
|
| 373 |
+
# flow solution
|
| 374 |
+
# {0: {}, 2: {3: 0}, 3: {2: 0}}
|
| 375 |
+
compare_flows_and_cuts(G, 0, 3, 0)
|
| 376 |
+
|
| 377 |
+
def test_source_target_not_in_graph(self):
|
| 378 |
+
G = nx.Graph()
|
| 379 |
+
G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
|
| 380 |
+
G.remove_node(0)
|
| 381 |
+
for flow_func in all_funcs:
|
| 382 |
+
pytest.raises(nx.NetworkXError, flow_func, G, 0, 3)
|
| 383 |
+
G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
|
| 384 |
+
G.remove_node(3)
|
| 385 |
+
for flow_func in all_funcs:
|
| 386 |
+
pytest.raises(nx.NetworkXError, flow_func, G, 0, 3)
|
| 387 |
+
|
| 388 |
+
def test_source_target_coincide(self):
|
| 389 |
+
G = nx.Graph()
|
| 390 |
+
G.add_node(0)
|
| 391 |
+
for flow_func in all_funcs:
|
| 392 |
+
pytest.raises(nx.NetworkXError, flow_func, G, 0, 0)
|
| 393 |
+
|
| 394 |
+
def test_multigraphs_raise(self):
|
| 395 |
+
G = nx.MultiGraph()
|
| 396 |
+
M = nx.MultiDiGraph()
|
| 397 |
+
G.add_edges_from([(0, 1), (1, 0)], capacity=True)
|
| 398 |
+
for flow_func in all_funcs:
|
| 399 |
+
pytest.raises(nx.NetworkXError, flow_func, G, 0, 0)
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
class TestMaxFlowMinCutInterface:
|
| 403 |
+
def setup_method(self):
|
| 404 |
+
G = nx.DiGraph()
|
| 405 |
+
G.add_edge("x", "a", capacity=3.0)
|
| 406 |
+
G.add_edge("x", "b", capacity=1.0)
|
| 407 |
+
G.add_edge("a", "c", capacity=3.0)
|
| 408 |
+
G.add_edge("b", "c", capacity=5.0)
|
| 409 |
+
G.add_edge("b", "d", capacity=4.0)
|
| 410 |
+
G.add_edge("d", "e", capacity=2.0)
|
| 411 |
+
G.add_edge("c", "y", capacity=2.0)
|
| 412 |
+
G.add_edge("e", "y", capacity=3.0)
|
| 413 |
+
self.G = G
|
| 414 |
+
H = nx.DiGraph()
|
| 415 |
+
H.add_edge(0, 1, capacity=1.0)
|
| 416 |
+
H.add_edge(1, 2, capacity=1.0)
|
| 417 |
+
self.H = H
|
| 418 |
+
|
| 419 |
+
def test_flow_func_not_callable(self):
|
| 420 |
+
elements = ["this_should_be_callable", 10, {1, 2, 3}]
|
| 421 |
+
G = nx.Graph()
|
| 422 |
+
G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
|
| 423 |
+
for flow_func in interface_funcs:
|
| 424 |
+
for element in elements:
|
| 425 |
+
pytest.raises(nx.NetworkXError, flow_func, G, 0, 1, flow_func=element)
|
| 426 |
+
pytest.raises(nx.NetworkXError, flow_func, G, 0, 1, flow_func=element)
|
| 427 |
+
|
| 428 |
+
def test_flow_func_parameters(self):
|
| 429 |
+
G = self.G
|
| 430 |
+
fv = 3.0
|
| 431 |
+
for interface_func in interface_funcs:
|
| 432 |
+
for flow_func in flow_funcs:
|
| 433 |
+
errmsg = (
|
| 434 |
+
f"Assertion failed in function: {flow_func.__name__} "
|
| 435 |
+
f"in interface {interface_func.__name__}"
|
| 436 |
+
)
|
| 437 |
+
result = interface_func(G, "x", "y", flow_func=flow_func)
|
| 438 |
+
if interface_func in max_min_funcs:
|
| 439 |
+
result = result[0]
|
| 440 |
+
assert fv == result, errmsg
|
| 441 |
+
|
| 442 |
+
def test_minimum_cut_no_cutoff(self):
|
| 443 |
+
G = self.G
|
| 444 |
+
pytest.raises(
|
| 445 |
+
nx.NetworkXError,
|
| 446 |
+
nx.minimum_cut,
|
| 447 |
+
G,
|
| 448 |
+
"x",
|
| 449 |
+
"y",
|
| 450 |
+
flow_func=preflow_push,
|
| 451 |
+
cutoff=1.0,
|
| 452 |
+
)
|
| 453 |
+
pytest.raises(
|
| 454 |
+
nx.NetworkXError,
|
| 455 |
+
nx.minimum_cut_value,
|
| 456 |
+
G,
|
| 457 |
+
"x",
|
| 458 |
+
"y",
|
| 459 |
+
flow_func=preflow_push,
|
| 460 |
+
cutoff=1.0,
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
def test_kwargs(self):
|
| 464 |
+
G = self.H
|
| 465 |
+
fv = 1.0
|
| 466 |
+
to_test = (
|
| 467 |
+
(shortest_augmenting_path, {"two_phase": True}),
|
| 468 |
+
(preflow_push, {"global_relabel_freq": 5}),
|
| 469 |
+
)
|
| 470 |
+
for interface_func in interface_funcs:
|
| 471 |
+
for flow_func, kwargs in to_test:
|
| 472 |
+
errmsg = (
|
| 473 |
+
f"Assertion failed in function: {flow_func.__name__} "
|
| 474 |
+
f"in interface {interface_func.__name__}"
|
| 475 |
+
)
|
| 476 |
+
result = interface_func(G, 0, 2, flow_func=flow_func, **kwargs)
|
| 477 |
+
if interface_func in max_min_funcs:
|
| 478 |
+
result = result[0]
|
| 479 |
+
assert fv == result, errmsg
|
| 480 |
+
|
| 481 |
+
def test_kwargs_default_flow_func(self):
|
| 482 |
+
G = self.H
|
| 483 |
+
for interface_func in interface_funcs:
|
| 484 |
+
pytest.raises(
|
| 485 |
+
nx.NetworkXError, interface_func, G, 0, 1, global_relabel_freq=2
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
def test_reusing_residual(self):
|
| 489 |
+
G = self.G
|
| 490 |
+
fv = 3.0
|
| 491 |
+
s, t = "x", "y"
|
| 492 |
+
R = build_residual_network(G, "capacity")
|
| 493 |
+
for interface_func in interface_funcs:
|
| 494 |
+
for flow_func in flow_funcs:
|
| 495 |
+
errmsg = (
|
| 496 |
+
f"Assertion failed in function: {flow_func.__name__} "
|
| 497 |
+
f"in interface {interface_func.__name__}"
|
| 498 |
+
)
|
| 499 |
+
for i in range(3):
|
| 500 |
+
result = interface_func(
|
| 501 |
+
G, "x", "y", flow_func=flow_func, residual=R
|
| 502 |
+
)
|
| 503 |
+
if interface_func in max_min_funcs:
|
| 504 |
+
result = result[0]
|
| 505 |
+
assert fv == result, errmsg
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
# Tests specific to one algorithm
|
| 509 |
+
def test_preflow_push_global_relabel_freq():
|
| 510 |
+
G = nx.DiGraph()
|
| 511 |
+
G.add_edge(1, 2, capacity=1)
|
| 512 |
+
R = preflow_push(G, 1, 2, global_relabel_freq=None)
|
| 513 |
+
assert R.graph["flow_value"] == 1
|
| 514 |
+
pytest.raises(nx.NetworkXError, preflow_push, G, 1, 2, global_relabel_freq=-1)
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
def test_preflow_push_makes_enough_space():
|
| 518 |
+
# From ticket #1542
|
| 519 |
+
G = nx.DiGraph()
|
| 520 |
+
nx.add_path(G, [0, 1, 3], capacity=1)
|
| 521 |
+
nx.add_path(G, [1, 2, 3], capacity=1)
|
| 522 |
+
R = preflow_push(G, 0, 3, value_only=False)
|
| 523 |
+
assert R.graph["flow_value"] == 1
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def test_shortest_augmenting_path_two_phase():
|
| 527 |
+
k = 5
|
| 528 |
+
p = 1000
|
| 529 |
+
G = nx.DiGraph()
|
| 530 |
+
for i in range(k):
|
| 531 |
+
G.add_edge("s", (i, 0), capacity=1)
|
| 532 |
+
nx.add_path(G, ((i, j) for j in range(p)), capacity=1)
|
| 533 |
+
G.add_edge((i, p - 1), "t", capacity=1)
|
| 534 |
+
R = shortest_augmenting_path(G, "s", "t", two_phase=True)
|
| 535 |
+
assert R.graph["flow_value"] == k
|
| 536 |
+
R = shortest_augmenting_path(G, "s", "t", two_phase=False)
|
| 537 |
+
assert R.graph["flow_value"] == k
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
class TestCutoff:
|
| 541 |
+
def test_cutoff(self):
|
| 542 |
+
k = 5
|
| 543 |
+
p = 1000
|
| 544 |
+
G = nx.DiGraph()
|
| 545 |
+
for i in range(k):
|
| 546 |
+
G.add_edge("s", (i, 0), capacity=2)
|
| 547 |
+
nx.add_path(G, ((i, j) for j in range(p)), capacity=2)
|
| 548 |
+
G.add_edge((i, p - 1), "t", capacity=2)
|
| 549 |
+
R = shortest_augmenting_path(G, "s", "t", two_phase=True, cutoff=k)
|
| 550 |
+
assert k <= R.graph["flow_value"] <= (2 * k)
|
| 551 |
+
R = shortest_augmenting_path(G, "s", "t", two_phase=False, cutoff=k)
|
| 552 |
+
assert k <= R.graph["flow_value"] <= (2 * k)
|
| 553 |
+
R = edmonds_karp(G, "s", "t", cutoff=k)
|
| 554 |
+
assert k <= R.graph["flow_value"] <= (2 * k)
|
| 555 |
+
R = dinitz(G, "s", "t", cutoff=k)
|
| 556 |
+
assert k <= R.graph["flow_value"] <= (2 * k)
|
| 557 |
+
R = boykov_kolmogorov(G, "s", "t", cutoff=k)
|
| 558 |
+
assert k <= R.graph["flow_value"] <= (2 * k)
|
| 559 |
+
|
| 560 |
+
def test_complete_graph_cutoff(self):
|
| 561 |
+
G = nx.complete_graph(5)
|
| 562 |
+
nx.set_edge_attributes(G, {(u, v): 1 for u, v in G.edges()}, "capacity")
|
| 563 |
+
for flow_func in [
|
| 564 |
+
shortest_augmenting_path,
|
| 565 |
+
edmonds_karp,
|
| 566 |
+
dinitz,
|
| 567 |
+
boykov_kolmogorov,
|
| 568 |
+
]:
|
| 569 |
+
for cutoff in [3, 2, 1]:
|
| 570 |
+
result = nx.maximum_flow_value(
|
| 571 |
+
G, 0, 4, flow_func=flow_func, cutoff=cutoff
|
| 572 |
+
)
|
| 573 |
+
assert cutoff == result, f"cutoff error in {flow_func.__name__}"
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/test_maxflow_large_graph.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Maximum flow algorithms test suite on large graphs."""
