diff --git a/.gitattributes b/.gitattributes index 13ddaca4f9c42afb190791b50d2f2324d0ea2df6..1646893b949022afe79516dcd34112b1ca4c9716 100644 --- a/.gitattributes +++ b/.gitattributes @@ -309,3 +309,9 @@ tuning-competition-baseline/.venv/lib/python3.11/site-packages/nvidia/cudnn/lib/ .venv/lib/python3.11/site-packages/PIL/_imagingft.cpython-311-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text .venv/lib/python3.11/site-packages/PIL/__pycache__/Image.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text .venv/lib/python3.11/site-packages/PIL/_imaging.cpython-311-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text +.venv/lib/python3.11/site-packages/PIL/__pycache__/TiffImagePlugin.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text +.venv/lib/python3.11/site-packages/torio/lib/_torio_ffmpeg6.so filter=lfs diff=lfs merge=lfs -text +.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg6.so filter=lfs diff=lfs merge=lfs -text +.venv/lib/python3.11/site-packages/torio/lib/_torio_ffmpeg4.so filter=lfs diff=lfs merge=lfs -text +.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg5.so filter=lfs diff=lfs merge=lfs -text +.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg4.so filter=lfs diff=lfs merge=lfs -text diff --git a/.venv/lib/python3.11/site-packages/PIL/__pycache__/TiffImagePlugin.cpython-311.pyc b/.venv/lib/python3.11/site-packages/PIL/__pycache__/TiffImagePlugin.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..56feabe996e445c6cc19c7bf8d4ecf6b1eeb5d7b --- /dev/null +++ b/.venv/lib/python3.11/site-packages/PIL/__pycache__/TiffImagePlugin.cpython-311.pyc @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3416e1e96ef8d36ac802ef017e613c85af365d5b8a0c51ccd0b21831eddc89d0 +size 101283 diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__init__.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d12a8f8b8e4a633675971c727d959222db8ab79d --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__init__.py @@ -0,0 +1,25 @@ +"""Approximations of graph properties and Heuristic methods for optimization. + +The functions in this class are not imported into the top-level ``networkx`` +namespace so the easiest way to use them is with:: + + >>> from networkx.algorithms import approximation + +Another option is to import the specific function with +``from networkx.algorithms.approximation import function_name``. + +""" + +from networkx.algorithms.approximation.clustering_coefficient import * +from networkx.algorithms.approximation.clique import * +from networkx.algorithms.approximation.connectivity import * +from networkx.algorithms.approximation.distance_measures import * +from networkx.algorithms.approximation.dominating_set import * +from networkx.algorithms.approximation.kcomponents import * +from networkx.algorithms.approximation.matching import * +from networkx.algorithms.approximation.ramsey import * +from networkx.algorithms.approximation.steinertree import * +from networkx.algorithms.approximation.traveling_salesman import * +from networkx.algorithms.approximation.treewidth import * +from networkx.algorithms.approximation.vertex_cover import * +from networkx.algorithms.approximation.maxcut import * diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/__init__.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ec6f72cf8f6ef8ce0929aa3f99b4443c21315d63 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/__init__.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/clique.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/clique.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f21dfe8be01509234842ac20e25696d5a3da447a Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/clique.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/clustering_coefficient.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/clustering_coefficient.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9d92c1dbb4b6c2f1a739867b51fc7ac3f8c729e0 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/clustering_coefficient.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/connectivity.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/connectivity.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..749be72e9abd57e753f2fbc9a229606ad4bb006a Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/connectivity.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/distance_measures.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/distance_measures.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fe37796e4fa570f806d8c37a5d60e182a8329155 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/distance_measures.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/dominating_set.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/dominating_set.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5f92e3824fb3d9195e6087e334f3d858a31491d2 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/dominating_set.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/kcomponents.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/kcomponents.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..99fd23a6062e32073c37f3ab5f38aae52bae2a91 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/kcomponents.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/matching.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/matching.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0f1e6128110ed2004ed692768fe5f1f7fbc2071b Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/matching.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/maxcut.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/maxcut.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..de6cf9a7f6eac5df515a89e795c097b6209f0053 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/maxcut.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/ramsey.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/ramsey.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9d6bb79ec1d25ac0ac9d607a66cd9ad4c80eceda Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/ramsey.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/steinertree.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/steinertree.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3e0ca3567bb7d3aaaf7d932cfb55216298760992 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/steinertree.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/traveling_salesman.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/traveling_salesman.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c09f6d351cf6bda8c4f8273b5a0fa656537fcbfe Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/traveling_salesman.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/treewidth.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/treewidth.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9ee1e9c48f883e668d56b13033b071ffa1c3fa36 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/treewidth.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/vertex_cover.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/vertex_cover.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0e4b82891f5ee56df1f36edd742abbbe513bae47 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/__pycache__/vertex_cover.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/dominating_set.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/dominating_set.py new file mode 100644 index 0000000000000000000000000000000000000000..e568a827ff99dad5390e8d7feb886cf92a3a6cad --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/dominating_set.py @@ -0,0 +1,149 @@ +"""Functions for finding node and edge dominating sets. + +A `dominating set`_ for an undirected graph *G* with vertex set *V* +and edge set *E* is a subset *D* of *V* such that every vertex not in +*D* is adjacent to at least one member of *D*. An `edge dominating set`_ +is a subset *F* of *E* such that every edge not in *F* is +incident to an endpoint of at least one edge in *F*. + +.. _dominating set: https://en.wikipedia.org/wiki/Dominating_set +.. _edge dominating set: https://en.wikipedia.org/wiki/Edge_dominating_set + +""" + +import networkx as nx + +from ...utils import not_implemented_for +from ..matching import maximal_matching + +__all__ = ["min_weighted_dominating_set", "min_edge_dominating_set"] + + +# TODO Why doesn't this algorithm work for directed graphs? +@not_implemented_for("directed") +@nx._dispatchable(node_attrs="weight") +def min_weighted_dominating_set(G, weight=None): + r"""Returns a dominating set that approximates the minimum weight node + dominating set. + + Parameters + ---------- + G : NetworkX graph + Undirected graph. + + weight : string + The node attribute storing the weight of an node. If provided, + the node attribute with this key must be a number for each + node. If not provided, each node is assumed to have weight one. + + Returns + ------- + min_weight_dominating_set : set + A set of nodes, the sum of whose weights is no more than `(\log + w(V)) w(V^*)`, where `w(V)` denotes the sum of the weights of + each node in the graph and `w(V^*)` denotes the sum of the + weights of each node in the minimum weight dominating set. + + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 4), (1, 4), (1, 2), (2, 3), (3, 4), (2, 5)]) + >>> nx.approximation.min_weighted_dominating_set(G) + {1, 2, 4} + + Raises + ------ + NetworkXNotImplemented + If G is directed. + + Notes + ----- + This algorithm computes an approximate minimum weighted dominating + set for the graph `G`. The returned solution has weight `(\log + w(V)) w(V^*)`, where `w(V)` denotes the sum of the weights of each + node in the graph and `w(V^*)` denotes the sum of the weights of + each node in the minimum weight dominating set for the graph. + + This implementation of the algorithm runs in $O(m)$ time, where $m$ + is the number of edges in the graph. + + References + ---------- + .. [1] Vazirani, Vijay V. + *Approximation Algorithms*. + Springer Science & Business Media, 2001. + + """ + # The unique dominating set for the null graph is the empty set. + if len(G) == 0: + return set() + + # This is the dominating set that will eventually be returned. + dom_set = set() + + def _cost(node_and_neighborhood): + """Returns the cost-effectiveness of greedily choosing the given + node. + + `node_and_neighborhood` is a two-tuple comprising a node and its + closed neighborhood. + + """ + v, neighborhood = node_and_neighborhood + return G.nodes[v].get(weight, 1) / len(neighborhood - dom_set) + + # This is a set of all vertices not already covered by the + # dominating set. + vertices = set(G) + # This is a dictionary mapping each node to the closed neighborhood + # of that node. + neighborhoods = {v: {v} | set(G[v]) for v in G} + + # Continue until all vertices are adjacent to some node in the + # dominating set. + while vertices: + # Find the most cost-effective node to add, along with its + # closed neighborhood. + dom_node, min_set = min(neighborhoods.items(), key=_cost) + # Add the node to the dominating set and reduce the remaining + # set of nodes to cover. + dom_set.add(dom_node) + del neighborhoods[dom_node] + vertices -= min_set + + return dom_set + + +@nx._dispatchable +def min_edge_dominating_set(G): + r"""Returns minimum cardinality edge dominating set. + + Parameters + ---------- + G : NetworkX graph + Undirected graph + + Returns + ------- + min_edge_dominating_set : set + Returns a set of dominating edges whose size is no more than 2 * OPT. + + Examples + -------- + >>> G = nx.petersen_graph() + >>> nx.approximation.min_edge_dominating_set(G) + {(0, 1), (4, 9), (6, 8), (5, 7), (2, 3)} + + Raises + ------ + ValueError + If the input graph `G` is empty. + + Notes + ----- + The algorithm computes an approximate solution to the edge dominating set + problem. The result is no more than 2 * OPT in terms of size of the set. + Runtime of the algorithm is $O(|E|)$. + """ + if not G: + raise ValueError("Expected non-empty NetworkX graph!") + return maximal_matching(G) diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__init__.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/__init__.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8ddabea8a6cb6c9b3dfdcd485cf5ec3cba704573 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/__init__.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_approx_clust_coeff.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_approx_clust_coeff.