|
| 2 |
+
|
| 3 |
+
import bz2
|
| 4 |
+
import importlib.resources
|
| 5 |
+
import os
|
| 6 |
+
import pickle
|
| 7 |
+
|
| 8 |
+
import pytest
|
| 9 |
+
|
| 10 |
+
import networkx as nx
|
| 11 |
+
from networkx.algorithms.flow import (
|
| 12 |
+
boykov_kolmogorov,
|
| 13 |
+
build_flow_dict,
|
| 14 |
+
build_residual_network,
|
| 15 |
+
dinitz,
|
| 16 |
+
edmonds_karp,
|
| 17 |
+
preflow_push,
|
| 18 |
+
shortest_augmenting_path,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
flow_funcs = [
|
| 22 |
+
boykov_kolmogorov,
|
| 23 |
+
dinitz,
|
| 24 |
+
edmonds_karp,
|
| 25 |
+
preflow_push,
|
| 26 |
+
shortest_augmenting_path,
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def gen_pyramid(N):
|
| 31 |
+
# This graph admits a flow of value 1 for which every arc is at
|
| 32 |
+
# capacity (except the arcs incident to the sink which have
|
| 33 |
+
# infinite capacity).
|
| 34 |
+
G = nx.DiGraph()
|
| 35 |
+
|
| 36 |
+
for i in range(N - 1):
|
| 37 |
+
cap = 1.0 / (i + 2)
|
| 38 |
+
for j in range(i + 1):
|
| 39 |
+
G.add_edge((i, j), (i + 1, j), capacity=cap)
|
| 40 |
+
cap = 1.0 / (i + 1) - cap
|
| 41 |
+
G.add_edge((i, j), (i + 1, j + 1), capacity=cap)
|
| 42 |
+
cap = 1.0 / (i + 2) - cap
|
| 43 |
+
|
| 44 |
+
for j in range(N):
|
| 45 |
+
G.add_edge((N - 1, j), "t")
|
| 46 |
+
|
| 47 |
+
return G
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def read_graph(name):
|
| 51 |
+
fname = (
|
| 52 |
+
importlib.resources.files("networkx.algorithms.flow.tests")
|
| 53 |
+
/ f"{name}.gpickle.bz2"
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
with bz2.BZ2File(fname, "rb") as f:
|
| 57 |
+
G = pickle.load(f)
|
| 58 |
+
return G
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def validate_flows(G, s, t, soln_value, R, flow_func):
|
| 62 |
+
flow_value = R.graph["flow_value"]
|
| 63 |
+
flow_dict = build_flow_dict(G, R)
|
| 64 |
+
errmsg = f"Assertion failed in function: {flow_func.__name__}"
|
| 65 |
+
assert soln_value == flow_value, errmsg
|
| 66 |
+
assert set(G) == set(flow_dict), errmsg
|
| 67 |
+
for u in G:
|
| 68 |
+
assert set(G[u]) == set(flow_dict[u]), errmsg
|
| 69 |
+
excess = {u: 0 for u in flow_dict}
|
| 70 |
+
for u in flow_dict:
|
| 71 |
+
for v, flow in flow_dict[u].items():
|
| 72 |
+
assert flow <= G[u][v].get("capacity", float("inf")), errmsg
|
| 73 |
+
assert flow >= 0, errmsg
|
| 74 |
+
excess[u] -= flow
|
| 75 |
+
excess[v] += flow
|
| 76 |
+
for u, exc in excess.items():
|
| 77 |
+
if u == s:
|
| 78 |
+
assert exc == -soln_value, errmsg
|
| 79 |
+
elif u == t:
|
| 80 |
+
assert exc == soln_value, errmsg
|
| 81 |
+
else:
|
| 82 |
+
assert exc == 0, errmsg
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class TestMaxflowLargeGraph:
|
| 86 |
+
def test_complete_graph(self):
|
| 87 |
+
N = 50
|
| 88 |
+
G = nx.complete_graph(N)
|
| 89 |
+
nx.set_edge_attributes(G, 5, "capacity")
|
| 90 |
+
R = build_residual_network(G, "capacity")
|
| 91 |
+
kwargs = {"residual": R}
|
| 92 |
+
|
| 93 |
+
for flow_func in flow_funcs:
|
| 94 |
+
kwargs["flow_func"] = flow_func
|
| 95 |
+
errmsg = f"Assertion failed in function: {flow_func.__name__}"
|
| 96 |
+
flow_value = nx.maximum_flow_value(G, 1, 2, **kwargs)
|
| 97 |
+
assert flow_value == 5 * (N - 1), errmsg
|
| 98 |
+
|
| 99 |
+
def test_pyramid(self):
|
| 100 |
+
N = 10
|
| 101 |
+
# N = 100 # this gives a graph with 5051 nodes
|
| 102 |
+
G = gen_pyramid(N)
|
| 103 |
+
R = build_residual_network(G, "capacity")
|
| 104 |
+
kwargs = {"residual": R}
|
| 105 |
+
|
| 106 |
+
for flow_func in flow_funcs:
|
| 107 |
+
kwargs["flow_func"] = flow_func
|
| 108 |
+
errmsg = f"Assertion failed in function: {flow_func.__name__}"
|
| 109 |
+
flow_value = nx.maximum_flow_value(G, (0, 0), "t", **kwargs)
|
| 110 |
+
assert flow_value == pytest.approx(1.0, abs=1e-7)
|
| 111 |
+
|
| 112 |
+
def test_gl1(self):
|
| 113 |
+
G = read_graph("gl1")
|
| 114 |
+
s = 1
|
| 115 |
+
t = len(G)
|
| 116 |
+
R = build_residual_network(G, "capacity")
|
| 117 |
+
kwargs = {"residual": R}
|
| 118 |
+
|
| 119 |
+
# do one flow_func to save time
|
| 120 |
+
flow_func = flow_funcs[0]
|
| 121 |
+
validate_flows(G, s, t, 156545, flow_func(G, s, t, **kwargs), flow_func)
|
| 122 |
+
|
| 123 |
+
# for flow_func in flow_funcs:
|
| 124 |
+
# validate_flows(G, s, t, 156545, flow_func(G, s, t, **kwargs),
|
| 125 |
+
# flow_func)
|
| 126 |
+
|
| 127 |
+
@pytest.mark.slow
|
| 128 |
+
def test_gw1(self):
|
| 129 |
+
G = read_graph("gw1")
|
| 130 |
+
s = 1
|
| 131 |
+
t = len(G)
|
| 132 |
+
R = build_residual_network(G, "capacity")
|
| 133 |
+
kwargs = {"residual": R}
|
| 134 |
+
|
| 135 |
+
for flow_func in flow_funcs:
|
| 136 |
+
validate_flows(G, s, t, 1202018, flow_func(G, s, t, **kwargs), flow_func)
|
| 137 |
+
|
| 138 |
+
def test_wlm3(self):
|
| 139 |
+
G = read_graph("wlm3")
|
| 140 |
+
s = 1
|
| 141 |
+
t = len(G)
|
| 142 |
+
R = build_residual_network(G, "capacity")
|
| 143 |
+
kwargs = {"residual": R}
|
| 144 |
+
|
| 145 |
+
# do one flow_func to save time
|
| 146 |
+
flow_func = flow_funcs[0]
|
| 147 |
+
validate_flows(G, s, t, 11875108, flow_func(G, s, t, **kwargs), flow_func)
|
| 148 |
+
|
| 149 |
+
# for flow_func in flow_funcs:
|
| 150 |
+
# validate_flows(G, s, t, 11875108, flow_func(G, s, t, **kwargs),
|
| 151 |
+
# flow_func)
|
| 152 |
+
|
| 153 |
+
def test_preflow_push_global_relabel(self):
|
| 154 |
+
G = read_graph("gw1")
|
| 155 |
+
R = preflow_push(G, 1, len(G), global_relabel_freq=50)
|
| 156 |
+
assert R.graph["flow_value"] == 1202018
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/test_mincost.py
ADDED
|
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import bz2
|
| 2 |
+
import importlib.resources
|
| 3 |
+
import os
|
| 4 |
+
import pickle
|
| 5 |
+
|
| 6 |
+
import pytest
|
| 7 |
+
|
| 8 |
+
import networkx as nx
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class TestMinCostFlow:
|
| 12 |
+
def test_simple_digraph(self):
|
| 13 |
+
G = nx.DiGraph()
|
| 14 |
+
G.add_node("a", demand=-5)
|
| 15 |
+
G.add_node("d", demand=5)
|
| 16 |
+
G.add_edge("a", "b", weight=3, capacity=4)
|
| 17 |
+
G.add_edge("a", "c", weight=6, capacity=10)
|
| 18 |
+
G.add_edge("b", "d", weight=1, capacity=9)
|
| 19 |
+
G.add_edge("c", "d", weight=2, capacity=5)
|
| 20 |
+
flowCost, H = nx.network_simplex(G)
|
| 21 |
+
soln = {"a": {"b": 4, "c": 1}, "b": {"d": 4}, "c": {"d": 1}, "d": {}}
|
| 22 |
+
assert flowCost == 24
|