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7557ebfd70bcc29fb329f95f1fa9b000047a1b7b Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_approx_clust_coeff.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_clique.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_clique.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f1ce573212c52389c21972f4de2b7816462b8eeb Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_clique.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_connectivity.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_connectivity.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4976511db74bfb5d98cf26f85cd1e757968ecb21 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_connectivity.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_distance_measures.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_distance_measures.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3b8c11e0aa40fbe7ba253f99b8c1496c7ceca587 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_distance_measures.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_dominating_set.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_dominating_set.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1b7a07e5b7ac0bc0c0223791d154ab6d361d3d23 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_dominating_set.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_kcomponents.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_kcomponents.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bb3f58cf575ad90ea5859cdf27370d7b5fece2db Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_kcomponents.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_matching.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_matching.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..84aed080368c5399629e2978f16bc58623f8d7dc Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_matching.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_maxcut.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_maxcut.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a6753a3e05aa0fecbef7675067ec6bb2c71e27a6 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_maxcut.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_ramsey.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_ramsey.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8657fcc8000dbb56d407bfb98247328358204630 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_ramsey.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_steinertree.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_steinertree.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..644a0747d8a70ab862872a6642ffcf9f57269102 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_steinertree.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_traveling_salesman.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_traveling_salesman.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8ed75b6a50f3ec61405a6584c616d937db91ddd Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_traveling_salesman.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_treewidth.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_treewidth.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eeb1e222dbbd3961b7af3c4507fa0f39b91e0eba Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_treewidth.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_vertex_cover.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_vertex_cover.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5ba5d5aacc06b2808d192892073271696c79d81 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/__pycache__/test_vertex_cover.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_approx_clust_coeff.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_approx_clust_coeff.py new file mode 100644 index 0000000000000000000000000000000000000000..5eab5c1ee79408c9f90a1993415a6c3d7d957141 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_approx_clust_coeff.py @@ -0,0 +1,41 @@ +import networkx as nx +from networkx.algorithms.approximation import average_clustering + +# This approximation has to be exact in regular graphs +# with no triangles or with all possible triangles. + + +def test_petersen(): + # Actual coefficient is 0 + G = nx.petersen_graph() + assert average_clustering(G, trials=len(G) // 2) == nx.average_clustering(G) + + +def test_petersen_seed(): + # Actual coefficient is 0 + G = nx.petersen_graph() + assert average_clustering(G, trials=len(G) // 2, seed=1) == nx.average_clustering(G) + + +def test_tetrahedral(): + # Actual coefficient is 1 + G = nx.tetrahedral_graph() + assert average_clustering(G, trials=len(G) // 2) == nx.average_clustering(G) + + +def test_dodecahedral(): + # Actual coefficient is 0 + G = nx.dodecahedral_graph() + assert average_clustering(G, trials=len(G) // 2) == nx.average_clustering(G) + + +def test_empty(): + G = nx.empty_graph(5) + assert average_clustering(G, trials=len(G) // 2) == 0 + + +def test_complete(): + G = nx.complete_graph(5) + assert average_clustering(G, trials=len(G) // 2) == 1 + G = nx.complete_graph(7) + assert average_clustering(G, trials=len(G) // 2) == 1 diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_clique.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_clique.py new file mode 100644 index 0000000000000000000000000000000000000000..b40dcb904063f2f1aca8811e73ec7d590beb5dc9 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_clique.py @@ -0,0 +1,112 @@ +"""Unit tests for the :mod:`networkx.algorithms.approximation.clique` module.""" + +import networkx as nx +from networkx.algorithms.approximation import ( + clique_removal, + large_clique_size, + max_clique, + maximum_independent_set, +) + + +def is_independent_set(G, nodes): + """Returns True if and only if `nodes` is a clique in `G`. + + `G` is a NetworkX graph. `nodes` is an iterable of nodes in + `G`. + + """ + return G.subgraph(nodes).number_of_edges() == 0 + + +def is_clique(G, nodes): + """Returns True if and only if `nodes` is an independent set + in `G`. + + `G` is an undirected simple graph. `nodes` is an iterable of + nodes in `G`. + + """ + H = G.subgraph(nodes) + n = len(H) + return H.number_of_edges() == n * (n - 1) // 2 + + +class TestCliqueRemoval: + """Unit tests for the + :func:`~networkx.algorithms.approximation.clique_removal` function. + + """ + + def test_trivial_graph(self): + G = nx.trivial_graph() + independent_set, cliques = clique_removal(G) + assert is_independent_set(G, independent_set) + assert all(is_clique(G, clique) for clique in cliques) + # In fact, we should only have 1-cliques, that is, singleton nodes. + assert all(len(clique) == 1 for clique in cliques) + + def test_complete_graph(self): + G = nx.complete_graph(10) + independent_set, cliques = clique_removal(G) + assert is_independent_set(G, independent_set) + assert all(is_clique(G, clique) for clique in cliques) + + def test_barbell_graph(self): + G = nx.barbell_graph(10, 5) + independent_set, cliques = clique_removal(G) + assert is_independent_set(G, independent_set) + assert all(is_clique(G, clique) for clique in cliques) + + +class TestMaxClique: + """Unit tests for the :func:`networkx.algorithms.approximation.max_clique` + function. + + """ + + def test_null_graph(self): + G = nx.null_graph() + assert len(max_clique(G)) == 0 + + def test_complete_graph(self): + graph = nx.complete_graph(30) + # this should return the entire graph + mc = max_clique(graph) + assert 30 == len(mc) + + def test_maximal_by_cardinality(self): + """Tests that the maximal clique is computed according to maximum + cardinality of the sets. + + For more information, see pull request #1531. + + """ + G = nx.complete_graph(5) + G.add_edge(4, 5) + clique = max_clique(G) + assert len(clique) > 1 + + G = nx.lollipop_graph(30, 2) + clique = max_clique(G) + assert len(clique) > 2 + + +def test_large_clique_size(): + G = nx.complete_graph(9) + nx.add_cycle(G, [9, 10, 11]) + G.add_edge(8, 9) + G.add_edge(1, 12) + G.add_node(13) + + assert large_clique_size(G) == 9 + G.remove_node(5) + assert large_clique_size(G) == 8 + G.remove_edge(2, 3) + assert large_clique_size(G) == 7 + + +def test_independent_set(): + # smoke test + G = nx.Graph() + assert len(maximum_independent_set(G)) == 0 diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_connectivity.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_connectivity.py new file mode 100644 index 0000000000000000000000000000000000000000..887db20bcaef8dd2641c64e963c789234aecbb20 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_connectivity.py @@ -0,0 +1,199 @@ +import pytest + +import networkx as nx +from networkx.algorithms import approximation as approx + + +def test_global_node_connectivity(): + # Figure 1 chapter on Connectivity + G = nx.Graph() + G.add_edges_from( + [ + (1, 2), + (1, 3), + (1, 4), + (1, 5), + (2, 3), + (2, 6), + (3, 4), + (3, 6), + (4, 6), + (4, 7), + (5, 7), + (6, 8), + (6, 9), + (7, 8), + (7, 10), + (8, 11), + (9, 10), + (9, 11), + (10, 11), + ] + ) + assert 2 == approx.local_node_connectivity(G, 1, 11) + assert 2 == approx.node_connectivity(G) + assert 2 == approx.node_connectivity(G, 1, 11) + + +def test_white_harary1(): + # Figure 1b white and harary (2001) + # A graph with high adhesion (edge connectivity) and low cohesion + # (node connectivity) + G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4)) + G.remove_node(7) + for i in range(4, 7): + G.add_edge(0, i) + G = nx.disjoint_union(G, nx.complete_graph(4)) + G.remove_node(G.order() - 1) + for i in range(7, 10): + G.add_edge(0, i) + assert 1 == approx.node_connectivity(G) + + +def test_complete_graphs(): + for n in range(5, 25, 5): + G = nx.complete_graph(n) + assert n - 1 == approx.node_connectivity(G) + assert n - 1 == approx.node_connectivity(G, 0, 3) + + +def test_empty_graphs(): + for k in range(5, 25, 5): + G = nx.empty_graph(k) + assert 0 == approx.node_connectivity(G) + assert 0 == approx.node_connectivity(G, 0, 3) + + +def test_petersen(): + G = nx.petersen_graph() + assert 3 == approx.node_connectivity(G) + assert 3 == approx.node_connectivity(G, 0, 5) + + +# Approximation fails with tutte graph +# def test_tutte(): +# G = nx.tutte_graph() +# assert_equal(3, approx.node_connectivity(G)) + + +def test_dodecahedral(): + G = nx.dodecahedral_graph() + assert 3 == approx.node_connectivity(G) + assert 3 == approx.node_connectivity(G, 0, 5) + + +def test_octahedral(): + G = nx.octahedral_graph() + assert 4 == approx.node_connectivity(G) + assert 4 == approx.node_connectivity(G, 0, 5) + + +# Approximation can fail with icosahedral graph depending +# on iteration order. +# def test_icosahedral(): +# G=nx.icosahedral_graph() +# assert_equal(5, approx.node_connectivity(G)) +# assert_equal(5, approx.node_connectivity(G, 0, 5)) + + +def test_only_source(): + G = nx.complete_graph(5) + pytest.raises(nx.NetworkXError, approx.node_connectivity, G, s=0) + + +def test_only_target(): + G = nx.complete_graph(5) + pytest.raises(nx.NetworkXError, approx.node_connectivity, G, t=0) + + +def test_missing_source(): + G = nx.path_graph(4) + pytest.raises(nx.NetworkXError, approx.node_connectivity, G, 10, 1) + + +def test_missing_target(): + G = nx.path_graph(4) + pytest.raises(nx.NetworkXError, approx.node_connectivity, G, 1, 10) + + +def test_source_equals_target(): + G = nx.complete_graph(5) + pytest.raises(nx.NetworkXError, approx.local_node_connectivity, G, 0, 0) + + +def test_directed_node_connectivity(): + G = nx.cycle_graph(10, create_using=nx.DiGraph()) # only one direction + D = nx.cycle_graph(10).to_directed() # 2 reciprocal edges + assert 1 == approx.node_connectivity(G) + assert 1 == approx.node_connectivity(G, 1, 4) + assert 2 == approx.node_connectivity(D) + assert 2 == approx.node_connectivity(D, 1, 4) + + +class TestAllPairsNodeConnectivityApprox: + @classmethod + def setup_class(cls): + cls.path = nx.path_graph(7) + cls.directed_path = nx.path_graph(7, create_using=nx.DiGraph()) + cls.cycle = nx.cycle_graph(7) + cls.