| 23 |
+
assert nx.min_cost_flow_cost(G) == 24
|
| 24 |
+
assert H == soln
|
| 25 |
+
assert nx.min_cost_flow(G) == soln
|
| 26 |
+
assert nx.cost_of_flow(G, H) == 24
|
| 27 |
+
|
| 28 |
+
flowCost, H = nx.capacity_scaling(G)
|
| 29 |
+
assert flowCost == 24
|
| 30 |
+
assert nx.cost_of_flow(G, H) == 24
|
| 31 |
+
assert H == soln
|
| 32 |
+
|
| 33 |
+
def test_negcycle_infcap(self):
|
| 34 |
+
G = nx.DiGraph()
|
| 35 |
+
G.add_node("s", demand=-5)
|
| 36 |
+
G.add_node("t", demand=5)
|
| 37 |
+
G.add_edge("s", "a", weight=1, capacity=3)
|
| 38 |
+
G.add_edge("a", "b", weight=3)
|
| 39 |
+
G.add_edge("c", "a", weight=-6)
|
| 40 |
+
G.add_edge("b", "d", weight=1)
|
| 41 |
+
G.add_edge("d", "c", weight=-2)
|
| 42 |
+
G.add_edge("d", "t", weight=1, capacity=3)
|
| 43 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
|
| 44 |
+
pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G)
|
| 45 |
+
|
| 46 |
+
def test_sum_demands_not_zero(self):
|
| 47 |
+
G = nx.DiGraph()
|
| 48 |
+
G.add_node("s", demand=-5)
|
| 49 |
+
G.add_node("t", demand=4)
|
| 50 |
+
G.add_edge("s", "a", weight=1, capacity=3)
|
| 51 |
+
G.add_edge("a", "b", weight=3)
|
| 52 |
+
G.add_edge("a", "c", weight=-6)
|
| 53 |
+
G.add_edge("b", "d", weight=1)
|
| 54 |
+
G.add_edge("c", "d", weight=-2)
|
| 55 |
+
G.add_edge("d", "t", weight=1, capacity=3)
|
| 56 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
|
| 57 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
|
| 58 |
+
|
| 59 |
+
def test_no_flow_satisfying_demands(self):
|
| 60 |
+
G = nx.DiGraph()
|
| 61 |
+
G.add_node("s", demand=-5)
|
| 62 |
+
G.add_node("t", demand=5)
|
| 63 |
+
G.add_edge("s", "a", weight=1, capacity=3)
|
| 64 |
+
G.add_edge("a", "b", weight=3)
|
| 65 |
+
G.add_edge("a", "c", weight=-6)
|
| 66 |
+
G.add_edge("b", "d", weight=1)
|
| 67 |
+
G.add_edge("c", "d", weight=-2)
|
| 68 |
+
G.add_edge("d", "t", weight=1, capacity=3)
|
| 69 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
|
| 70 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
|
| 71 |
+
|
| 72 |
+
def test_transshipment(self):
|
| 73 |
+
G = nx.DiGraph()
|
| 74 |
+
G.add_node("a", demand=1)
|
| 75 |
+
G.add_node("b", demand=-2)
|
| 76 |
+
G.add_node("c", demand=-2)
|
| 77 |
+
G.add_node("d", demand=3)
|
| 78 |
+
G.add_node("e", demand=-4)
|
| 79 |
+
G.add_node("f", demand=-4)
|
| 80 |
+
G.add_node("g", demand=3)
|
| 81 |
+
G.add_node("h", demand=2)
|
| 82 |
+
G.add_node("r", demand=3)
|
| 83 |
+
G.add_edge("a", "c", weight=3)
|
| 84 |
+
G.add_edge("r", "a", weight=2)
|
| 85 |
+
G.add_edge("b", "a", weight=9)
|
| 86 |
+
G.add_edge("r", "c", weight=0)
|
| 87 |
+
G.add_edge("b", "r", weight=-6)
|
| 88 |
+
G.add_edge("c", "d", weight=5)
|
| 89 |
+
G.add_edge("e", "r", weight=4)
|
| 90 |
+
G.add_edge("e", "f", weight=3)
|
| 91 |
+
G.add_edge("h", "b", weight=4)
|
| 92 |
+
G.add_edge("f", "d", weight=7)
|
| 93 |
+
G.add_edge("f", "h", weight=12)
|
| 94 |
+
G.add_edge("g", "d", weight=12)
|
| 95 |
+
G.add_edge("f", "g", weight=-1)
|
| 96 |
+
G.add_edge("h", "g", weight=-10)
|
| 97 |
+
flowCost, H = nx.network_simplex(G)
|
| 98 |
+
soln = {
|
| 99 |
+
"a": {"c": 0},
|
| 100 |
+
"b": {"a": 0, "r": 2},
|
| 101 |
+
"c": {"d": 3},
|
| 102 |
+
"d": {},
|
| 103 |
+
"e": {"r": 3, "f": 1},
|
| 104 |
+
"f": {"d": 0, "g": 3, "h": 2},
|
| 105 |
+
"g": {"d": 0},
|
| 106 |
+
"h": {"b": 0, "g": 0},
|
| 107 |
+
"r": {"a": 1, "c": 1},
|
| 108 |
+
}
|
| 109 |
+
assert flowCost == 41
|
| 110 |
+
assert nx.min_cost_flow_cost(G) == 41
|
| 111 |
+
assert H == soln
|
| 112 |
+
assert nx.min_cost_flow(G) == soln
|
| 113 |
+
assert nx.cost_of_flow(G, H) == 41
|
| 114 |
+
|
| 115 |
+
flowCost, H = nx.capacity_scaling(G)
|
| 116 |
+
assert flowCost == 41
|
| 117 |
+
assert nx.cost_of_flow(G, H) == 41
|
| 118 |
+
assert H == soln
|
| 119 |
+
|
| 120 |
+
def test_max_flow_min_cost(self):
|
| 121 |
+
G = nx.DiGraph()
|
| 122 |
+
G.add_edge("s", "a", bandwidth=6)
|
| 123 |
+
G.add_edge("s", "c", bandwidth=10, cost=10)
|
| 124 |
+
G.add_edge("a", "b", cost=6)
|
| 125 |
+
G.add_edge("b", "d", bandwidth=8, cost=7)
|
| 126 |
+
G.add_edge("c", "d", cost=10)
|
| 127 |
+
G.add_edge("d", "t", bandwidth=5, cost=5)
|
| 128 |
+
soln = {
|
| 129 |
+
"s": {"a": 5, "c": 0},
|
| 130 |
+
"a": {"b": 5},
|
| 131 |
+
"b": {"d": 5},
|
| 132 |
+
"c": {"d": 0},
|
| 133 |
+
"d": {"t": 5},
|
| 134 |
+
"t": {},
|
| 135 |
+
}
|
| 136 |
+
flow = nx.max_flow_min_cost(G, "s", "t", capacity="bandwidth", weight="cost")
|
| 137 |
+
assert flow == soln
|
| 138 |
+
assert nx.cost_of_flow(G, flow, weight="cost") == 90
|
| 139 |
+
|
| 140 |
+
G.add_edge("t", "s", cost=-100)
|
| 141 |
+
flowCost, flow = nx.capacity_scaling(G, capacity="bandwidth", weight="cost")
|
| 142 |
+
G.remove_edge("t", "s")
|
| 143 |
+
assert flowCost == -410
|
| 144 |
+
assert flow["t"]["s"] == 5
|
| 145 |
+
del flow["t"]["s"]
|
| 146 |
+
assert flow == soln
|
| 147 |
+
assert nx.cost_of_flow(G, flow, weight="cost") == 90
|
| 148 |
+
|
| 149 |
+
def test_digraph1(self):
|
| 150 |
+
# From Bradley, S. P., Hax, A. C. and Magnanti, T. L. Applied
|
| 151 |
+
# Mathematical Programming. Addison-Wesley, 1977.
|
| 152 |
+
G = nx.DiGraph()
|
| 153 |
+
G.add_node(1, demand=-20)
|
| 154 |
+
G.add_node(4, demand=5)
|
| 155 |
+
G.add_node(5, demand=15)
|
| 156 |
+
G.add_edges_from(
|
| 157 |
+
[
|
| 158 |
+
(1, 2, {"capacity": 15, "weight": 4}),
|
| 159 |
+
(1, 3, {"capacity": 8, "weight": 4}),
|
| 160 |
+
(2, 3, {"weight": 2}),
|
| 161 |
+
(2, 4, {"capacity": 4, "weight": 2}),
|
| 162 |
+
(2, 5, {"capacity": 10, "weight": 6}),
|
| 163 |
+
(3, 4, {"capacity": 15, "weight": 1}),
|
| 164 |
+
(3, 5, {"capacity": 5, "weight": 3}),
|
| 165 |
+
(4, 5, {"weight": 2}),
|
| 166 |
+
(5, 3, {"capacity": 4, "weight": 1}),
|
| 167 |
+
]
|
| 168 |
+
)
|
| 169 |
+
flowCost, H = nx.network_simplex(G)
|
| 170 |
+
soln = {
|
| 171 |
+
1: {2: 12, 3: 8},
|
| 172 |
+
2: {3: 8, 4: 4, 5: 0},
|
| 173 |
+
3: {4: 11, 5: 5},
|
| 174 |
+
4: {5: 10},
|
| 175 |
+
5: {3: 0},
|
| 176 |
+
}
|
| 177 |
+
assert flowCost == 150
|
| 178 |
+
assert nx.min_cost_flow_cost(G) == 150
|
| 179 |
+
assert H == soln
|
| 180 |
+
assert nx.min_cost_flow(G) == soln
|
| 181 |
+
assert nx.cost_of_flow(G, H) == 150
|
| 182 |
+
|
| 183 |
+
flowCost, H = nx.capacity_scaling(G)
|
| 184 |
+
assert flowCost == 150
|
| 185 |
+
assert H == soln
|
| 186 |
+
assert nx.cost_of_flow(G, H) == 150
|
| 187 |
+
|
| 188 |
+
def test_digraph2(self):
|
| 189 |
+
# Example from ticket #430 from mfrasca. Original source:
|
| 190 |
+
# http://www.cs.princeton.edu/courses/archive/spr03/cs226/lectures/mincost.4up.pdf, slide 11.
|
| 191 |
+
G = nx.DiGraph()
|
| 192 |
+
G.add_edge("s", 1, capacity=12)
|
| 193 |
+
G.add_edge("s", 2, capacity=6)
|
| 194 |
+
G.add_edge("s", 3, capacity=14)
|
| 195 |
+
G.add_edge(1, 2, capacity=11, weight=4)
|
| 196 |
+
G.add_edge(2, 3, capacity=9, weight=6)
|
| 197 |
+
G.add_edge(1, 4, capacity=5, weight=5)
|
| 198 |
+
G.add_edge(1, 5, capacity=2, weight=12)
|
| 199 |
+
G.add_edge(2, 5, capacity=4, weight=4)
|
| 200 |
+
G.add_edge(2, 6, capacity=2, weight=6)
|
| 201 |
+
G.add_edge(3, 6, capacity=31, weight=3)
|
| 202 |
+
G.add_edge(4, 5, capacity=18, weight=4)
|
| 203 |
+
G.add_edge(5, 6, capacity=9, weight=5)
|
| 204 |
+
G.add_edge(4, "t", capacity=3)
|
| 205 |
+
G.add_edge(5, "t", capacity=7)
|
| 206 |
+
G.add_edge(6, "t", capacity=22)
|
| 207 |
+
flow = nx.max_flow_min_cost(G, "s", "t")
|
| 208 |
+
soln = {
|
| 209 |
+
1: {2: 6, 4: 5, 5: 1},
|
| 210 |
+
2: {3: 6, 5: 4, 6: 2},
|
| 211 |
+
3: {6: 20},
|
| 212 |
+
4: {5: 2, "t": 3},
|
| 213 |
+
5: {6: 0, "t": 7},
|
| 214 |
+
6: {"t": 22},
|
| 215 |
+
"s": {1: 12, 2: 6, 3: 14},
|
| 216 |
+
"t": {},
|
| 217 |
+
}
|
| 218 |
+
assert flow == soln
|
| 219 |
+
|
| 220 |
+
G.add_edge("t", "s", weight=-100)
|
| 221 |
+
flowCost, flow = nx.capacity_scaling(G)
|
| 222 |
+
G.remove_edge("t", "s")
|
| 223 |
+
assert flow["t"]["s"] == 32
|
| 224 |
+
assert flowCost == -3007
|
| 225 |
+
del flow["t"]["s"]
|
| 226 |
+
assert flow == soln
|
| 227 |
+
assert nx.cost_of_flow(G, flow) == 193
|
| 228 |
+
|
| 229 |
+
def test_digraph3(self):
|
| 230 |
+
"""Combinatorial Optimization: Algorithms and Complexity,
|
| 231 |
+
Papadimitriou Steiglitz at page 140 has an example, 7.1, but that
|
| 232 |
+
admits multiple solutions, so I alter it a bit. From ticket #430
|
| 233 |
+
by mfrasca."""
|
| 234 |
+
|
| 235 |
+
G = nx.DiGraph()
|
| 236 |
+
G.add_edge("s", "a")
|
| 237 |
+
G["s"]["a"].update({0: 2, 1: 4})
|
| 238 |
+
G.add_edge("s", "b")
|
| 239 |
+
G["s"]["b"].update({0: 2, 1: 1})
|
| 240 |
+
G.add_edge("a", "b")
|
| 241 |
+
G["a"]["b"].update({0: 5, 1: 2})
|
| 242 |
+
G.add_edge("a", "t")
|
| 243 |
+
G["a"]["t"].update({0: 1, 1: 5})
|
| 244 |
+
G.add_edge("b", "a")
|
| 245 |
+
G["b"]["a"].update({0: 1, 1: 3})
|
| 246 |
+
G.add_edge("b", "t")
|
| 247 |
+
G["b"]["t"].update({0: 3, 1: 2})
|
| 248 |
+
|
| 249 |
+
"PS.ex.7.1: testing main function"
|
| 250 |
+
sol = nx.max_flow_min_cost(G, "s", "t", capacity=0, weight=1)
|
| 251 |
+
flow = sum(v for v in sol["s"].values())
|
| 252 |
+
assert 4 == flow
|
| 253 |
+
assert 23 == nx.cost_of_flow(G, sol, weight=1)
|
| 254 |
+
assert sol["s"] == {"a": 2, "b": 2}
|
| 255 |
+
assert sol["a"] == {"b": 1, "t": 1}
|
| 256 |
+
assert sol["b"] == {"a": 0, "t": 3}
|
| 257 |
+
assert sol["t"] == {}
|
| 258 |
+
|
| 259 |
+
G.add_edge("t", "s")
|
| 260 |
+
G["t"]["s"].update({1: -100})
|
| 261 |
+
flowCost, sol = nx.capacity_scaling(G, capacity=0, weight=1)
|
| 262 |
+
G.remove_edge("t", "s")
|
| 263 |
+
flow = sum(v for v in sol["s"].values())
|
| 264 |
+
assert 4 == flow
|
| 265 |
+
assert sol["t"]["s"] == 4
|
| 266 |
+
assert flowCost == -377
|
| 267 |
+
del sol["t"]["s"]
|
| 268 |
+
assert sol["s"] == {"a": 2, "b": 2}
|
| 269 |
+
assert sol["a"] == {"b": 1, "t": 1}
|
| 270 |
+
assert sol["b"] == {"a": 0, "t": 3}
|
| 271 |
+
assert sol["t"] == {}
|
| 272 |
+
assert nx.cost_of_flow(G, sol, weight=1) == 23
|
| 273 |
+
|
| 274 |
+
def test_zero_capacity_edges(self):
|
| 275 |
+
"""Address issue raised in ticket #617 by arv."""
|
| 276 |
+
G = nx.DiGraph()
|
| 277 |
+
G.add_edges_from(
|
| 278 |
+
[
|
| 279 |
+
(1, 2, {"capacity": 1, "weight": 1}),
|
| 280 |
+
(1, 5, {"capacity": 1, "weight": 1}),
|
| 281 |
+
(2, 3, {"capacity": 0, "weight": 1}),
|
| 282 |
+
(2, 5, {"capacity": 1, "weight": 1}),
|
| 283 |
+
(5, 3, {"capacity": 2, "weight": 1}),
|
| 284 |
+
(5, 4, {"capacity": 0, "weight": 1}),
|
| 285 |
+
(3, 4, {"capacity": 2, "weight": 1}),
|
| 286 |
+
]
|
| 287 |
+
)
|
| 288 |
+
G.nodes[1]["demand"] = -1
|
| 289 |
+
G.nodes[2]["demand"] = -1
|
| 290 |
+
G.nodes[4]["demand"] = 2
|
| 291 |
+
|
| 292 |
+
flowCost, H = nx.network_simplex(G)
|
| 293 |
+
soln = {1: {2: 0, 5: 1}, 2: {3: 0, 5: 1}, 3: {4: 2}, 4: {}, 5: {3: 2, 4: 0}}
|
| 294 |
+
assert flowCost == 6
|
| 295 |
+
assert nx.min_cost_flow_cost(G) == 6
|
| 296 |
+
assert H == soln
|
| 297 |
+
assert nx.min_cost_flow(G) == soln
|
| 298 |
+
assert nx.cost_of_flow(G, H) == 6
|
| 299 |
+
|
| 300 |
+
flowCost, H = nx.capacity_scaling(G)
|
| 301 |
+
assert flowCost == 6
|
| 302 |
+
assert H == soln
|
| 303 |
+
assert nx.cost_of_flow(G, H) == 6
|
| 304 |
+
|
| 305 |
+
def test_digon(self):
|
| 306 |
+
"""Check if digons are handled properly. Taken from ticket
|
| 307 |
+
#618 by arv."""
|
| 308 |
+
nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})]
|
| 309 |
+
edges = [
|
| 310 |
+
(1, 2, {"capacity": 3, "weight": 600000}),
|
| 311 |
+
(2, 1, {"capacity": 2, "weight": 0}),
|
| 312 |
+
(2, 3, {"capacity": 5, "weight": 714285}),
|
| 313 |
+
(3, 2, {"capacity": 2, "weight": 0}),
|
| 314 |
+
]
|
| 315 |
+
G = nx.DiGraph(edges)
|
| 316 |
+
G.add_nodes_from(nodes)
|
| 317 |
+
flowCost, H = nx.network_simplex(G)
|
| 318 |
+
soln = {1: {2: 0}, 2: {1: 0, 3: 4}, 3: {2: 0}}
|
| 319 |
+
assert flowCost == 2857140
|
| 320 |
+
assert nx.min_cost_flow_cost(G) == 2857140
|
| 321 |
+
assert H == soln
|
| 322 |
+
assert nx.min_cost_flow(G) == soln
|
| 323 |
+
assert nx.cost_of_flow(G, H) == 2857140
|
| 324 |
+
|
| 325 |
+
flowCost, H = nx.capacity_scaling(G)
|
| 326 |
+
assert flowCost == 2857140
|
| 327 |
+
assert H == soln
|
| 328 |
+
assert nx.cost_of_flow(G, H) == 2857140
|
| 329 |
+
|
| 330 |
+
def test_deadend(self):
|
| 331 |
+
"""Check if one-node cycles are handled properly. Taken from ticket
|
| 332 |
+
#2906 from @sshraven."""