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph()) + cls.gnp = nx.gnp_random_graph(30, 0.1) + cls.directed_gnp = nx.gnp_random_graph(30, 0.1, directed=True) + cls.K20 = nx.complete_graph(20) + cls.K10 = nx.complete_graph(10) + cls.K5 = nx.complete_graph(5) + cls.G_list = [ + cls.path, + cls.directed_path, + cls.cycle, + cls.directed_cycle, + cls.gnp, + cls.directed_gnp, + cls.K10, + cls.K5, + cls.K20, + ] + + def test_cycles(self): + K_undir = approx.all_pairs_node_connectivity(self.cycle) + for source in K_undir: + for target, k in K_undir[source].items(): + assert k == 2 + K_dir = approx.all_pairs_node_connectivity(self.directed_cycle) + for source in K_dir: + for target, k in K_dir[source].items(): + assert k == 1 + + def test_complete(self): + for G in [self.K10, self.K5, self.K20]: + K = approx.all_pairs_node_connectivity(G) + for source in K: + for target, k in K[source].items(): + assert k == len(G) - 1 + + def test_paths(self): + K_undir = approx.all_pairs_node_connectivity(self.path) + for source in K_undir: + for target, k in K_undir[source].items(): + assert k == 1 + K_dir = approx.all_pairs_node_connectivity(self.directed_path) + for source in K_dir: + for target, k in K_dir[source].items(): + if source < target: + assert k == 1 + else: + assert k == 0 + + def test_cutoff(self): + for G in [self.K10, self.K5, self.K20]: + for mp in [2, 3, 4]: + paths = approx.all_pairs_node_connectivity(G, cutoff=mp) + for source in paths: + for target, K in paths[source].items(): + assert K == mp + + def test_all_pairs_connectivity_nbunch(self): + G = nx.complete_graph(5) + nbunch = [0, 2, 3] + C = approx.all_pairs_node_connectivity(G, nbunch=nbunch) + assert len(C) == len(nbunch) diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_distance_measures.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_distance_measures.py new file mode 100644 index 0000000000000000000000000000000000000000..3809a8fc667db5d95fb41074e7bab3ff551e1784 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_distance_measures.py @@ -0,0 +1,59 @@ +"""Unit tests for the :mod:`networkx.algorithms.approximation.distance_measures` module.""" + +import pytest + +import networkx as nx +from networkx.algorithms.approximation import diameter + + +class TestDiameter: + """Unit tests for the approximate diameter function + :func:`~networkx.algorithms.approximation.distance_measures.diameter`. + """ + + def test_null_graph(self): + """Test empty graph.""" + G = nx.null_graph() + with pytest.raises( + nx.NetworkXError, match="Expected non-empty NetworkX graph!" + ): + diameter(G) + + def test_undirected_non_connected(self): + """Test an undirected disconnected graph.""" + graph = nx.path_graph(10) + graph.remove_edge(3, 4) + with pytest.raises(nx.NetworkXError, match="Graph not connected."): + diameter(graph) + + def test_directed_non_strongly_connected(self): + """Test a directed non strongly connected graph.""" + graph = nx.path_graph(10, create_using=nx.DiGraph()) + with pytest.raises(nx.NetworkXError, match="DiGraph not strongly connected."): + diameter(graph) + + def test_complete_undirected_graph(self): + """Test a complete undirected graph.""" + graph = nx.complete_graph(10) + assert diameter(graph) == 1 + + def test_complete_directed_graph(self): + """Test a complete directed graph.""" + graph = nx.complete_graph(10, create_using=nx.DiGraph()) + assert diameter(graph) == 1 + + def test_undirected_path_graph(self): + """Test an undirected path graph with 10 nodes.""" + graph = nx.path_graph(10) + assert diameter(graph) == 9 + + def test_directed_path_graph(self): + """Test a directed path graph with 10 nodes.""" + graph = nx.path_graph(10).to_directed() + assert diameter(graph) == 9 + + def test_single_node(self): + """Test a graph which contains just a node.""" + graph = nx.Graph() + graph.add_node(1) + assert diameter(graph) == 0 diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_dominating_set.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_dominating_set.py new file mode 100644 index 0000000000000000000000000000000000000000..6b90d85ecf73bb56370fd92fdec25e3bbbb91ce3 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_dominating_set.py @@ -0,0 +1,78 @@ +import pytest + +import networkx as nx +from networkx.algorithms.approximation import ( + min_edge_dominating_set, + min_weighted_dominating_set, +) + + +class TestMinWeightDominatingSet: + def test_min_weighted_dominating_set(self): + graph = nx.Graph() + graph.add_edge(1, 2) + graph.add_edge(1, 5) + graph.add_edge(2, 3) + graph.add_edge(2, 5) + graph.add_edge(3, 4) + graph.add_edge(3, 6) + graph.add_edge(5, 6) + + vertices = {1, 2, 3, 4, 5, 6} + # due to ties, this might be hard to test tight bounds + dom_set = min_weighted_dominating_set(graph) + for vertex in vertices - dom_set: + neighbors = set(graph.neighbors(vertex)) + assert len(neighbors & dom_set) > 0, "Non dominating set found!" + + def test_star_graph(self): + """Tests that an approximate dominating set for the star graph, + even when the center node does not have the smallest integer + label, gives just the center node. + + For more information, see #1527. + + """ + # Create a star graph in which the center node has the highest + # label instead of the lowest. + G = nx.star_graph(10) + G = nx.relabel_nodes(G, {0: 9, 9: 0}) + assert min_weighted_dominating_set(G) == {9} + + def test_null_graph(self): + """Tests that the unique dominating set for the null graph is an empty set""" + G = nx.Graph() + assert min_weighted_dominating_set(G) == set() + + def test_min_edge_dominating_set(self): + graph = nx.path_graph(5) + dom_set = min_edge_dominating_set(graph) + + # this is a crappy way to test, but good enough for now. + for edge in graph.edges(): + if edge in dom_set: + continue + else: + u, v = edge + found = False + for dom_edge in dom_set: + found |= u == dom_edge[0] or u == dom_edge[1] + assert found, "Non adjacent edge found!" + + graph = nx.complete_graph(10) + dom_set = min_edge_dominating_set(graph) + + # this is a crappy way to test, but good enough for now. + for edge in graph.edges(): + if edge in dom_set: + continue + else: + u, v = edge + found = False + for dom_edge in dom_set: + found |= u == dom_edge[0] or u == dom_edge[1] + assert found, "Non adjacent edge found!" + + graph = nx.Graph() # empty Networkx graph + with pytest.raises(ValueError, match="Expected non-empty NetworkX graph!"): + min_edge_dominating_set(graph) diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_kcomponents.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_kcomponents.py new file mode 100644 index 0000000000000000000000000000000000000000..65ba802171a6b43a5157f12010c8164e5e867eb8 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_kcomponents.py @@ -0,0 +1,303 @@ +# Test for approximation to k-components algorithm +import pytest + +import networkx as nx +from networkx.algorithms.approximation import k_components +from networkx.algorithms.approximation.kcomponents import _AntiGraph, _same + + +def build_k_number_dict(k_components): + k_num = {} + for k, comps in sorted(k_components.items()): + for comp in comps: + for node in comp: + k_num[node] = k + return k_num + + +## +# Some nice synthetic graphs +## + + +def graph_example_1(): + G = nx.convert_node_labels_to_integers( + nx.grid_graph([5, 5]), label_attribute="labels" + ) + rlabels = nx.get_node_attributes(G, "labels") + labels = {v: k for k, v in rlabels.items()} + + for nodes in [ + (labels[(0, 0)], labels[(1, 0)]), + (labels[(0, 4)], labels[(1, 4)]), + (labels[(3, 0)], labels[(4, 0)]), + (labels[(3, 4)], labels[(4, 4)]), + ]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing a node + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + G.add_edge(new_node + 16, new_node + 5) + return G + + +def torrents_and_ferraro_graph(): + G = nx.convert_node_labels_to_integers( + nx.grid_graph([5, 5]), label_attribute="labels" + ) + rlabels = nx.get_node_attributes(G, "labels") + labels = {v: k for k, v in rlabels.items()} + + for nodes in [(labels[(0, 4)], labels[(1, 4)]), (labels[(3, 4)], labels[(4, 4)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing a node + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + # Commenting this makes the graph not biconnected !! + # This stupid mistake make one reviewer very angry :P + G.add_edge(new_node + 16, new_node + 8) + + for nodes in [(labels[(0, 0)], labels[(1, 0)]), (labels[(3, 0)], labels[(4, 0)])]: + new_node = G.order() + 1 + # Petersen graph is triconnected + P = nx.petersen_graph() + G = nx.disjoint_union(G, P) + # Add two edges between the grid and P + G.add_edge(new_node + 1, nodes[0]) + G.add_edge(new_node, nodes[1]) + # K5 is 4-connected + K = nx.complete_graph(5) + G = nx.disjoint_union(G, K) + # Add three edges between P and K5 + G.add_edge(new_node + 2, new_node + 11) + G.add_edge(new_node + 3, new_node + 12) + G.add_edge(new_node + 4, new_node + 13) + # Add another K5 sharing two nodes + G = nx.disjoint_union(G, K) + nbrs = G[new_node + 10] + G.remove_node(new_node + 10) + for nbr in nbrs: + G.add_edge(new_node + 17, nbr) + nbrs2 = G[new_node + 9] + G.remove_node(new_node + 9) + for nbr in nbrs2: + G.add_edge(new_node + 18, nbr) + return G + + +# Helper function + + +def _check_connectivity(G): + result = k_components(G) + for k, components in result.items(): + if k < 3: + continue + for component in components: + C = G.subgraph(component) + K = nx.node_connectivity(C) + assert K >= k + + +def test_torrents_and_ferraro_graph(): + G = torrents_and_ferraro_graph() + _check_connectivity(G) + + +def test_example_1(): + G = graph_example_1() + _check_connectivity(G) + + +def test_karate_0(): + G = nx.karate_club_graph() + _check_connectivity(G) + + +def test_karate_1(): + karate_k_num = { + 0: 4, + 1: 4, + 2: 4, + 3: 4, + 4: 3, + 5: 3, + 6: 3, + 7: 4, + 8: 4, + 9: 2, + 10: 3, + 11: 1, + 12: 2, + 13: 4, + 14: 2, + 15: 2, + 16: 2, + 17: 2, + 18: 2, + 19: 3, + 20: 2, + 21: 2, + 22: 2, + 23: 3, + 24: 3, + 25: 3, + 26: 2, + 27: 3, + 28: 3, + 29: 3, + 30: 4, + 31: 3, + 32: 4, + 33: 4, + } + approx_karate_k_num = karate_k_num.copy() + approx_karate_k_num[24] = 2 + approx_karate_k_num[25] = 2 + G = nx.karate_club_graph() + k_comps = k_components(G) + k_num = build_k_number_dict(k_comps) + assert k_num in (karate_k_num, approx_karate_k_num) + + +def test_example_1_detail_3_and_4(): + G = graph_example_1() + result = k_components(G) + # In this example graph there are 8 3-components, 4 with 15 nodes + # and 4 with 5 nodes. + assert len(result[3]) == 8 + assert len([c for c in result[3] if len(c) == 15]) == 4 + assert len([c for c in result[3] if len(c) == 5]) == 4 + # There are also 8 4-components all with 5 nodes. + assert len(result[4]) == 8 + assert all(len(c) == 5 for c in result[4]) + # Finally check that the k-components detected have actually node + # connectivity >= k. + for k, components in result.items(): + if k < 3: + continue + for component in components: + K = nx.node_connectivity(G.subgraph(component)) + assert K >= k + + +def test_directed(): + with pytest.raises(nx.NetworkXNotImplemented): + G = nx.gnp_random_graph(10, 0.4, directed=True) + kc = k_components(G) + + +def test_same(): + equal = {"A": 2, "B": 2, "C": 2} + slightly_different = {"A": 2, "B": 1, "C": 2} + different = {"A": 2, "B": 8, "C": 18} + assert _same(equal) + assert not _same(slightly_different) + assert _same(slightly_different, tol=1) + assert not _same(different) + assert not _same(different, tol=4) + + +class TestAntiGraph: + @classmethod + def setup_class(cls): + cls.Gnp = nx.gnp_random_graph(20, 0.8, seed=42) + cls.Anp = _AntiGraph(nx.complement(cls.Gnp)) + cls.Gd = nx.davis_southern_women_graph() + cls.Ad = _AntiGraph(nx.complement(cls.Gd)) + cls.Gk = nx.karate_club_graph() + cls.Ak = _AntiGraph(nx.complement(cls.Gk)) + cls.GA = [(cls.Gnp, cls.Anp), (cls.Gd, cls.Ad), (cls.Gk, cls.Ak)] + + def test_size(self): + for G, A in self.GA: + n = G.order() + s = len(list(G.edges())) + len(list(A.edges())) + assert s == (n * (n - 1)) / 2 + + def test_degree(self): + for G, A in self.GA: + assert sorted(G.degree()) == sorted(A.degree()) + + def test_core_number(self): + for G, A in self.GA: + assert nx.core_number(G) == nx.core_number(A) + + def test_connected_components(self): + # ccs are same unless isolated nodes or any node has degree=len(G)-1 + # graphs in self.GA avoid this problem + for G, A in self.GA: + gc = [set(c) for c in nx.connected_components(G)] + ac = [set(c) for c in nx.connected_components(A)] + for comp in ac: + assert comp in gc + + def test_adj(self): + for G, A in self.GA: + for n, nbrs in G.adj.items(): + a_adj = sorted((n, sorted(ad)) for n, ad in A.adj.items()) + g_adj = sorted((n, sorted(ad)) for n, ad in G.adj.items()) + assert a_adj == g_adj + + def test_adjacency(self): + for G, A in self.GA: + a_adj = list(A.adjacency()) + for n, nbrs in G.adjacency(): + assert (n, set(nbrs)) in a_adj + + def test_neighbors(self): + for G, A in self.GA: + node = list(G.nodes())[0] + assert set(G.neighbors(node)) == set(A.neighbors(node)) + + def test_node_not_in_graph(self): + for G, A in self.GA: + node = "non_existent_node" + pytest.raises(nx.NetworkXError, A.neighbors, node) + pytest.raises(nx.NetworkXError, G.neighbors, node) + + def test_degree_thingraph(self): + for G, A in self.GA: + node = list(G.nodes())[0] + nodes = list(G.nodes())[1:4] + assert G.degree(node) == A.degree(node) + assert sum(d for n, d in G.degree()) == sum(d for n, d in A.degree()) + # AntiGraph is a ThinGraph, so all the weights are 1 + assert sum(d for n, d in A.degree()) == sum( + d for n, d in A.degree(weight="weight") + ) + assert sum(d for n, d in G.degree(nodes)) == sum( + d for n, d in A.degree(nodes) + ) diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_matching.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_matching.py new file mode 100644 index 0000000000000000000000000000000000000000..f50da3d2e07310fc19e1db2bd18fdce23223771c --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_matching.py @@ -0,0 +1,8 @@ +import networkx as nx +import networkx.algorithms.approximation as a + + +def test_min_maximal_matching(): + # smoke test + G = nx.Graph() + assert len(a.min_maximal_matching(G)) == 0 diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_maxcut.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_maxcut.py new file mode 100644 index 0000000000000000000000000000000000000000..ef0424401e4b2a7e6d580c762f23cea240e55b3c --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_maxcut.py @@ -0,0 +1,94 @@ +import random + +import pytest + +import networkx as nx +from networkx.algorithms.approximation import maxcut + + +@pytest.mark.parametrize( + "f", (nx.approximation.randomized_partitioning, nx.approximation.one_exchange) +) +@pytest.mark.parametrize("graph_constructor", (nx.DiGraph, nx.MultiGraph)) +def test_raises_on_directed_and_multigraphs(f, graph_constructor): + G = graph_constructor([(0, 1), (1, 2)]) + with pytest.raises(nx.NetworkXNotImplemented): + f(G) + + +def _is_valid_cut(G, set1, set2): + union = set1.union(set2) + assert union == set(G.nodes) + assert len(set1) + len(set2) == G.number_of_nodes() + + +def _cut_is_locally_optimal(G, cut_size, set1): + # test if cut can be locally improved + for i, node in enumerate(set1): + cut_size_without_node = nx.algorithms.cut_size( + G, set1 - {node}, weight="weight" + ) + assert cut_size_without_node <= cut_size + + +def test_random_partitioning(): + G = nx.complete_graph(5) + _, (set1, set2) = maxcut.randomized_partitioning(G, seed=5) + _is_valid_cut(G, set1, set2) + + +def test_random_partitioning_all_to_one(): + G = nx.complete_graph(5) + _, (set1, set2) = maxcut.randomized_partitioning(G, p=1) + _is_valid_cut(G, set1, set2) + assert len(set1) == G.number_of_nodes() + assert len(set2) == 0 + + +def test_one_exchange_basic(): + G = nx.complete_graph(5) + random.seed(5) + for u, v, w in G.edges(data=True): + w["weight"] = random.randrange(-100, 100, 1) / 10 + + initial_cut = set(random.sample(sorted(G.nodes()), k=5)) + cut_size, (set1, set2) = maxcut.one_exchange( + G, initial_cut, weight="weight", seed=5 + ) + + _is_valid_cut(G, set1, set2) + _cut_is_locally_optimal(G, cut_size, set1) + + +def test_one_exchange_optimal(): + # Greedy one exchange should find the optimal solution for this graph (14) + G = nx.Graph() + G.add_edge(1, 2, weight=3) + G.add_edge(1, 3, weight=3) + G.add_edge(1, 4, weight=3) + G.add_edge(1, 5, weight=3) + G.add_edge(2, 3, weight=5) + + cut_size, (set1, set2) = maxcut.one_exchange(G, weight="weight", seed=5) + + _is_valid_cut(G, set1, set2) + _cut_is_locally_optimal(G, cut_size, set1) + # check global optimality + assert cut_size == 14 + + +def test_negative_weights(): + G = nx.complete_graph(5) + random.seed(5) + for u, v, w in G.edges(data=True): + w["weight"] = -1 * random.random() + + initial_cut = set(random.sample(sorted(G.nodes()), k=5)) + cut_size, (set1, set2) = maxcut.one_exchange(G, initial_cut, weight="weight") + + # make sure it is a valid cut + _is_valid_cut(G, set1, set2) + # check local optimality + _cut_is_locally_optimal(G, cut_size, set1) + # test that all nodes are in the same partition + assert len(set1) == len(G.nodes) or len(set2) == len(G.nodes) diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_ramsey.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_ramsey.py new file mode 100644 index 0000000000000000000000000000000000000000..32fe1fb8fa917c557954d9da0d960895a6953a11 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_ramsey.py @@ -0,0 +1,31 @@ +import networkx as nx +import networkx.algorithms.approximation as apxa + + +def test_ramsey(): + # this should only find the complete graph + graph = nx.complete_graph(10) + c, i = apxa.ramsey_R2(graph) + cdens = nx.density(graph.subgraph(c)) + assert cdens == 1.0, "clique not correctly found by ramsey!" + idens = nx.density(graph.subgraph(i)) + assert idens == 0.0, "i-set not correctly found by ramsey!" + + # this trivial graph has no cliques. should just find i-sets + graph = nx.trivial_graph() + c, i = apxa.ramsey_R2(graph) + assert c == {0}, "clique not correctly found by ramsey!" + assert i == {0}, "i-set not correctly found by ramsey!" + + graph = nx.barbell_graph(10, 5, nx.Graph()) + c, i = apxa.ramsey_R2(graph) + cdens = nx.density(graph.subgraph(c)) + assert cdens == 1.0, "clique not correctly found by ramsey!" + idens = nx.density(graph.subgraph(i)) + assert idens == 0.0, "i-set not correctly found by ramsey!" + + # add self-loops and test again + graph.add_edges_from([(n, n) for n in range(0, len(graph), 2)]) + cc, ii = apxa.ramsey_R2(graph) + assert cc == c + assert ii == i diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_steinertree.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_steinertree.py new file mode 100644 index 0000000000000000000000000000000000000000..1b074757cd71f3c67037699ff0e6db84bdf7e119 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_steinertree.py @@ -0,0 +1,265 @@ +import pytest + +import networkx as nx +from networkx.algorithms.approximation.steinertree import ( + _remove_nonterminal_leaves, + metric_closure, + steiner_tree, +) +from networkx.utils import edges_equal + + +class TestSteinerTree: + @classmethod + def setup_class(cls): + G1 = nx.Graph() + G1.add_edge(1, 2, weight=10) + G1.add_edge(2, 3, weight=10) + G1.add_edge(3, 4, weight=10) + G1.add_edge(4, 5, weight=10) + G1.add_edge(5, 6, weight=10) + G1.add_edge(2, 7, weight=1) + G1.add_edge(7, 5, weight=1) + + G2 = nx.Graph() + G2.add_edge(0, 5, weight=6) + G2.add_edge(1, 2, weight=2) + G2.add_edge(1, 5, weight=3) + G2.add_edge(2, 4, weight=4) + G2.add_edge(3, 5, weight=5) + G2.add_edge(4, 5, weight=1) + + G3 = nx.Graph() + G3.add_edge(1, 2, weight=8) + G3.add_edge(1, 9, weight=3) + G3.add_edge(1, 8, weight=6) + G3.add_edge(1, 10, weight=2) + G3.add_edge(1, 14, weight=3) + G3.add_edge(2, 3, weight=6) + G3.add_edge(3, 4, weight=3) + G3.add_edge(3, 10, weight=2) + G3.add_edge(3, 11, weight=1) + G3.add_edge(4, 5, weight=1) + G3.add_edge(4, 11, weight=1) + G3.add_edge(5, 6, weight=4) + G3.add_edge(5, 11, weight=2) + G3.add_edge(5, 12, weight=1) + G3.add_edge(5, 13, weight=3) + G3.add_edge(6, 7, weight=2) + G3.add_edge(6, 12, weight=3) + G3.add_edge(6, 13, weight=1) + G3.add_edge(7, 8, weight=3) + G3.add_edge(7, 9, weight=3) + G3.add_edge(7, 11, weight=5) + G3.add_edge(7, 13, weight=2) + G3.add_edge(7, 14, weight=4) + G3.add_edge(8, 9, weight=2) + G3.add_edge(9, 14, weight=1) + G3.add_edge(10, 11, weight=2) + G3.add_edge(10, 14, weight=1) + G3.add_edge(11, 12, weight=1) + G3.add_edge(11, 14, weight=7) + G3.add_edge(12, 14, weight=3) + G3.add_edge(12, 15, weight=1) + G3.add_edge(13, 14, weight=4) + G3.add_edge(13, 15, weight=1) + G3.add_edge(14, 15, weight=2) + + cls.G1 = G1 + cls.G2 = G2 + cls.G3 = G3 + cls.G1_term_nodes = [1, 2, 3, 4, 5] + cls.G2_term_nodes = [0, 2, 3] + cls.G3_term_nodes = [1, 3, 5, 6, 8, 10, 11, 12, 13] + + cls.methods = ["kou", "mehlhorn"] + + def test_connected_metric_closure(self): + G = self.G1.copy() + G.add_node(100) + pytest.raises(nx.NetworkXError, metric_closure, G) + + def test_metric_closure(self): + M = metric_closure(self.G1) + mc = [ + (1, 2, {"distance": 10, "path": [1, 2]}), + (1, 3, {"distance": 20, "path": [1, 2, 3]}), + (1, 4, {"distance": 22, "path": [1, 2, 7, 5, 4]}), + (1, 5, {"distance": 12, "path": [1, 2, 7, 5]}), + (1, 6, {"distance": 22, "path": [1, 2, 7, 5, 6]}), + (1, 7, {"distance": 11, "path": [1, 2, 7]}), + (2, 3, {"distance": 10, "path": [2, 3]}), + (2, 4, {"distance": 12, "path": [2, 7, 5, 4]}), + (2, 5, {"distance": 2, "path": [2, 7, 5]}), + (2, 6, {"distance": 12, "path": [2, 7, 5, 6]}), + (2, 7, {"distance": 1, "path": [2, 7]}), + (3, 4, {"distance": 10, "path": [3, 4]}), + (3, 5, {"distance": 12, "path": [3, 2, 7, 5]}), + (3, 6, {"distance": 22, "path": [3, 2, 7, 5, 6]}), + (3, 7, {"distance": 11, "path": [3, 2, 7]}), + (4, 5, {"distance": 10, "path": [4, 5]}), + (4, 6, {"distance": 20, "path": [4, 5, 6]}), + (4, 7, {"distance": 11, "path": [4, 5, 7]}), + (5, 6, {"distance": 10, "path": [5, 6]}), + (5, 7, {"distance": 1, "path": [5, 7]}), + (6, 7, {"distance": 11, "path": [6, 5, 7]}), + ] + assert edges_equal(list(M.edges(data=True)), mc) + + def test_steiner_tree(self): + valid_steiner_trees = [ + [ + [ + (1, 2, {"weight": 10}), + (2, 3, {"weight": 10}), + (2, 7, {"weight": 1}), + (3, 4, {"weight": 10}), + (5, 7, {"weight": 1}), + ], + [ + (1, 2, {"weight": 10}), + (2, 7, {"weight": 1}), + (3, 4, {"weight": 10}), + (4, 5, {"weight": 10}), + (5, 7, {"weight": 1}), + ], + [ + (1, 2, {"weight": 10}), + (2, 3, {"weight": 10}), + (2, 7, {"weight": 1}), + (4, 5, {"weight": 10}), + (5, 7, {"weight": 1}), + ], + ], + [ + [ + (0, 5, {"weight": 6}), + (1, 2, {"weight": 2}), + (1, 5, {"weight": 3}), + (3, 5, {"weight": 5}), + ], + [ + (0, 5, {"weight": 6}), + (4, 2, {"weight": 4}), + (4, 5, {"weight": 1}), + (3, 5, {"weight": 5}), + ], + ], + [ + [ + (1, 10, {"weight": 2}), + (3, 10, {"weight": 2}), + (3, 11, {"weight": 1}), + (5, 12, {"weight": 1}), + (6, 13, {"weight": 1}), + (8, 9, {"weight": 2}), + (9, 14, {"weight": 1}), + (10, 14, {"weight": 1}), + (11, 12, {"weight": 1}), + (12, 15, {"weight": 1}), + (13, 15, {"weight": 1}), + ] + ], + ] + for method in self.methods: + for G, term_nodes, valid_trees in zip( + [self.G1, self.G2, self.G3], + [self.G1_term_nodes, self.G2_term_nodes, self.G3_term_nodes], + valid_steiner_trees, + ): + S = steiner_tree(G, term_nodes, method=method) + assert any( + edges_equal(list(S.edges(data=True)), valid_tree) + for valid_tree in valid_trees + ) + + def test_multigraph_steiner_tree(self): + G = nx.MultiGraph() + G.add_edges_from( + [ + (1, 2, 0, {"weight": 1}), + (2, 3, 0, {"weight": 999}), + (2, 3, 1, {"weight": 1}), + (3, 4, 0, {"weight": 1}), + (3, 5, 0, {"weight": 1}), + ] + ) + terminal_nodes = [2, 4, 5] + expected_edges = [ + (2, 3, 1, {"weight": 1}), # edge with key 1 has lower weight + (3, 4, 0, {"weight": 1}), + (3, 5, 0, {"weight": 1}), + ] + for method in self.methods: + S = steiner_tree(G, terminal_nodes, method=method) + assert edges_equal(S.edges(data=True, keys=True), expected_edges) + + def test_remove_nonterminal_leaves(self): + G = nx.path_graph(10) + _remove_nonterminal_leaves(G, [4, 5, 6]) + + assert list(G) == [4, 5, 6] # only the terminal nodes are left + + +@pytest.mark.parametrize("method", ("kou", "mehlhorn")) +def test_steiner_tree_weight_attribute(method): + G = nx.star_graph(4) + # Add an edge attribute that is named something other than "weight" + nx.set_edge_attributes(G, {e: 10 for e in G.edges}, name="distance") + H = nx.approximation.steiner_tree(G, [1, 3], method=method, weight="distance") + assert nx.utils.edges_equal(H.edges, [(0, 1), (0, 3)]) + + +@pytest.mark.parametrize("method", ("kou", "mehlhorn")) +def test_steiner_tree_multigraph_weight_attribute(method): + G = nx.cycle_graph(3, create_using=nx.MultiGraph) + nx.set_edge_attributes(G, {e: 10 for e in G.edges}, name="distance") + G.add_edge(2, 0, distance=5) + H = nx.approximation.steiner_tree(G, list(G), method=method, weight="distance") + assert len(H.edges) == 2 and H.has_edge(2, 0, key=1) + assert sum(dist for *_, dist in H.edges(data="distance")) == 15 + + +@pytest.mark.parametrize("method", (None, "mehlhorn", "kou")) +def test_steiner_tree_methods(method): + G = nx.star_graph(4) + expected = nx.Graph([(0, 1), (0, 3)]) + st = nx.approximation.steiner_tree(G, [1, 3], method=method) + assert nx.utils.edges_equal(st.edges, expected.edges) + + +def test_steiner_tree_method_invalid(): + G = nx.star_graph(4) + with pytest.raises( + ValueError, match="invalid_method is not a valid choice for an algorithm." + ): + nx.approximation.steiner_tree(G, terminal_nodes=[1, 3], method="invalid_method") + + +def test_steiner_tree_remove_non_terminal_leaves_self_loop_edges(): + # To verify that the last step of the steiner tree approximation + # behaves in the case where a non-terminal leaf has a self loop edge + G = nx.path_graph(10) + + # Add self loops to the terminal nodes + G.add_edges_from([(2, 2), (3, 3), (4, 4), (7, 7), (8, 8)]) + + # Remove non-terminal leaves + _remove_nonterminal_leaves(G, [4, 5, 6, 7]) + + # The terminal nodes should be left + assert list(G) == [4, 5, 6, 7] # only the terminal nodes are left + + +def test_steiner_tree_non_terminal_leaves_multigraph_self_loop_edges(): + # To verify that the last step of the steiner tree approximation + # behaves in the case where a non-terminal leaf has a self loop edge + G = nx.MultiGraph() + G.add_edges_from([(i, i + 1) for i in range(10)]) + G.add_edges_from([(2, 2), (3, 3), (4, 4), (4, 4), (7, 7)]) + + # Remove non-terminal leaves + _remove_nonterminal_leaves(G, [4, 5, 6, 7]) + + # Only the terminal nodes should be left + assert list(G) == [4, 5, 6, 7] diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_traveling_salesman.