|
| 333 |
+
G = nx.DiGraph()
|
| 334 |
+
|
| 335 |
+
G.add_nodes_from(range(5), demand=0)
|
| 336 |
+
G.nodes[4]["demand"] = -13
|
| 337 |
+
G.nodes[3]["demand"] = 13
|
| 338 |
+
|
| 339 |
+
G.add_edges_from([(0, 2), (0, 3), (2, 1)], capacity=20, weight=0.1)
|
| 340 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.min_cost_flow, G)
|
| 341 |
+
|
| 342 |
+
def test_infinite_capacity_neg_digon(self):
|
| 343 |
+
"""An infinite capacity negative cost digon results in an unbounded
|
| 344 |
+
instance."""
|
| 345 |
+
nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})]
|
| 346 |
+
edges = [
|
| 347 |
+
(1, 2, {"weight": -600}),
|
| 348 |
+
(2, 1, {"weight": 0}),
|
| 349 |
+
(2, 3, {"capacity": 5, "weight": 714285}),
|
| 350 |
+
(3, 2, {"capacity": 2, "weight": 0}),
|
| 351 |
+
]
|
| 352 |
+
G = nx.DiGraph(edges)
|
| 353 |
+
G.add_nodes_from(nodes)
|
| 354 |
+
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
|
| 355 |
+
pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G)
|
| 356 |
+
|
| 357 |
+
def test_finite_capacity_neg_digon(self):
|
| 358 |
+
"""The digon should receive the maximum amount of flow it can handle.
|
| 359 |
+
Taken from ticket #749 by @chuongdo."""
|
| 360 |
+
G = nx.DiGraph()
|
| 361 |
+
G.add_edge("a", "b", capacity=1, weight=-1)
|
| 362 |
+
G.add_edge("b", "a", capacity=1, weight=-1)
|
| 363 |
+
min_cost = -2
|
| 364 |
+
assert nx.min_cost_flow_cost(G) == min_cost
|
| 365 |
+
|
| 366 |
+
flowCost, H = nx.capacity_scaling(G)
|
| 367 |
+
assert flowCost == -2
|
| 368 |
+
assert H == {"a": {"b": 1}, "b": {"a": 1}}
|
| 369 |
+
assert nx.cost_of_flow(G, H) == -2
|
| 370 |
+
|
| 371 |
+
def test_multidigraph(self):
|
| 372 |
+
"""Multidigraphs are acceptable."""
|
| 373 |
+
G = nx.MultiDiGraph()
|
| 374 |
+
G.add_weighted_edges_from([(1, 2, 1), (2, 3, 2)], weight="capacity")
|
| 375 |
+
flowCost, H = nx.network_simplex(G)
|
| 376 |
+
assert flowCost == 0
|
| 377 |
+
assert H == {1: {2: {0: 0}}, 2: {3: {0: 0}}, 3: {}}
|
| 378 |
+
|
| 379 |
+
flowCost, H = nx.capacity_scaling(G)
|
| 380 |
+
assert flowCost == 0
|
| 381 |
+
assert H == {1: {2: {0: 0}}, 2: {3: {0: 0}}, 3: {}}
|
| 382 |
+
|
| 383 |
+
def test_negative_selfloops(self):
|
| 384 |
+
"""Negative selfloops should cause an exception if uncapacitated and
|
| 385 |
+
always be saturated otherwise.
|
| 386 |
+
"""
|
| 387 |
+
G = nx.DiGraph()
|
| 388 |
+
G.add_edge(1, 1, weight=-1)
|
| 389 |
+
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
|
| 390 |
+
pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G)
|
| 391 |
+
G[1][1]["capacity"] = 2
|
| 392 |
+
flowCost, H = nx.network_simplex(G)
|
| 393 |
+
assert flowCost == -2
|
| 394 |
+
assert H == {1: {1: 2}}
|
| 395 |
+
flowCost, H = nx.capacity_scaling(G)
|
| 396 |
+
assert flowCost == -2
|
| 397 |
+
assert H == {1: {1: 2}}
|
| 398 |
+
|
| 399 |
+
G = nx.MultiDiGraph()
|
| 400 |
+
G.add_edge(1, 1, "x", weight=-1)
|
| 401 |
+
G.add_edge(1, 1, "y", weight=1)
|
| 402 |
+
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
|
| 403 |
+
pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G)
|
| 404 |
+
G[1][1]["x"]["capacity"] = 2
|
| 405 |
+
flowCost, H = nx.network_simplex(G)
|
| 406 |
+
assert flowCost == -2
|
| 407 |
+
assert H == {1: {1: {"x": 2, "y": 0}}}
|
| 408 |
+
flowCost, H = nx.capacity_scaling(G)
|
| 409 |
+
assert flowCost == -2
|
| 410 |
+
assert H == {1: {1: {"x": 2, "y": 0}}}
|
| 411 |
+
|
| 412 |
+
def test_bone_shaped(self):
|
| 413 |
+
# From #1283
|
| 414 |
+
G = nx.DiGraph()
|
| 415 |
+
G.add_node(0, demand=-4)
|
| 416 |
+
G.add_node(1, demand=2)
|
| 417 |
+
G.add_node(2, demand=2)
|
| 418 |
+
G.add_node(3, demand=4)
|
| 419 |
+
G.add_node(4, demand=-2)
|
| 420 |
+
G.add_node(5, demand=-2)
|
| 421 |
+
G.add_edge(0, 1, capacity=4)
|
| 422 |
+
G.add_edge(0, 2, capacity=4)
|
| 423 |
+
G.add_edge(4, 3, capacity=4)
|
| 424 |
+
G.add_edge(5, 3, capacity=4)
|
| 425 |
+
G.add_edge(0, 3, capacity=0)
|
| 426 |
+
flowCost, H = nx.network_simplex(G)
|
| 427 |
+
assert flowCost == 0
|
| 428 |
+
assert H == {0: {1: 2, 2: 2, 3: 0}, 1: {}, 2: {}, 3: {}, 4: {3: 2}, 5: {3: 2}}
|
| 429 |
+
flowCost, H = nx.capacity_scaling(G)
|
| 430 |
+
assert flowCost == 0
|
| 431 |
+
assert H == {0: {1: 2, 2: 2, 3: 0}, 1: {}, 2: {}, 3: {}, 4: {3: 2}, 5: {3: 2}}
|
| 432 |
+
|
| 433 |
+
def test_exceptions(self):
|
| 434 |
+
G = nx.Graph()
|
| 435 |
+
pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G)
|
| 436 |
+
pytest.raises(nx.NetworkXNotImplemented, nx.capacity_scaling, G)
|
| 437 |
+
G = nx.MultiGraph()
|
| 438 |
+
pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G)
|
| 439 |
+
pytest.raises(nx.NetworkXNotImplemented, nx.capacity_scaling, G)
|
| 440 |
+
G = nx.DiGraph()
|
| 441 |
+
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
|
| 442 |
+
# pytest.raises(nx.NetworkXError, nx.capacity_scaling, G)
|
| 443 |
+
G.add_node(0, demand=float("inf"))
|
| 444 |
+
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
|
| 445 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
|
| 446 |
+
G.nodes[0]["demand"] = 0
|
| 447 |
+
G.add_node(1, demand=0)
|
| 448 |
+
G.add_edge(0, 1, weight=-float("inf"))
|
| 449 |
+
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
|
| 450 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
|
| 451 |
+
G[0][1]["weight"] = 0
|
| 452 |
+
G.add_edge(0, 0, weight=float("inf"))
|
| 453 |
+
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
|
| 454 |
+
# pytest.raises(nx.NetworkXError, nx.capacity_scaling, G)
|
| 455 |
+
G[0][0]["weight"] = 0
|
| 456 |
+
G[0][1]["capacity"] = -1
|
| 457 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
|
| 458 |
+
# pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
|
| 459 |
+
G[0][1]["capacity"] = 0
|
| 460 |
+
G[0][0]["capacity"] = -1
|
| 461 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
|
| 462 |
+
# pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
|
| 463 |
+
|
| 464 |
+
def test_large(self):
|
| 465 |
+
fname = (
|
| 466 |
+
importlib.resources.files("networkx.algorithms.flow.tests")
|
| 467 |
+
/ "netgen-2.gpickle.bz2"
|
| 468 |
+
)
|
| 469 |
+
with bz2.BZ2File(fname, "rb") as f:
|
| 470 |
+
G = pickle.load(f)
|
| 471 |
+
flowCost, flowDict = nx.network_simplex(G)
|
| 472 |
+
assert 6749969302 == flowCost
|
| 473 |
+
assert 6749969302 == nx.cost_of_flow(G, flowDict)
|
| 474 |
+
flowCost, flowDict = nx.capacity_scaling(G)
|
| 475 |
+
assert 6749969302 == flowCost
|
| 476 |
+
assert 6749969302 == nx.cost_of_flow(G, flowDict)
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/tests/test_networksimplex.py
ADDED
|
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import bz2
|
| 2 |
+
import importlib.resources
|
| 3 |
+
import os
|
| 4 |
+
import pickle
|
| 5 |
+
|
| 6 |
+
import pytest
|
| 7 |
+
|
| 8 |
+
import networkx as nx
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@pytest.fixture
|
| 12 |
+
def simple_flow_graph():
|
| 13 |
+
G = nx.DiGraph()
|
| 14 |
+
G.add_node("a", demand=0)
|
| 15 |
+
G.add_node("b", demand=-5)
|
| 16 |
+
G.add_node("c", demand=50000000)
|
| 17 |
+
G.add_node("d", demand=-49999995)
|
| 18 |
+
G.add_edge("a", "b", weight=3, capacity=4)
|
| 19 |
+
G.add_edge("a", "c", weight=6, capacity=10)
|
| 20 |
+
G.add_edge("b", "d", weight=1, capacity=9)
|
| 21 |
+
G.add_edge("c", "d", weight=2, capacity=5)
|
| 22 |
+
return G
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@pytest.fixture
|
| 26 |
+
def simple_no_flow_graph():
|
| 27 |
+
G = nx.DiGraph()
|
| 28 |
+
G.add_node("s", demand=-5)
|