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_traveling_salesman.py new file mode 100644 index 0000000000000000000000000000000000000000..2084c19af44b3d2a95a2b09af7f77275b2c6b357 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_traveling_salesman.py @@ -0,0 +1,977 @@ +"""Unit tests for the traveling_salesman module.""" + +import random + +import pytest + +import networkx as nx +import networkx.algorithms.approximation as nx_app + +pairwise = nx.utils.pairwise + + +def test_christofides_hamiltonian(): + random.seed(42) + G = nx.complete_graph(20) + for u, v in G.edges(): + G[u][v]["weight"] = random.randint(0, 10) + + H = nx.Graph() + H.add_edges_from(pairwise(nx_app.christofides(G))) + H.remove_edges_from(nx.find_cycle(H)) + assert len(H.edges) == 0 + + tree = nx.minimum_spanning_tree(G, weight="weight") + H = nx.Graph() + H.add_edges_from(pairwise(nx_app.christofides(G, tree))) + H.remove_edges_from(nx.find_cycle(H)) + assert len(H.edges) == 0 + + +def test_christofides_incomplete_graph(): + G = nx.complete_graph(10) + G.remove_edge(0, 1) + pytest.raises(nx.NetworkXError, nx_app.christofides, G) + + +def test_christofides_ignore_selfloops(): + G = nx.complete_graph(5) + G.add_edge(3, 3) + cycle = nx_app.christofides(G) + assert len(cycle) - 1 == len(G) == len(set(cycle)) + + +# set up graphs for other tests +class TestBase: + @classmethod + def setup_class(cls): + cls.DG = nx.DiGraph() + cls.DG.add_weighted_edges_from( + { + ("A", "B", 3), + ("A", "C", 17), + ("A", "D", 14), + ("B", "A", 3), + ("B", "C", 12), + ("B", "D", 16), + ("C", "A", 13), + ("C", "B", 12), + ("C", "D", 4), + ("D", "A", 14), + ("D", "B", 15), + ("D", "C", 2), + } + ) + cls.DG_cycle = ["D", "C", "B", "A", "D"] + cls.DG_cost = 31.0 + + cls.DG2 = nx.DiGraph() + cls.DG2.add_weighted_edges_from( + { + ("A", "B", 3), + ("A", "C", 17), + ("A", "D", 14), + ("B", "A", 30), + ("B", "C", 2), + ("B", "D", 16), + ("C", "A", 33), + ("C", "B", 32), + ("C", "D", 34), + ("D", "A", 14), + ("D", "B", 15), + ("D", "C", 2), + } + ) + cls.DG2_cycle = ["D", "A", "B", "C", "D"] + cls.DG2_cost = 53.0 + + cls.unweightedUG = nx.complete_graph(5, nx.Graph()) + cls.unweightedDG = nx.complete_graph(5, nx.DiGraph()) + + cls.incompleteUG = nx.Graph() + cls.incompleteUG.add_weighted_edges_from({(0, 1, 1), (1, 2, 3)}) + cls.incompleteDG = nx.DiGraph() + cls.incompleteDG.add_weighted_edges_from({(0, 1, 1), (1, 2, 3)}) + + cls.UG = nx.Graph() + cls.UG.add_weighted_edges_from( + { + ("A", "B", 3), + ("A", "C", 17), + ("A", "D", 14), + ("B", "C", 12), + ("B", "D", 16), + ("C", "D", 4), + } + ) + cls.UG_cycle = ["D", "C", "B", "A", "D"] + cls.UG_cost = 33.0 + + cls.UG2 = nx.Graph() + cls.UG2.add_weighted_edges_from( + { + ("A", "B", 1), + ("A", "C", 15), + ("A", "D", 5), + ("B", "C", 16), + ("B", "D", 8), + ("C", "D", 3), + } + ) + cls.UG2_cycle = ["D", "C", "B", "A", "D"] + cls.UG2_cost = 25.0 + + +def validate_solution(soln, cost, exp_soln, exp_cost): + assert soln == exp_soln + assert cost == exp_cost + + +def validate_symmetric_solution(soln, cost, exp_soln, exp_cost): + assert soln == exp_soln or soln == exp_soln[::-1] + assert cost == exp_cost + + +class TestGreedyTSP(TestBase): + def test_greedy(self): + cycle = nx_app.greedy_tsp(self.DG, source="D") + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, ["D", "C", "B", "A", "D"], 31.0) + + cycle = nx_app.greedy_tsp(self.DG2, source="D") + cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, ["D", "C", "B", "A", "D"], 78.0) + + cycle = nx_app.greedy_tsp(self.UG, source="D") + cost = sum(self.UG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, ["D", "C", "B", "A", "D"], 33.0) + + cycle = nx_app.greedy_tsp(self.UG2, source="D") + cost = sum(self.UG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, ["D", "C", "A", "B", "D"], 27.0) + + def test_not_complete_graph(self): + pytest.raises(nx.NetworkXError, nx_app.greedy_tsp, self.incompleteUG) + pytest.raises(nx.NetworkXError, nx_app.greedy_tsp, self.incompleteDG) + + def test_not_weighted_graph(self): + nx_app.greedy_tsp(self.unweightedUG) + nx_app.greedy_tsp(self.unweightedDG) + + def test_two_nodes(self): + G = nx.Graph() + G.add_weighted_edges_from({(1, 2, 1)}) + cycle = nx_app.greedy_tsp(G) + cost = sum(G[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, [1, 2, 1], 2) + + def test_ignore_selfloops(self): + G = nx.complete_graph(5) + G.add_edge(3, 3) + cycle = nx_app.greedy_tsp(G) + assert len(cycle) - 1 == len(G) == len(set(cycle)) + + +class TestSimulatedAnnealingTSP(TestBase): + tsp = staticmethod(nx_app.simulated_annealing_tsp) + + def test_simulated_annealing_directed(self): + cycle = self.tsp(self.DG, "greedy", source="D", seed=42) + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.DG_cycle, self.DG_cost) + + initial_sol = ["D", "B", "A", "C", "D"] + cycle = self.tsp(self.DG, initial_sol, source="D", seed=42) + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.DG_cycle, self.DG_cost) + + initial_sol = ["D", "A", "C", "B", "D"] + cycle = self.tsp(self.DG, initial_sol, move="1-0", source="D", seed=42) + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.DG_cycle, self.DG_cost) + + cycle = self.tsp(self.DG2, "greedy", source="D", seed=42) + cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.DG2_cycle, self.DG2_cost) + + cycle = self.tsp(self.DG2, "greedy", move="1-0", source="D", seed=42) + cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.DG2_cycle, self.DG2_cost) + + def test_simulated_annealing_undirected(self): + cycle = self.tsp(self.UG, "greedy", source="D", seed=42) + cost = sum(self.UG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, self.UG_cycle, self.UG_cost) + + cycle = self.tsp(self.UG2, "greedy", source="D", seed=42) + cost = sum(self.UG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_symmetric_solution(cycle, cost, self.UG2_cycle, self.UG2_cost) + + cycle = self.tsp(self.UG2, "greedy", move="1-0", source="D", seed=42) + cost = sum(self.UG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_symmetric_solution(cycle, cost, self.UG2_cycle, self.UG2_cost) + + def test_error_on_input_order_mistake(self): + # see issue #4846 https://github.com/networkx/networkx/issues/4846 + pytest.raises(TypeError, self.tsp, self.UG, weight="weight") + pytest.raises(nx.NetworkXError, self.tsp, self.UG, "weight") + + def test_not_complete_graph(self): + pytest.raises(nx.NetworkXError, self.tsp, self.incompleteUG, "greedy", source=0) + pytest.raises(nx.NetworkXError, self.tsp, self.incompleteDG, "greedy", source=0) + + def test_ignore_selfloops(self): + G = nx.complete_graph(5) + G.add_edge(3, 3) + cycle = self.tsp(G, "greedy") + assert len(cycle) - 1 == len(G) == len(set(cycle)) + + def test_not_weighted_graph(self): + self.tsp(self.unweightedUG, "greedy") + self.tsp(self.unweightedDG, "greedy") + + def test_two_nodes(self): + G = nx.Graph() + G.add_weighted_edges_from({(1, 2, 1)}) + + cycle = self.tsp(G, "greedy", source=1, seed=42) + cost = sum(G[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, [1, 2, 1], 2) + + cycle = self.tsp(G, [1, 2, 1], source=1, seed=42) + cost = sum(G[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + validate_solution(cycle, cost, [1, 2, 1], 2) + + def test_failure_of_costs_too_high_when_iterations_low(self): + # Simulated Annealing Version: + # set number of moves low and alpha high + cycle = self.tsp( + self.DG2, "greedy", source="D", move="1-0", alpha=1, N_inner=1, seed=42 + ) + cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + print(cycle, cost) + assert cost > self.DG2_cost + + # Try with an incorrect initial guess + initial_sol = ["D", "A", "B", "C", "D"] + cycle = self.tsp( + self.DG, + initial_sol, + source="D", + move="1-0", + alpha=0.1, + N_inner=1, + max_iterations=1, + seed=42, + ) + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + print(cycle, cost) + assert cost > self.DG_cost + + +class TestThresholdAcceptingTSP(TestSimulatedAnnealingTSP): + tsp = staticmethod(nx_app.threshold_accepting_tsp) + + def test_failure_of_costs_too_high_when_iterations_low(self): + # Threshold Version: + # set number of moves low and number of iterations low + cycle = self.tsp( + self.DG2, + "greedy", + source="D", + move="1-0", + N_inner=1, + max_iterations=1, + seed=4, + ) + cost = sum(self.DG2[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + assert cost > self.DG2_cost + + # set threshold too low + initial_sol = ["D", "A", "B", "C", "D"] + cycle = self.tsp( + self.DG, initial_sol, source="D", move="1-0", threshold=-3, seed=42 + ) + cost = sum(self.DG[n][nbr]["weight"] for n, nbr in pairwise(cycle)) + assert cost > self.DG_cost + + +# Tests for function traveling_salesman_problem +def test_TSP_method(): + G = nx.cycle_graph(9) + G[4][5]["weight"] = 10 + + # Test using the old currying method + sa_tsp = lambda G, weight: nx_app.simulated_annealing_tsp( + G, "greedy", weight, source=4, seed=1 + ) + + path = nx_app.traveling_salesman_problem( + G, + method=sa_tsp, + cycle=False, + ) + print(path) + assert path == [4, 3, 2, 1, 0, 8, 7, 6, 5] + + +def test_TSP_unweighted(): + G = nx.cycle_graph(9) + path = nx_app.traveling_salesman_problem(G, nodes=[3, 6], cycle=False) + assert path in ([3, 4, 5, 6], [6, 5, 4, 3]) + + cycle = nx_app.traveling_salesman_problem(G, nodes=[3, 6]) + assert cycle in ([3, 4, 5, 6, 5, 4, 3], [6, 5, 4, 3, 4, 5, 6]) + + +def test_TSP_weighted(): + G = nx.cycle_graph(9) + G[0][1]["weight"] = 2 + G[1][2]["weight"] = 2 + G[2][3]["weight"] = 2 + G[3][4]["weight"] = 4 + G[4][5]["weight"] = 5 + G[5][6]["weight"] = 4 + G[6][7]["weight"] = 2 + G[7][8]["weight"] = 2 + G[8][0]["weight"] = 2 + tsp = nx_app.traveling_salesman_problem + + # path between 3 and 6 + expected_paths = ([3, 2, 1, 0, 8, 7, 6], [6, 7, 8, 0, 1, 2, 3]) + # cycle between 3 and 6 + expected_cycles = ( + [3, 2, 1, 0, 8, 7, 6, 7, 8, 0, 1, 2, 3], + [6, 7, 8, 0, 1, 2, 3, 2, 1, 0, 8, 7, 6], + ) + # path through all nodes + expected_tourpaths = ([5, 6, 7, 8, 0, 1, 2, 3, 4], [4, 3, 2, 1, 0, 8, 7, 6, 5]) + + # Check default method + cycle = tsp(G, nodes=[3, 6], weight="weight") + assert cycle in expected_cycles + + path = tsp(G, nodes=[3, 6], weight="weight", cycle=False) + assert path in expected_paths + + tourpath = tsp(G, weight="weight", cycle=False) + assert tourpath in expected_tourpaths + + # Check all methods + methods = [ + (nx_app.christofides, {}), + (nx_app.greedy_tsp, {}), + ( + nx_app.simulated_annealing_tsp, + {"init_cycle": "greedy"}, + ), + ( + nx_app.threshold_accepting_tsp, + {"init_cycle": "greedy"}, + ), + ] + for method, kwargs in methods: + cycle = tsp(G, nodes=[3, 6], weight="weight", method=method, **kwargs) + assert cycle in expected_cycles + + path = tsp( + G, nodes=[3, 6], weight="weight", method=method, cycle=False, **kwargs + ) + assert path in expected_paths + + tourpath = tsp(G, weight="weight", method=method, cycle=False, **kwargs) + assert tourpath in expected_tourpaths + + +def test_TSP_incomplete_graph_short_path(): + G = nx.cycle_graph(9) + G.add_edges_from([(4, 9), (9, 10), (10, 11), (11, 0)]) + G[4][5]["weight"] = 5 + + cycle = nx_app.traveling_salesman_problem(G) + print(cycle) + assert len(cycle) == 17 and len(set(cycle)) == 12 + + # make sure that cutting one edge out of complete graph formulation + # cuts out many edges out of the path of the TSP + path = nx_app.traveling_salesman_problem(G, cycle=False) + print(path) + assert len(path) == 13 and len(set(path)) == 12 + + +def test_held_karp_ascent(): + """ + Test the Held-Karp relaxation with the ascent method + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + # Adjacency matrix from page 1153 of the 1970 Held and Karp paper + # which have been edited to be directional, but also symmetric + G_array = np.array( + [ + [0, 97, 60, 73, 17, 52], + [97, 0, 41, 52, 90, 30], + [60, 41, 0, 21, 35, 41], + [73, 52, 21, 0, 95, 46], + [17, 90, 35, 95, 0, 81], + [52, 30, 41, 46, 81, 0], + ] + ) + + solution_edges = [(1, 3), (2, 4), (3, 2), (4, 0), (5, 1), (0, 5)] + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + # Check that the optimal weights are the same + assert round(opt_hk, 2) == 207.00 + # Check that the z_stars are the same + solution = nx.DiGraph() + solution.add_edges_from(solution_edges) + assert nx.utils.edges_equal(z_star.edges, solution.edges) + + +def test_ascent_fractional_solution(): + """ + Test the ascent method using a modified version of Figure 2 on page 1140 + in 'The Traveling Salesman Problem and Minimum Spanning Trees' by Held and + Karp + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + # This version of Figure 2 has all of the edge weights multiplied by 100 + # and is a complete directed graph with infinite edge weights for the + # edges not listed in the original graph + G_array = np.array( + [ + [0, 100, 100, 100000, 100000, 1], + [100, 0, 100, 100000, 1, 100000], + [100, 100, 0, 1, 100000, 100000], + [100000, 100000, 1, 0, 100, 100], + [100000, 1, 100000, 100, 0, 100], + [1, 100000, 100000, 100, 100, 0], + ] + ) + + solution_z_star = { + (0, 1): 5 / 12, + (0, 2): 5 / 12, + (0, 5): 5 / 6, + (1, 0): 5 / 12, + (1, 2): 1 / 3, + (1, 4): 5 / 6, + (2, 0): 5 / 12, + (2, 1): 1 / 3, + (2, 3): 5 / 6, + (3, 2): 5 / 6, + (3, 4): 1 / 3, + (3, 5): 1 / 2, + (4, 1): 5 / 6, + (4, 3): 1 / 3, + (4, 5): 1 / 2, + (5, 0): 5 / 6, + (5, 3): 1 / 2, + (5, 4): 1 / 2, + } + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + # Check that the optimal weights are the same + assert round(opt_hk, 2) == 303.00 + # Check that the z_stars are the same + assert {key: round(z_star[key], 4) for key in z_star} == { + key: round(solution_z_star[key], 4) for key in solution_z_star + } + + +def test_ascent_method_asymmetric(): + """ + Tests the ascent method using a truly asymmetric graph for which the + solution has been brute forced + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + [0, 26, 63, 59, 69, 31, 41], + [62, 0, 91, 53, 75, 87, 47], + [47, 82, 0, 90, 15, 9, 18], + [68, 19, 5, 0, 58, 34, 93], + [11, 58, 53, 55, 0, 61, 79], + [88, 75, 13, 76, 98, 0, 40], + [41, 61, 55, 88, 46, 45, 0], + ] + ) + + solution_edges = [(0, 1), (1, 3), (3, 2), (2, 5), (5, 6), (4, 0), (6, 4)] + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + # Check that the optimal weights are the same + assert round(opt_hk, 2) == 190.00 + # Check that the z_stars match. + solution = nx.DiGraph() + solution.add_edges_from(solution_edges) + assert nx.utils.edges_equal(z_star.edges, solution.edges) + + +def test_ascent_method_asymmetric_2(): + """ + Tests the ascent method using a truly asymmetric graph for which the + solution has been brute forced + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + [0, 45, 39, 92, 29, 31], + [72, 0, 4, 12, 21, 60], + [81, 6, 0, 98, 70, 53], + [49, 71, 59, 0, 98, 94], + [74, 95, 24, 43, 0, 47], + [56, 43, 3, 65, 22, 0], + ] + ) + + solution_edges = [(0, 5), (5, 4), (1, 3), (3, 0), (2, 1), (4, 2)] + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + # Check that the optimal weights are the same + assert round(opt_hk, 2) == 144.00 + # Check that the z_stars match. + solution = nx.DiGraph() + solution.add_edges_from(solution_edges) + assert nx.utils.edges_equal(z_star.edges, solution.edges) + + +def test_held_karp_ascent_asymmetric_3(): + """ + Tests the ascent method using a truly asymmetric graph with a fractional + solution for which the solution has been brute forced. + + In this graph their are two different optimal, integral solutions (which + are also the overall atsp solutions) to the Held Karp relaxation. However, + this particular graph has two different tours of optimal value and the + possible solutions in the held_karp_ascent function are not stored in an + ordered data structure. + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + [0, 1, 5, 2, 7, 4], + [7, 0, 7, 7, 1, 4], + [4, 7, 0, 9, 2, 1], + [7, 2, 7, 0, 4, 4], + [5, 5, 4, 4, 0, 3], + [3, 9, 1, 3, 4, 0], + ] + ) + + solution1_edges = [(0, 3), (1, 4), (2, 5), (3, 1), (4, 2), (5, 0)] + + solution2_edges = [(0, 3), (3, 1), (1, 4), (4, 5), (2, 0), (5, 2)] + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + assert round(opt_hk, 2) == 13.00 + # Check that the z_stars are the same + solution1 = nx.DiGraph() + solution1.add_edges_from(solution1_edges) + solution2 = nx.DiGraph() + solution2.add_edges_from(solution2_edges) + assert nx.utils.edges_equal(z_star.edges, solution1.edges) or nx.utils.edges_equal( + z_star.edges, solution2.edges + ) + + +def test_held_karp_ascent_fractional_asymmetric(): + """ + Tests the ascent method using a truly asymmetric graph with a fractional + solution for which the solution has been brute forced + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + [0, 100, 150, 100000, 100000, 1], + [150, 0, 100, 100000, 1, 100000], + [100, 150, 0, 1, 100000, 100000], + [100000, 100000, 1, 0, 150, 100], + [100000, 2, 100000, 100, 0, 150], + [2, 100000, 100000, 150, 100, 0], + ] + ) + + solution_z_star = { + (0, 1): 5 / 12, + (0, 2): 5 / 12, + (0, 5): 5 / 6, + (1, 0): 5 / 12, + (1, 2): 5 / 12, + (1, 4): 5 / 6, + (2, 0): 5 / 12, + (2, 1): 5 / 12, + (2, 3): 5 / 6, + (3, 2): 5 / 6, + (3, 4): 5 / 12, + (3, 5): 5 / 12, + (4, 1): 5 / 6, + (4, 3): 5 / 12, + (4, 5): 5 / 12, + (5, 0): 5 / 6, + (5, 3): 5 / 12, + (5, 4): 5 / 12, + } + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + opt_hk, z_star = tsp.held_karp_ascent(G) + + # Check that the optimal weights are the same + assert round(opt_hk, 2) == 304.00 + # Check that the z_stars are the same + assert {key: round(z_star[key], 4) for key in z_star} == { + key: round(solution_z_star[key], 4) for key in solution_z_star + } + + +def test_spanning_tree_distribution(): + """ + Test that we can create an exponential distribution of spanning trees such + that the probability of each tree is proportional to the product of edge + weights. + + Results of this test have been confirmed with hypothesis testing from the + created distribution. + + This test uses the symmetric, fractional Held Karp solution. + """ + import networkx.algorithms.approximation.traveling_salesman as tsp + + pytest.importorskip("numpy") + pytest.importorskip("scipy") + + z_star = { + (0, 1): 5 / 12, + (0, 2): 5 / 12, + (0, 5): 5 / 6, + (1, 0): 5 / 12, + (1, 2): 1 / 3, + (1, 4): 5 / 6, + (2, 0): 5 / 12, + (2, 1): 1 / 3, + (2, 3): 5 / 6, + (3, 2): 5 / 6, + (3, 4): 1 / 3, + (3, 5): 1 / 2, + (4, 1): 5 / 6, + (4, 3): 1 / 3, + (4, 5): 1 / 2, + (5, 0): 5 / 6, + (5, 3): 1 / 2, + (5, 4): 1 / 2, + } + + solution_gamma = { + (0, 1): -0.6383, + (0, 2): -0.6827, + (0, 5): 0, + (1, 2): -1.0781, + (1, 4): 0, + (2, 3): 0, + (5, 3): -0.2820, + (5, 4): -0.3327, + (4, 3): -0.9927, + } + + # The undirected support of z_star + G = nx.MultiGraph() + for u, v in z_star: + if (u, v) in G.edges or (v, u) in G.edges: + continue + G.add_edge(u, v) + + gamma = tsp.spanning_tree_distribution(G, z_star) + + assert {key: round(gamma[key], 4) for key in gamma} == solution_gamma + + +def test_asadpour_tsp(): + """ + Test the complete asadpour tsp algorithm with the fractional, symmetric + Held Karp solution. This test also uses an incomplete graph as input. + """ + # This version of Figure 2 has all of the edge weights multiplied by 100 + # and the 0 weight edges have a weight of 1. + pytest.importorskip("numpy") + pytest.importorskip("scipy") + + edge_list = [ + (0, 1, 100), + (0, 2, 100), + (0, 5, 1), + (1, 2, 100), + (1, 4, 1), + (2, 3, 1), + (3, 4, 100), + (3, 5, 100), + (4, 5, 100), + (1, 0, 100), + (2, 0, 100), + (5, 0, 1), + (2, 1, 100), + (4, 1, 1), + (3, 2, 1), + (4, 3, 100), + (5, 3, 100), + (5, 4, 100), + ] + + G = nx.DiGraph() + G.add_weighted_edges_from(edge_list) + + tour = nx_app.traveling_salesman_problem( + G, weight="weight", method=nx_app.asadpour_atsp, seed=19 + ) + + # Check that the returned list is a valid tour. Because this is an + # incomplete graph, the conditions are not as strict. We need the tour to + # + # Start and end at the same node + # Pass through every vertex at least once + # Have a total cost at most ln(6) / ln(ln(6)) = 3.0723 times the optimal + # + # For the second condition it is possible to have the tour pass through the + # same vertex more then. Imagine that the tour on the complete version takes + # an edge not in the original graph. In the output this is substituted with + # the shortest path between those vertices, allowing vertices to appear more + # than once. + # + # Even though we are using a fixed seed, multiple tours have been known to + # be returned. The first two are from the original development of this test, + # and the third one from issue #5913 on GitHub. If other tours are returned, + # add it on the list of expected tours. + expected_tours = [ + [1, 4, 5, 0, 2, 3, 2, 1], + [3, 2, 0, 1, 4, 5, 3], + [3, 2, 1, 0, 5, 4, 3], + ] + + assert tour in expected_tours + + +def test_asadpour_real_world(): + """ + This test uses airline prices between the six largest cities in the US. + + * New York City -> JFK + * Los Angeles -> LAX + * Chicago -> ORD + * Houston -> IAH + * Phoenix -> PHX + * Philadelphia -> PHL + + Flight prices from August 2021 using Delta or American airlines to get + nonstop flight. The brute force solution found the optimal tour to cost $872 + + This test also uses the `source` keyword argument to ensure that the tour + always starts at city 0. + """ + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + # JFK LAX ORD IAH PHX PHL + [0, 243, 199, 208, 169, 183], # JFK + [277, 0, 217, 123, 127, 252], # LAX + [297, 197, 0, 197, 123, 177], # ORD + [303, 169, 197, 0, 117, 117], # IAH + [257, 127, 160, 117, 0, 319], # PHX + [183, 332, 217, 117, 319, 0], # PHL + ] + ) + + node_list = ["JFK", "LAX", "ORD", "IAH", "PHX", "PHL"] + + expected_tours = [ + ["JFK", "LAX", "PHX", "ORD", "IAH", "PHL", "JFK"], + ["JFK", "ORD", "PHX", "LAX", "IAH", "PHL", "JFK"], + ] + + G = nx.from_numpy_array(G_array, nodelist=node_list, create_using=nx.DiGraph) + + tour = nx_app.traveling_salesman_problem( + G, weight="weight", method=nx_app.asadpour_atsp, seed=37, source="JFK" + ) + + assert tour in expected_tours + + +def test_asadpour_real_world_path(): + """ + This test uses airline prices between the six largest cities in the US. This + time using a path, not a cycle. + + * New York City -> JFK + * Los Angeles -> LAX + * Chicago -> ORD + * Houston -> IAH + * Phoenix -> PHX + * Philadelphia -> PHL + + Flight prices from August 2021 using Delta or American airlines to get + nonstop flight. The brute force solution found the optimal tour to cost $872 + """ + np = pytest.importorskip("numpy") + pytest.importorskip("scipy") + + G_array = np.array( + [ + # JFK LAX ORD IAH PHX PHL + [0, 243, 199, 208, 169, 183], # JFK + [277, 0, 217, 123, 127, 252], # LAX + [297, 197, 0, 197, 123, 177], # ORD + [303, 169, 197, 0, 117, 117], # IAH + [257, 127, 160, 117, 0, 319], # PHX + [183, 332, 217, 117, 319, 0], # PHL + ] + ) + + node_list = ["JFK", "LAX", "ORD", "IAH", "PHX", "PHL"] + + expected_paths = [ + ["ORD", "PHX", "LAX", "IAH", "PHL", "JFK"], + ["JFK", "PHL", "IAH", "ORD", "PHX", "LAX"], + ] + + G = nx.from_numpy_array(G_array, nodelist=node_list, create_using=nx.DiGraph) + + path = nx_app.traveling_salesman_problem( + G, weight="weight", cycle=False, method=nx_app.asadpour_atsp, seed=56 + ) + + assert path in expected_paths + + +def test_asadpour_disconnected_graph(): + """ + Test that the proper exception is raised when asadpour_atsp is given an + disconnected graph. + """ + + G = nx.complete_graph(4, create_using=nx.DiGraph) + # have to set edge weights so that if the exception is not raised, the + # function will complete and we will fail the test + nx.set_edge_attributes(G, 