| 29 |
+
G.add_node("t", demand=5)
|
| 30 |
+
G.add_edge("s", "a", weight=1, capacity=3)
|
| 31 |
+
G.add_edge("a", "b", weight=3)
|
| 32 |
+
G.add_edge("a", "c", weight=-6)
|
| 33 |
+
G.add_edge("b", "d", weight=1)
|
| 34 |
+
G.add_edge("c", "d", weight=-2)
|
| 35 |
+
G.add_edge("d", "t", weight=1, capacity=3)
|
| 36 |
+
return G
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def get_flowcost_from_flowdict(G, flowDict):
|
| 40 |
+
"""Returns flow cost calculated from flow dictionary"""
|
| 41 |
+
flowCost = 0
|
| 42 |
+
for u in flowDict:
|
| 43 |
+
for v in flowDict[u]:
|
| 44 |
+
flowCost += flowDict[u][v] * G[u][v]["weight"]
|
| 45 |
+
return flowCost
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def test_infinite_demand_raise(simple_flow_graph):
|
| 49 |
+
G = simple_flow_graph
|
| 50 |
+
inf = float("inf")
|
| 51 |
+
nx.set_node_attributes(G, {"a": {"demand": inf}})
|
| 52 |
+
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def test_neg_infinite_demand_raise(simple_flow_graph):
|
| 56 |
+
G = simple_flow_graph
|
| 57 |
+
inf = float("inf")
|
| 58 |
+
nx.set_node_attributes(G, {"a": {"demand": -inf}})
|
| 59 |
+
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def test_infinite_weight_raise(simple_flow_graph):
|
| 63 |
+
G = simple_flow_graph
|
| 64 |
+
inf = float("inf")
|
| 65 |
+
nx.set_edge_attributes(
|
| 66 |
+
G, {("a", "b"): {"weight": inf}, ("b", "d"): {"weight": inf}}
|
| 67 |
+
)
|
| 68 |
+
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def test_nonzero_net_demand_raise(simple_flow_graph):
|
| 72 |
+
G = simple_flow_graph
|
| 73 |
+
nx.set_node_attributes(G, {"b": {"demand": -4}})
|
| 74 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def test_negative_capacity_raise(simple_flow_graph):
|
| 78 |
+
G = simple_flow_graph
|
| 79 |
+
nx.set_edge_attributes(G, {("a", "b"): {"weight": 1}, ("b", "d"): {"capacity": -9}})
|
| 80 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def test_no_flow_satisfying_demands(simple_no_flow_graph):
|
| 84 |
+
G = simple_no_flow_graph
|
| 85 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def test_sum_demands_not_zero(simple_no_flow_graph):
|
| 89 |
+
G = simple_no_flow_graph
|
| 90 |
+
nx.set_node_attributes(G, {"t": {"demand": 4}})
|
| 91 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def test_google_or_tools_example():
|
| 95 |
+
"""
|
| 96 |
+
https://developers.google.com/optimization/flow/mincostflow
|
| 97 |
+
"""
|
| 98 |
+
G = nx.DiGraph()
|
| 99 |
+
start_nodes = [0, 0, 1, 1, 1, 2, 2, 3, 4]
|
| 100 |
+
end_nodes = [1, 2, 2, 3, 4, 3, 4, 4, 2]
|
| 101 |
+
capacities = [15, 8, 20, 4, 10, 15, 4, 20, 5]
|
| 102 |
+
unit_costs = [4, 4, 2, 2, 6, 1, 3, 2, 3]
|
| 103 |
+
supplies = [20, 0, 0, -5, -15]
|
| 104 |
+
answer = 150
|
| 105 |
+
|
| 106 |
+
for i in range(len(supplies)):
|
| 107 |
+
G.add_node(i, demand=(-1) * supplies[i]) # supplies are negative of demand
|
| 108 |
+
|
| 109 |
+
for i in range(len(start_nodes)):
|
| 110 |
+
G.add_edge(
|
| 111 |
+
start_nodes[i], end_nodes[i], weight=unit_costs[i], capacity=capacities[i]
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
flowCost, flowDict = nx.network_simplex(G)
|
| 115 |
+
assert flowCost == answer
|
| 116 |
+
assert flowCost == get_flowcost_from_flowdict(G, flowDict)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def test_google_or_tools_example2():
|
| 120 |
+
"""
|
| 121 |
+
https://developers.google.com/optimization/flow/mincostflow
|
| 122 |
+
"""
|
| 123 |
+
G = nx.DiGraph()
|
| 124 |
+
start_nodes = [0, 0, 1, 1, 1, 2, 2, 3, 4, 3]
|
| 125 |
+
end_nodes = [1, 2, 2, 3, 4, 3, 4, 4, 2, 5]
|
| 126 |
+
capacities = [15, 8, 20, 4, 10, 15, 4, 20, 5, 10]
|
| 127 |
+
unit_costs = [4, 4, 2, 2, 6, 1, 3, 2, 3, 4]
|
| 128 |
+
supplies = [23, 0, 0, -5, -15, -3]
|
| 129 |
+
answer = 183
|
| 130 |
+
|
| 131 |
+
for i in range(len(supplies)):
|
| 132 |
+
G.add_node(i, demand=(-1) * supplies[i]) # supplies are negative of demand
|
| 133 |
+
|
| 134 |
+
for i in range(len(start_nodes)):
|
| 135 |
+
G.add_edge(
|
| 136 |
+
start_nodes[i], end_nodes[i], weight=unit_costs[i], capacity=capacities[i]
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
flowCost, flowDict = nx.network_simplex(G)
|
| 140 |
+
assert flowCost == answer
|
| 141 |
+
assert flowCost == get_flowcost_from_flowdict(G, flowDict)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def test_large():
|
| 145 |
+
fname = (
|
| 146 |
+
importlib.resources.files("networkx.algorithms.flow.tests")
|
| 147 |
+
/ "netgen-2.gpickle.bz2"
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
with bz2.BZ2File(fname, "rb") as f:
|
| 151 |
+
G = pickle.load(f)
|
| 152 |
+
flowCost, flowDict = nx.network_simplex(G)
|
| 153 |
+
assert 6749969302 == flowCost
|
| 154 |
+
assert 6749969302 == nx.cost_of_flow(G, flowDict)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def test_simple_digraph():
|
| 158 |
+
G = nx.DiGraph()
|
| 159 |
+
G.add_node("a", demand=-5)
|
| 160 |
+
G.add_node("d", demand=5)
|
| 161 |
+
G.add_edge("a", "b", weight=3, capacity=4)
|
| 162 |
+
G.add_edge("a", "c", weight=6, capacity=10)
|
| 163 |
+
G.add_edge("b", "d", weight=1, capacity=9)
|
| 164 |
+
G.add_edge("c", "d", weight=2, capacity=5)
|
| 165 |
+
flowCost, H = nx.network_simplex(G)
|
| 166 |
+
soln = {"a": {"b": 4, "c": 1}, "b": {"d": 4}, "c": {"d": 1}, "d": {}}
|
| 167 |
+
assert flowCost == 24
|
| 168 |
+
assert nx.min_cost_flow_cost(G) == 24
|
| 169 |
+
assert H == soln
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def test_negcycle_infcap():
|
| 173 |
+
G = nx.DiGraph()
|
| 174 |
+
G.add_node("s", demand=-5)
|
| 175 |
+
G.add_node("t", demand=5)
|
| 176 |
+
G.add_edge("s", "a", weight=1, capacity=3)
|
| 177 |
+
G.add_edge("a", "b", weight=3)
|
| 178 |
+
G.add_edge("c", "a", weight=-6)
|
| 179 |
+
G.add_edge("b", "d", weight=1)
|
| 180 |
+
G.add_edge("d", "c", weight=-2)
|
| 181 |
+
G.add_edge("d", "t", weight=1, capacity=3)
|
| 182 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def test_transshipment():
|
| 186 |
+
G = nx.DiGraph()
|
| 187 |
+
G.add_node("a", demand=1)
|
| 188 |
+
G.add_node("b", demand=-2)
|
| 189 |
+
G.add_node("c", demand=-2)
|
| 190 |
+
G.add_node("d", demand=3)
|
| 191 |
+
G.add_node("e", demand=-4)
|
| 192 |
+
G.add_node("f", demand=-4)
|
| 193 |
+
G.add_node("g", demand=3)
|
| 194 |
+
G.add_node("h", demand=2)
|
| 195 |
+
G.add_node("r", demand=3)
|
| 196 |
+
G.add_edge("a", "c", weight=3)
|
| 197 |
+
G.add_edge("r", "a", weight=2)
|
| 198 |
+
G.add_edge("b", "a", weight=9)
|
| 199 |
+
G.add_edge("r", "c", weight=0)
|
| 200 |
+
G.add_edge("b", "r", weight=-6)
|
| 201 |
+
G.add_edge("c", "d", weight=5)
|
| 202 |
+
G.add_edge("e", "r", weight=4)
|
| 203 |
+
G.add_edge("e", "f", weight=3)
|
| 204 |
+
G.add_edge("h", "b", weight=4)
|
| 205 |
+
G.add_edge("f", "d", weight=7)
|
| 206 |
+
G.add_edge("f", "h", weight=12)
|
| 207 |
+
G.add_edge("g", "d", weight=12)
|
| 208 |
+
G.add_edge("f", "g", weight=-1)
|
| 209 |
+
G.add_edge("h", "g", weight=-10)
|
| 210 |
+
flowCost, H = nx.network_simplex(G)
|
| 211 |
+
soln = {
|
| 212 |
+
"a": {"c": 0},
|
| 213 |
+
"b": {"a": 0, "r": 2},
|
| 214 |
+
"c": {"d": 3},
|
| 215 |
+
"d": {},
|
| 216 |
+
"e": {"r": 3, "f": 1},
|
| 217 |
+
"f": {"d": 0, "g": 3, "h": 2},
|
| 218 |
+
"g": {"d": 0},
|
| 219 |
+
"h": {"b": 0, "g": 0},
|
| 220 |
+
"r": {"a": 1, "c": 1},
|
| 221 |
+
}
|
| 222 |
+
assert flowCost == 41
|
| 223 |
+
assert H == soln
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def test_digraph1():
|
| 227 |
+
# From Bradley, S. P., Hax, A. C. and Magnanti, T. L. Applied
|
| 228 |
+
# Mathematical Programming. Addison-Wesley, 1977.
|
| 229 |
+
G = nx.DiGraph()
|
| 230 |
+
G.add_node(1, demand=-20)
|
| 231 |
+
G.add_node(4, demand=5)
|
| 232 |
+
G.add_node(5, demand=15)
|
| 233 |
+
G.add_edges_from(
|
| 234 |
+
[
|
| 235 |
+
(1, 2, {"capacity": 15, "weight": 4}),
|
| 236 |
+
(1, 3, {"capacity": 8, "weight": 4}),
|
| 237 |
+
(2, 3, {"weight": 2}),
|
| 238 |
+
(2, 4, {"capacity": 4, "weight": 2}),
|
| 239 |
+
(2, 5, {"capacity": 10, "weight": 6}),
|
| 240 |
+
(3, 4, {"capacity": 15, "weight": 1}),
|
| 241 |
+
(3, 5, {"capacity": 5, "weight": 3}),
|
| 242 |
+
(4, 5, {"weight": 2}),
|
| 243 |
+
(5, 3, {"capacity": 4, "weight": 1}),
|
| 244 |
+
]
|
| 245 |
+
)
|
| 246 |
+
flowCost, H = nx.network_simplex(G)
|
| 247 |
+
soln = {
|
| 248 |
+
1: {2: 12, 3: 8},
|
| 249 |
+
2: {3: 8, 4: 4, 5: 0},
|
| 250 |
+
3: {4: 11, 5: 5},
|
| 251 |
+
4: {5: 10},
|
| 252 |
+
5: {3: 0},
|
| 253 |
+
}
|
| 254 |
+
assert flowCost == 150
|
| 255 |
+
assert nx.min_cost_flow_cost(G) == 150
|
| 256 |
+
assert H == soln
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def test_zero_capacity_edges():
|
| 260 |
+
"""Address issue raised in ticket #617 by arv."""
|
| 261 |
+
G = nx.DiGraph()
|
| 262 |
+
G.add_edges_from(
|
| 263 |
+
[
|
| 264 |
+
(1, 2, {"capacity": 1, "weight": 1}),
|
| 265 |
+
(1, 5, {"capacity": 1, "weight": 1}),
|
| 266 |
+
(2, 3, {"capacity": 0, "weight": 1}),
|
| 267 |
+
(2, 5, {"capacity": 1, "weight": 1}),
|
| 268 |
+
(5, 3, {"capacity": 2, "weight": 1}),
|
| 269 |
+
(5, 4, {"capacity": 0, "weight": 1}),
|
| 270 |
+
(3, 4, {"capacity": 2, "weight": 1}),
|
| 271 |
+
]
|
| 272 |
+
)
|
| 273 |
+
G.nodes[1]["demand"] = -1
|
| 274 |
+
G.nodes[2]["demand"] = -1
|
| 275 |
+
G.nodes[4]["demand"] = 2
|
| 276 |
+
|
| 277 |
+
flowCost, H = nx.network_simplex(G)
|
| 278 |
+
soln = {1: {2: 0, 5: 1}, 2: {3: 0, 5: 1}, 3: {4: 2}, 4: {}, 5: {3: 2, 4: 0}}
|
| 279 |
+
assert flowCost == 6
|
| 280 |
+
assert nx.min_cost_flow_cost(G) == 6
|
| 281 |
+
assert H == soln
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def test_digon():
|
| 285 |
+
"""Check if digons are handled properly. Taken from ticket
|
| 286 |
+
#618 by arv."""
|
| 287 |
+
nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})]
|
| 288 |
+
edges = [
|
| 289 |
+
(1, 2, {"capacity": 3, "weight": 600000}),
|
| 290 |
+
(2, 1, {"capacity": 2, "weight": 0}),
|
| 291 |
+
(2, 3, {"capacity": 5, "weight": 714285}),
|
| 292 |
+
(3, 2, {"capacity": 2, "weight": 0}),
|
| 293 |
+
]
|
| 294 |
+
G = nx.DiGraph(edges)
|
| 295 |
+
G.add_nodes_from(nodes)
|
| 296 |
+
flowCost, H = nx.network_simplex(G)
|
| 297 |
+
soln = {1: {2: 0}, 2: {1: 0, 3: 4}, 3: {2: 0}}
|
| 298 |
+
assert flowCost == 2857140
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def test_deadend():
|
| 302 |
+
"""Check if one-node cycles are handled properly. Taken from ticket
|
| 303 |
+
#2906 from @sshraven."""
|
| 304 |
+
G = nx.DiGraph()
|
| 305 |
+
|
| 306 |
+
G.add_nodes_from(range(5), demand=0)
|
| 307 |
+
G.nodes[4]["demand"] = -13
|
| 308 |
+
G.nodes[3]["demand"] = 13
|
| 309 |
+
|
| 310 |
+
G.add_edges_from([(0, 2), (0, 3), (2, 1)], capacity=20, weight=0.1)
|
| 311 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
def test_infinite_capacity_neg_digon():
|
| 315 |
+
"""An infinite capacity negative cost digon results in an unbounded
|
| 316 |
+
instance."""
|
| 317 |
+
nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})]
|
| 318 |
+
edges = [
|
| 319 |
+
(1, 2, {"weight": -600}),
|
| 320 |
+
(2, 1, {"weight": 0}),
|
| 321 |
+
(2, 3, {"capacity": 5, "weight": 714285}),
|
| 322 |
+
(3, 2, {"capacity": 2, "weight": 0}),
|
| 323 |
+
]
|
| 324 |
+
G = nx.DiGraph(edges)
|
| 325 |
+
G.add_nodes_from(nodes)
|
| 326 |
+
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def test_multidigraph():
|
| 330 |
+
"""Multidigraphs are acceptable."""
|
| 331 |
+
G = nx.MultiDiGraph()
|
| 332 |
+
G.add_weighted_edges_from([(1, 2, 1), (2, 3, 2)], weight="capacity")
|
| 333 |
+
flowCost, H = nx.network_simplex(G)
|
| 334 |
+
assert flowCost == 0
|
| 335 |
+
assert H == {1: {2: {0: 0}}, 2: {3: {0: 0}}, 3: {}}
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
def test_negative_selfloops():
|
| 339 |
+
"""Negative selfloops should cause an exception if uncapacitated and
|
| 340 |
+
always be saturated otherwise.
|
| 341 |
+
"""
|
| 342 |
+
G = nx.DiGraph()
|
| 343 |
+
G.add_edge(1, 1, weight=-1)
|
| 344 |
+
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
|
| 345 |
+
|
| 346 |
+
G[1][1]["capacity"] = 2
|
| 347 |
+
flowCost, H = nx.network_simplex(G)
|
| 348 |
+
assert flowCost == -2
|
| 349 |
+
assert H == {1: {1: 2}}
|
| 350 |
+
|
| 351 |
+
G = nx.MultiDiGraph()
|
| 352 |
+
G.add_edge(1, 1, "x", weight=-1)
|
| 353 |
+
G.add_edge(1, 1, "y", weight=1)
|
| 354 |
+
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
|
| 355 |
+
|
| 356 |
+
G[1][1]["x"]["capacity"] = 2
|
| 357 |
+
flowCost, H = nx.network_simplex(G)
|
| 358 |
+
assert flowCost == -2
|
| 359 |
+
assert H == {1: {1: {"x": 2, "y": 0}}}
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def test_bone_shaped():
|
| 363 |
+
# From #1283
|
| 364 |
+
G = nx.DiGraph()
|
| 365 |
+
G.add_node(0, demand=-4)
|
| 366 |
+
G.add_node(1, demand=2)
|
| 367 |
+
G.add_node(2, demand=2)
|
| 368 |
+
G.add_node(3, demand=4)
|
| 369 |
+
G.add_node(4, demand=-2)
|
| 370 |
+
G.add_node(5, demand=-2)
|
| 371 |
+
G.add_edge(0, 1, capacity=4)
|
| 372 |
+
G.add_edge(0, 2, capacity=4)
|
| 373 |
+
G.add_edge(4, 3, capacity=4)
|
| 374 |
+
G.add_edge(5, 3, capacity=4)
|
| 375 |
+
G.add_edge(0, 3, capacity=0)
|
| 376 |
+
flowCost, H = nx.network_simplex(G)
|
| 377 |
+
assert flowCost == 0
|
| 378 |
+
assert H == {0: {1: 2, 2: 2, 3: 0}, 1: {}, 2: {}, 3: {}, 4: {3: 2}, 5: {3: 2}}
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def test_graphs_type_exceptions():
|
| 382 |
+
G = nx.Graph()
|
| 383 |
+
pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G)
|
| 384 |
+
G = nx.MultiGraph()
|
| 385 |
+
pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G)
|
| 386 |
+
G = nx.DiGraph()
|
| 387 |
+
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
|
.venv/lib/python3.11/site-packages/networkx/algorithms/flow/utils.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utility classes and functions for network flow algorithms.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from collections import deque
|
| 6 |
+
|
| 7 |
+
import networkx as nx
|
| 8 |
+
|
| 9 |
+
__all__ = [
|
| 10 |
+
"CurrentEdge",
|
| 11 |
+
"Level",
|
| 12 |
+
"GlobalRelabelThreshold",
|
| 13 |
+
"build_residual_network",
|
| 14 |
+
"detect_unboundedness",
|
| 15 |
+
"build_flow_dict",
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class CurrentEdge:
|
| 20 |
+
"""Mechanism for iterating over out-edges incident to a node in a circular
|
| 21 |
+
manner. StopIteration exception is raised when wraparound occurs.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
__slots__ = ("_edges", "_it", "_curr")
|
| 25 |
+
|
| 26 |
+
def __init__(self, edges):
|
| 27 |
+
self._edges = edges
|
| 28 |
+
if self._edges:
|
| 29 |
+
self._rewind()
|
| 30 |
+
|
| 31 |
+
def get(self):
|
| 32 |
+
return self._curr
|
| 33 |
+
|
| 34 |
+
def move_to_next(self):
|
| 35 |
+
try:
|
| 36 |
+
self._curr = next(self._it)
|
| 37 |
+
except StopIteration:
|
| 38 |
+
self._rewind()
|
| 39 |
+
raise
|
| 40 |
+
|
| 41 |
+
def _rewind(self):
|
| 42 |
+
self._it = iter(self._edges.items())
|
| 43 |
+
self._curr = next(self._it)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class Level:
|
| 47 |
+
"""Active and inactive nodes in a level."""