1, "weight") + G.add_node(5) + + pytest.raises(nx.NetworkXError, nx_app.asadpour_atsp, G) + + +def test_asadpour_incomplete_graph(): + """ + Test that the proper exception is raised when asadpour_atsp is given an + incomplete graph + """ + + G = nx.complete_graph(4, create_using=nx.DiGraph) + # have to set edge weights so that if the exception is not raised, the + # function will complete and we will fail the test + nx.set_edge_attributes(G, 1, "weight") + G.remove_edge(0, 1) + + pytest.raises(nx.NetworkXError, nx_app.asadpour_atsp, G) + + +def test_asadpour_empty_graph(): + """ + Test the asadpour_atsp function with an empty graph + """ + G = nx.DiGraph() + + pytest.raises(nx.NetworkXError, nx_app.asadpour_atsp, G) + + +@pytest.mark.slow +def test_asadpour_integral_held_karp(): + """ + This test uses an integral held karp solution and the held karp function + will return a graph rather than a dict, bypassing most of the asadpour + algorithm. + + At first glance, this test probably doesn't look like it ensures that we + skip the rest of the asadpour algorithm, but it does. We are not fixing a + see for the random number generator, so if we sample any spanning trees + the approximation would be different basically every time this test is + executed but it is not since held karp is deterministic and we do not + reach the portion of the code with the dependence on random numbers. + """ + np = pytest.importorskip("numpy") + + G_array = np.array( + [ + [0, 26, 63, 59, 69, 31, 41], + [62, 0, 91, 53, 75, 87, 47], + [47, 82, 0, 90, 15, 9, 18], + [68, 19, 5, 0, 58, 34, 93], + [11, 58, 53, 55, 0, 61, 79], + [88, 75, 13, 76, 98, 0, 40], + [41, 61, 55, 88, 46, 45, 0], + ] + ) + + G = nx.from_numpy_array(G_array, create_using=nx.DiGraph) + + for _ in range(2): + tour = nx_app.traveling_salesman_problem(G, method=nx_app.asadpour_atsp) + + assert [1, 3, 2, 5, 2, 6, 4, 0, 1] == tour + + +def test_directed_tsp_impossible(): + """ + Test the asadpour algorithm with a graph without a hamiltonian circuit + """ + pytest.importorskip("numpy") + + # In this graph, once we leave node 0 we cannot return + edges = [ + (0, 1, 10), + (0, 2, 11), + (0, 3, 12), + (1, 2, 4), + (1, 3, 6), + (2, 1, 3), + (2, 3, 2), + (3, 1, 5), + (3, 2, 1), + ] + + G = nx.DiGraph() + G.add_weighted_edges_from(edges) + + pytest.raises(nx.NetworkXError, nx_app.traveling_salesman_problem, G) diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_treewidth.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_treewidth.py new file mode 100644 index 0000000000000000000000000000000000000000..461b0f2ed2dd4d043902d054e10a5f39ffb069c9 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_treewidth.py @@ -0,0 +1,280 @@ +import itertools + +import networkx as nx +from networkx.algorithms.approximation import ( + treewidth_min_degree, + treewidth_min_fill_in, +) +from networkx.algorithms.approximation.treewidth import ( + MinDegreeHeuristic, + min_fill_in_heuristic, +) + + +def is_tree_decomp(graph, decomp): + """Check if the given tree decomposition is valid.""" + for x in graph.nodes(): + appear_once = False + for bag in decomp.nodes(): + if x in bag: + appear_once = True + break + assert appear_once + + # Check if each connected pair of nodes are at least once together in a bag + for x, y in graph.edges(): + appear_together = False + for bag in decomp.nodes(): + if x in bag and y in bag: + appear_together = True + break + assert appear_together + + # Check if the nodes associated with vertex v form a connected subset of T + for v in graph.nodes(): + subset = [] + for bag in decomp.nodes(): + if v in bag: + subset.append(bag) + sub_graph = decomp.subgraph(subset) + assert nx.is_connected(sub_graph) + + +class TestTreewidthMinDegree: + """Unit tests for the min_degree function""" + + @classmethod + def setup_class(cls): + """Setup for different kinds of trees""" + cls.complete = nx.Graph() + cls.complete.add_edge(1, 2) + cls.complete.add_edge(2, 3) + cls.complete.add_edge(1, 3) + + cls.small_tree = nx.Graph() + cls.small_tree.add_edge(1, 3) + cls.small_tree.add_edge(4, 3) + cls.small_tree.add_edge(2, 3) + cls.small_tree.add_edge(3, 5) + cls.small_tree.add_edge(5, 6) + cls.small_tree.add_edge(5, 7) + cls.small_tree.add_edge(6, 7) + + cls.deterministic_graph = nx.Graph() + cls.deterministic_graph.add_edge(0, 1) # deg(0) = 1 + + cls.deterministic_graph.add_edge(1, 2) # deg(1) = 2 + + cls.deterministic_graph.add_edge(2, 3) + cls.deterministic_graph.add_edge(2, 4) # deg(2) = 3 + + cls.deterministic_graph.add_edge(3, 4) + cls.deterministic_graph.add_edge(3, 5) + cls.deterministic_graph.add_edge(3, 6) # deg(3) = 4 + + cls.deterministic_graph.add_edge(4, 5) + cls.deterministic_graph.add_edge(4, 6) + cls.deterministic_graph.add_edge(4, 7) # deg(4) = 5 + + cls.deterministic_graph.add_edge(5, 6) + cls.deterministic_graph.add_edge(5, 7) + cls.deterministic_graph.add_edge(5, 8) + cls.deterministic_graph.add_edge(5, 9) # deg(5) = 6 + + cls.deterministic_graph.add_edge(6, 7) + cls.deterministic_graph.add_edge(6, 8) + cls.deterministic_graph.add_edge(6, 9) # deg(6) = 6 + + cls.deterministic_graph.add_edge(7, 8) + cls.deterministic_graph.add_edge(7, 9) # deg(7) = 5 + + cls.deterministic_graph.add_edge(8, 9) # deg(8) = 4 + + def test_petersen_graph(self): + """Test Petersen graph tree decomposition result""" + G = nx.petersen_graph() + _, decomp = treewidth_min_degree(G) + is_tree_decomp(G, decomp) + + def test_small_tree_treewidth(self): + """Test small tree + + Test if the computed treewidth of the known self.small_tree is 2. + As we know which value we can expect from our heuristic, values other + than two are regressions + """ + G = self.small_tree + # the order of removal should be [1,2,4]3[5,6,7] + # (with [] denoting any order of the containing nodes) + # resulting in treewidth 2 for the heuristic + treewidth, _ = treewidth_min_fill_in(G) + assert treewidth == 2 + + def test_heuristic_abort(self): + """Test heuristic abort condition for fully connected graph""" + graph = {} + for u in self.complete: + graph[u] = set() + for v in self.complete[u]: + if u != v: # ignore self-loop + graph[u].add(v) + + deg_heuristic = MinDegreeHeuristic(graph) + node = deg_heuristic.best_node(graph) + if node is None: + pass + else: + assert False + + def test_empty_graph(self): + """Test empty graph""" + G = nx.Graph() + _, _ = treewidth_min_degree(G) + + def test_two_component_graph(self): + G = nx.Graph() + G.add_node(1) + G.add_node(2) + treewidth, _ = treewidth_min_degree(G) + assert treewidth == 0 + + def test_not_sortable_nodes(self): + G = nx.Graph([(0, "a")]) + treewidth_min_degree(G) + + def test_heuristic_first_steps(self): + """Test first steps of min_degree heuristic""" + graph = { + n: set(self.deterministic_graph[n]) - {n} for n in self.deterministic_graph + } + deg_heuristic = MinDegreeHeuristic(graph) + elim_node = deg_heuristic.best_node(graph) + print(f"Graph {graph}:") + steps = [] + + while elim_node is not None: + print(f"Removing {elim_node}:") + steps.append(elim_node) + nbrs = graph[elim_node] + + for u, v in itertools.permutations(nbrs, 2): + if v not in graph[u]: + graph[u].add(v) + + for u in graph: + if elim_node in graph[u]: + graph[u].remove(elim_node) + + del graph[elim_node] + print(f"Graph {graph}:") + elim_node = deg_heuristic.best_node(graph) + + # check only the first 5 elements for equality + assert steps[:5] == [0, 1, 2, 3, 4] + + +class TestTreewidthMinFillIn: + """Unit tests for the treewidth_min_fill_in function.""" + + @classmethod + def setup_class(cls): + """Setup for different kinds of trees""" + cls.complete = nx.Graph() + cls.complete.add_edge(1, 2) + cls.complete.add_edge(2, 3) + cls.complete.add_edge(1, 3) + + cls.small_tree = nx.Graph() + cls.small_tree.add_edge(1, 2) + cls.small_tree.add_edge(2, 3) + cls.small_tree.add_edge(3, 4) + cls.small_tree.add_edge(1, 4) + cls.small_tree.add_edge(2, 4) + cls.small_tree.add_edge(4, 5) + cls.small_tree.add_edge(5, 6) + cls.small_tree.add_edge(5, 7) + cls.small_tree.add_edge(6, 7) + + cls.deterministic_graph = nx.Graph() + cls.deterministic_graph.add_edge(1, 2) + cls.deterministic_graph.add_edge(1, 3) + cls.deterministic_graph.add_edge(3, 4) + cls.deterministic_graph.add_edge(2, 4) + cls.deterministic_graph.add_edge(3, 5) + cls.deterministic_graph.add_edge(4, 5) + cls.deterministic_graph.add_edge(3, 6) + cls.deterministic_graph.add_edge(5, 6) + + def test_petersen_graph(self): + """Test Petersen graph tree decomposition result""" + G = nx.petersen_graph() + _, decomp = treewidth_min_fill_in(G) + is_tree_decomp(G, decomp) + + def test_small_tree_treewidth(self): + """Test if the computed treewidth of the known self.small_tree is 2""" + G = self.small_tree + # the order of removal should be [1,2,4]3[5,6,7] + # (with [] denoting any order of the containing nodes) + # resulting in treewidth 2 for the heuristic + treewidth, _ = treewidth_min_fill_in(G) + assert treewidth == 2 + + def test_heuristic_abort(self): + """Test if min_fill_in returns None for fully connected graph""" + graph = {} + for u in self.complete: + graph[u] = set() + for v in self.complete[u]: + if u != v: # ignore self-loop + graph[u].add(v) + next_node = min_fill_in_heuristic(graph) + if next_node is None: + pass + else: + assert False + + def test_empty_graph(self): + """Test empty graph""" + G = nx.Graph() + _, _ = treewidth_min_fill_in(G) + + def test_two_component_graph(self): + G = nx.Graph() + G.add_node(1) + G.add_node(2) + treewidth, _ = treewidth_min_fill_in(G) + assert treewidth == 0 + + def test_not_sortable_nodes(self): + G = nx.Graph([(0, "a")]) + treewidth_min_fill_in(G) + + def test_heuristic_first_steps(self): + """Test first steps of min_fill_in heuristic""" + graph = { + n: set(self.deterministic_graph[n]) - {n} for n in self.deterministic_graph + } + print(f"Graph {graph}:") + elim_node = min_fill_in_heuristic(graph) + steps = [] + + while elim_node is not None: + print(f"Removing {elim_node}:") + steps.append(elim_node) + nbrs = graph[elim_node] + + for u, v in itertools.permutations(nbrs, 2): + if v not in graph[u]: + graph[u].add(v) + + for u in graph: + if elim_node in graph[u]: + graph[u].remove(elim_node) + + del graph[elim_node] + print(f"Graph {graph}:") + elim_node = min_fill_in_heuristic(graph) + + # check only the first 2 elements for equality + assert steps[:2] == [6, 5] diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_vertex_cover.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_vertex_cover.py new file mode 100644 index 0000000000000000000000000000000000000000..5cc5a38df9a4139684005491e0183cd563487154 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/tests/test_vertex_cover.py @@ -0,0 +1,68 @@ +import networkx as nx +from networkx.algorithms.approximation import min_weighted_vertex_cover + + +def is_cover(G, node_cover): + return all({u, v} & node_cover for u, v in G.edges()) + + +class TestMWVC: + """Unit tests for the approximate minimum weighted vertex cover + function, + :func:`~networkx.algorithms.approximation.vertex_cover.min_weighted_vertex_cover`. + + """ + + def test_unweighted_directed(self): + # Create a star graph in which half the nodes are directed in + # and half are directed out. + G = nx.DiGraph() + G.add_edges_from((0, v) for v in range(1, 26)) + G.add_edges_from((v, 0) for v in range(26, 51)) + cover = min_weighted_vertex_cover(G) + assert 1 == len(cover) + assert is_cover(G, cover) + + def test_unweighted_undirected(self): + # create a simple star graph + size = 50 + sg = nx.star_graph(size) + cover = min_weighted_vertex_cover(sg) + assert 1 == len(cover) + assert is_cover(sg, cover) + + def test_weighted(self): + wg = nx.Graph() + wg.add_node(0, weight=10) + wg.add_node(1, weight=1) + wg.add_node(2, weight=1) + wg.add_node(3, weight=1) + wg.add_node(4, weight=1) + + wg.add_edge(0, 1) + wg.add_edge(0, 2) + wg.add_edge(0, 3) + wg.add_edge(0, 4) + + wg.add_edge(1, 2) + wg.add_edge(2, 3) + wg.add_edge(3, 4) + wg.add_edge(4, 1) + + cover = min_weighted_vertex_cover(wg, weight="weight") + csum = sum(wg.nodes[node]["weight"] for node in cover) + assert 4 == csum + assert is_cover(wg, cover) + + def test_unweighted_self_loop(self): + slg = nx.Graph() + slg.add_node(0) + slg.add_node(1) + slg.add_node(2) + + slg.add_edge(0, 1) + slg.add_edge(2, 2) + + cover = min_weighted_vertex_cover(slg) + assert 2 == len(cover) + assert is_cover(slg, cover) diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/treewidth.