|
| 48 |
+
|
| 49 |
+
__slots__ = ("active", "inactive")
|
| 50 |
+
|
| 51 |
+
def __init__(self):
|
| 52 |
+
self.active = set()
|
| 53 |
+
self.inactive = set()
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class GlobalRelabelThreshold:
|
| 57 |
+
"""Measurement of work before the global relabeling heuristic should be
|
| 58 |
+
applied.
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
def __init__(self, n, m, freq):
|
| 62 |
+
self._threshold = (n + m) / freq if freq else float("inf")
|
| 63 |
+
self._work = 0
|
| 64 |
+
|
| 65 |
+
def add_work(self, work):
|
| 66 |
+
self._work += work
|
| 67 |
+
|
| 68 |
+
def is_reached(self):
|
| 69 |
+
return self._work >= self._threshold
|
| 70 |
+
|
| 71 |
+
def clear_work(self):
|
| 72 |
+
self._work = 0
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@nx._dispatchable(edge_attrs={"capacity": float("inf")}, returns_graph=True)
|
| 76 |
+
def build_residual_network(G, capacity):
|
| 77 |
+
"""Build a residual network and initialize a zero flow.
|
| 78 |
+
|
| 79 |
+
The residual network :samp:`R` from an input graph :samp:`G` has the
|
| 80 |
+
same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
|
| 81 |
+
of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
|
| 82 |
+
self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
|
| 83 |
+
in :samp:`G`.
|
| 84 |
+
|
| 85 |
+
For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
|
| 86 |
+
is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
|
| 87 |
+
in :samp:`G` or zero otherwise. If the capacity is infinite,
|
| 88 |
+
:samp:`R[u][v]['capacity']` will have a high arbitrary finite value
|
| 89 |
+
that does not affect the solution of the problem. This value is stored in
|
| 90 |
+
:samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
|
| 91 |
+
:samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
|
| 92 |
+
satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.
|
| 93 |
+
|
| 94 |
+
The flow value, defined as the total flow into :samp:`t`, the sink, is
|
| 95 |
+
stored in :samp:`R.graph['flow_value']`. If :samp:`cutoff` is not
|
| 96 |
+
specified, reachability to :samp:`t` using only edges :samp:`(u, v)` such
|
| 97 |
+
that :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
|
| 98 |
+
:samp:`s`-:samp:`t` cut.
|
| 99 |
+
|
| 100 |
+
"""
|
| 101 |
+
if G.is_multigraph():
|
| 102 |
+
raise nx.NetworkXError("MultiGraph and MultiDiGraph not supported (yet).")
|
| 103 |
+
|
| 104 |
+
R = nx.DiGraph()
|
| 105 |
+
R.__networkx_cache__ = None # Disable caching
|
| 106 |
+
R.add_nodes_from(G)
|
| 107 |
+
|
| 108 |
+
inf = float("inf")
|
| 109 |
+
# Extract edges with positive capacities. Self loops excluded.
|
| 110 |
+
edge_list = [
|
| 111 |
+
(u, v, attr)
|
| 112 |
+
for u, v, attr in G.edges(data=True)
|
| 113 |
+
if u != v and attr.get(capacity, inf) > 0
|
| 114 |
+
]
|
| 115 |
+
# Simulate infinity with three times the sum of the finite edge capacities
|
| 116 |
+
# or any positive value if the sum is zero. This allows the
|
| 117 |
+
# infinite-capacity edges to be distinguished for unboundedness detection
|
| 118 |
+
# and directly participate in residual capacity calculation. If the maximum
|
| 119 |
+
# flow is finite, these edges cannot appear in the minimum cut and thus
|
| 120 |
+
# guarantee correctness. Since the residual capacity of an
|
| 121 |
+
# infinite-capacity edge is always at least 2/3 of inf, while that of an
|
| 122 |
+
# finite-capacity edge is at most 1/3 of inf, if an operation moves more
|
| 123 |
+
# than 1/3 of inf units of flow to t, there must be an infinite-capacity
|
| 124 |
+
# s-t path in G.
|
| 125 |
+
inf = (
|
| 126 |
+
3
|
| 127 |
+
* sum(
|
| 128 |
+
attr[capacity]
|
| 129 |
+
for u, v, attr in edge_list
|
| 130 |
+
if capacity in attr and attr[capacity] != inf
|
| 131 |
+
)
|
| 132 |
+
or 1
|
| 133 |
+
)
|
| 134 |
+
if G.is_directed():
|
| 135 |
+
for u, v, attr in edge_list:
|
| 136 |
+
r = min(attr.get(capacity, inf), inf)
|
| 137 |
+
if not R.has_edge(u, v):
|
| 138 |
+
# Both (u, v) and (v, u) must be present in the residual
|
| 139 |
+
# network.
|
| 140 |
+
R.add_edge(u, v, capacity=r)
|
| 141 |
+
R.add_edge(v, u, capacity=0)
|
| 142 |
+
else:
|
| 143 |
+
# The edge (u, v) was added when (v, u) was visited.
|
| 144 |
+
R[u][v]["capacity"] = r
|
| 145 |
+
else:
|
| 146 |
+
for u, v, attr in edge_list:
|
| 147 |
+
# Add a pair of edges with equal residual capacities.
|
| 148 |
+
r = min(attr.get(capacity, inf), inf)
|
| 149 |
+
R.add_edge(u, v, capacity=r)
|
| 150 |
+
R.add_edge(v, u, capacity=r)
|
| 151 |
+
|
| 152 |
+
# Record the value simulating infinity.
|
| 153 |
+
R.graph["inf"] = inf
|
| 154 |
+
|
| 155 |
+
return R
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
@nx._dispatchable(
|
| 159 |
+
graphs="R",
|
| 160 |
+
preserve_edge_attrs={"R": {"capacity": float("inf")}},
|
| 161 |
+
preserve_graph_attrs=True,
|
| 162 |
+
)
|
| 163 |
+
def detect_unboundedness(R, s, t):
|
| 164 |
+
"""Detect an infinite-capacity s-t path in R."""
|
| 165 |
+
q = deque([s])
|
| 166 |
+
seen = {s}
|
| 167 |
+
inf = R.graph["inf"]
|
| 168 |
+
while q:
|
| 169 |
+
u = q.popleft()
|
| 170 |
+
for v, attr in R[u].items():
|
| 171 |
+
if attr["capacity"] == inf and v not in seen:
|
| 172 |
+
if v == t:
|
| 173 |
+
raise nx.NetworkXUnbounded(
|
| 174 |
+
"Infinite capacity path, flow unbounded above."
|
| 175 |
+
)
|
| 176 |
+
seen.add(v)
|
| 177 |
+
q.append(v)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
@nx._dispatchable(graphs={"G": 0, "R": 1}, preserve_edge_attrs={"R": {"flow": None}})
|
| 181 |
+
def build_flow_dict(G, R):
|
| 182 |
+
"""Build a flow dictionary from a residual network."""
|
| 183 |
+
flow_dict = {}
|
| 184 |
+
for u in G:
|
| 185 |
+
flow_dict[u] = {v: 0 for v in G[u]}
|
| 186 |
+
flow_dict[u].update(
|
| 187 |
+
(v, attr["flow"]) for v, attr in R[u].items() if attr["flow"] > 0
|
| 188 |
+
)
|
| 189 |
+
return flow_dict
|
.venv/lib/python3.11/site-packages/networkx/algorithms/link_analysis/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from networkx.algorithms.link_analysis.hits_alg import *
|
| 2 |
+
from networkx.algorithms.link_analysis.pagerank_alg import *
|
.venv/lib/python3.11/site-packages/networkx/algorithms/link_analysis/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (341 Bytes). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/link_analysis/__pycache__/hits_alg.cpython-311.pyc
ADDED
|
Binary file (14.6 kB). View file
|
|
|
.venv/lib/python3.11/site-packages/networkx/algorithms/link_analysis/__pycache__/pagerank_alg.cpython-311.pyc
ADDED
|
Binary file (22.2 kB). View file
|
|
|