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/treewidth.py new file mode 100644 index 0000000000000000000000000000000000000000..31d73f6368237c16ab6a66efee45e768ddfaef52 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/treewidth.py @@ -0,0 +1,252 @@ +"""Functions for computing treewidth decomposition. + +Treewidth of an undirected graph is a number associated with the graph. +It can be defined as the size of the largest vertex set (bag) in a tree +decomposition of the graph minus one. + +`Wikipedia: Treewidth `_ + +The notions of treewidth and tree decomposition have gained their +attractiveness partly because many graph and network problems that are +intractable (e.g., NP-hard) on arbitrary graphs become efficiently +solvable (e.g., with a linear time algorithm) when the treewidth of the +input graphs is bounded by a constant [1]_ [2]_. + +There are two different functions for computing a tree decomposition: +:func:`treewidth_min_degree` and :func:`treewidth_min_fill_in`. + +.. [1] Hans L. Bodlaender and Arie M. C. A. Koster. 2010. "Treewidth + computations I.Upper bounds". Inf. Comput. 208, 3 (March 2010),259-275. + http://dx.doi.org/10.1016/j.ic.2009.03.008 + +.. [2] Hans L. Bodlaender. "Discovering Treewidth". Institute of Information + and Computing Sciences, Utrecht University. + Technical Report UU-CS-2005-018. + http://www.cs.uu.nl + +.. [3] K. Wang, Z. Lu, and J. Hicks *Treewidth*. + https://web.archive.org/web/20210507025929/http://web.eecs.utk.edu/~cphill25/cs594_spring2015_projects/treewidth.pdf + +""" + +import itertools +import sys +from heapq import heapify, heappop, heappush + +import networkx as nx +from networkx.utils import not_implemented_for + +__all__ = ["treewidth_min_degree", "treewidth_min_fill_in"] + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable(returns_graph=True) +def treewidth_min_degree(G): + """Returns a treewidth decomposition using the Minimum Degree heuristic. + + The heuristic chooses the nodes according to their degree, i.e., first + the node with the lowest degree is chosen, then the graph is updated + and the corresponding node is removed. Next, a new node with the lowest + degree is chosen, and so on. + + Parameters + ---------- + G : NetworkX graph + + Returns + ------- + Treewidth decomposition : (int, Graph) tuple + 2-tuple with treewidth and the corresponding decomposed tree. + """ + deg_heuristic = MinDegreeHeuristic(G) + return treewidth_decomp(G, lambda graph: deg_heuristic.best_node(graph)) + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable(returns_graph=True) +def treewidth_min_fill_in(G): + """Returns a treewidth decomposition using the Minimum Fill-in heuristic. + + The heuristic chooses a node from the graph, where the number of edges + added turning the neighborhood of the chosen node into clique is as + small as possible. + + Parameters + ---------- + G : NetworkX graph + + Returns + ------- + Treewidth decomposition : (int, Graph) tuple + 2-tuple with treewidth and the corresponding decomposed tree. + """ + return treewidth_decomp(G, min_fill_in_heuristic) + + +class MinDegreeHeuristic: + """Implements the Minimum Degree heuristic. + + The heuristic chooses the nodes according to their degree + (number of neighbors), i.e., first the node with the lowest degree is + chosen, then the graph is updated and the corresponding node is + removed. Next, a new node with the lowest degree is chosen, and so on. + """ + + def __init__(self, graph): + self._graph = graph + + # nodes that have to be updated in the heap before each iteration + self._update_nodes = [] + + self._degreeq = [] # a heapq with 3-tuples (degree,unique_id,node) + self.count = itertools.count() + + # build heap with initial degrees + for n in graph: + self._degreeq.append((len(graph[n]), next(self.count), n)) + heapify(self._degreeq) + + def best_node(self, graph): + # update nodes in self._update_nodes + for n in self._update_nodes: + # insert changed degrees into degreeq + heappush(self._degreeq, (len(graph[n]), next(self.count), n)) + + # get the next valid (minimum degree) node + while self._degreeq: + (min_degree, _, elim_node) = heappop(self._degreeq) + if elim_node not in graph or len(graph[elim_node]) != min_degree: + # outdated entry in degreeq + continue + elif min_degree == len(graph) - 1: + # fully connected: abort condition + return None + + # remember to update nodes in the heap before getting the next node + self._update_nodes = graph[elim_node] + return elim_node + + # the heap is empty: abort + return None + + +def min_fill_in_heuristic(graph): + """Implements the Minimum Degree heuristic. + + Returns the node from the graph, where the number of edges added when + turning the neighborhood of the chosen node into clique is as small as + possible. This algorithm chooses the nodes using the Minimum Fill-In + heuristic. The running time of the algorithm is :math:`O(V^3)` and it uses + additional constant memory.""" + + if len(graph) == 0: + return None + + min_fill_in_node = None + + min_fill_in = sys.maxsize + + # sort nodes by degree + nodes_by_degree = sorted(graph, key=lambda x: len(graph[x])) + min_degree = len(graph[nodes_by_degree[0]]) + + # abort condition (handle complete graph) + if min_degree == len(graph) - 1: + return None + + for node in nodes_by_degree: + num_fill_in = 0 + nbrs = graph[node] + for nbr in nbrs: + # count how many nodes in nbrs current nbr is not connected to + # subtract 1 for the node itself + num_fill_in += len(nbrs - graph[nbr]) - 1 + if num_fill_in >= 2 * min_fill_in: + break + + num_fill_in /= 2 # divide by 2 because of double counting + + if num_fill_in < min_fill_in: # update min-fill-in node + if num_fill_in == 0: + return node + min_fill_in = num_fill_in + min_fill_in_node = node + + return min_fill_in_node + + +@nx._dispatchable(returns_graph=True) +def treewidth_decomp(G, heuristic=min_fill_in_heuristic): + """Returns a treewidth decomposition using the passed heuristic. + + Parameters + ---------- + G : NetworkX graph + heuristic : heuristic function + + Returns + ------- + Treewidth decomposition : (int, Graph) tuple + 2-tuple with treewidth and the corresponding decomposed tree. + """ + + # make dict-of-sets structure + graph = {n: set(G[n]) - {n} for n in G} + + # stack containing nodes and neighbors in the order from the heuristic + node_stack = [] + + # get first node from heuristic + elim_node = heuristic(graph) + while elim_node is not None: + # connect all neighbors with each other + nbrs = graph[elim_node] + for u, v in itertools.permutations(nbrs, 2): + if v not in graph[u]: + graph[u].add(v) + + # push node and its current neighbors on stack + node_stack.append((elim_node, nbrs)) + + # remove node from graph + for u in graph[elim_node]: + graph[u].remove(elim_node) + + del graph[elim_node] + elim_node = heuristic(graph) + + # the abort condition is met; put all remaining nodes into one bag + decomp = nx.Graph() + first_bag = frozenset(graph.keys()) + decomp.add_node(first_bag) + + treewidth = len(first_bag) - 1 + + while node_stack: + # get node and its neighbors from the stack + (curr_node, nbrs) = node_stack.pop() + + # find a bag all neighbors are in + old_bag = None + for bag in decomp.nodes: + if nbrs <= bag: + old_bag = bag + break + + if old_bag is None: + # no old_bag was found: just connect to the first_bag + old_bag = first_bag + + # create new node for decomposition + nbrs.add(curr_node) + new_bag = frozenset(nbrs) + + # update treewidth + treewidth = max(treewidth, len(new_bag) - 1) + + # add edge to decomposition (implicitly also adds the new node) + decomp.add_edge(old_bag, new_bag) + + return treewidth, decomp diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/vertex_cover.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/vertex_cover.py new file mode 100644 index 0000000000000000000000000000000000000000..13d7167cfc1e4494cbbb2ee8c774e9ffbc3ee495 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/approximation/vertex_cover.py @@ -0,0 +1,83 @@ +"""Functions for computing an approximate minimum weight vertex cover. + +A |vertex cover|_ is a subset of nodes such that each edge in the graph +is incident to at least one node in the subset. + +.. _vertex cover: https://en.wikipedia.org/wiki/Vertex_cover +.. |vertex cover| replace:: *vertex cover* + +""" + +import networkx as nx + +__all__ = ["min_weighted_vertex_cover"] + + +@nx._dispatchable(node_attrs="weight") +def min_weighted_vertex_cover(G, weight=None): + r"""Returns an approximate minimum weighted vertex cover. + + The set of nodes returned by this function is guaranteed to be a + vertex cover, and the total weight of the set is guaranteed to be at + most twice the total weight of the minimum weight vertex cover. In + other words, + + .. math:: + + w(S) \leq 2 * w(S^*), + + where $S$ is the vertex cover returned by this function, + $S^*$ is the vertex cover of minimum weight out of all vertex + covers of the graph, and $w$ is the function that computes the + sum of the weights of each node in that given set. + + Parameters + ---------- + G : NetworkX graph + + weight : string, optional (default = None) + If None, every node has weight 1. If a string, use this node + attribute as the node weight. A node without this attribute is + assumed to have weight 1. + + Returns + ------- + min_weighted_cover : set + Returns a set of nodes whose weight sum is no more than twice + the weight sum of the minimum weight vertex cover. + + Notes + ----- + For a directed graph, a vertex cover has the same definition: a set + of nodes such that each edge in the graph is incident to at least + one node in the set. Whether the node is the head or tail of the + directed edge is ignored. + + This is the local-ratio algorithm for computing an approximate + vertex cover. The algorithm greedily reduces the costs over edges, + iteratively building a cover. The worst-case runtime of this + implementation is $O(m \log n)$, where $n$ is the number + of nodes and $m$ the number of edges in the graph. + + References + ---------- + .. [1] Bar-Yehuda, R., and Even, S. (1985). "A local-ratio theorem for + approximating the weighted vertex cover problem." + *Annals of Discrete Mathematics*, 25, 27–46 + + + """ + cost = dict(G.nodes(data=weight, default=1)) + # While there are uncovered edges, choose an uncovered and update + # the cost of the remaining edges. + cover = set() + for u, v in G.edges(): + if u in cover or v in cover: + continue + if cost[u] <= cost[v]: + cover.add(u) + cost[v] -= cost[u] + else: + cover.add(v) + cost[u] -= cost[v] + return cover diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__init__.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4dfa8481ac466714e74c23a4d3b564308d929b48 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__init__.py @@ -0,0 +1,26 @@ +"""Functions for computing and measuring community structure. + +The ``community`` subpackage can be accessed by using :mod:`networkx.community`, then accessing the +functions as attributes of ``community``. For example:: + + >>> import networkx as nx + >>> G = nx.barbell_graph(5, 1) + >>> communities_generator = nx.community.girvan_newman(G) + >>> top_level_communities = next(communities_generator) + >>> next_level_communities = next(communities_generator) + >>> sorted(map(sorted, next_level_communities)) + [[0, 1, 2, 3, 4], [5], [6, 7, 8, 9, 10]] + +""" + +from networkx.algorithms.community.asyn_fluid import * +from networkx.algorithms.community.centrality import * +from networkx.algorithms.community.divisive import * +from networkx.algorithms.community.kclique import * +from networkx.algorithms.community.kernighan_lin import * +from networkx.algorithms.community.label_propagation import * +from networkx.algorithms.community.lukes import * +from networkx.algorithms.community.modularity_max import * +from networkx.algorithms.community.quality import * +from networkx.algorithms.community.community_utils import * +from networkx.algorithms.community.louvain import * diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/centrality.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/centrality.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..147935c8a15a6757d35f00bd9ba7c7995ad1566e Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/centrality.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/community_utils.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/community_utils.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..747bc22004967f90af3a19d299ff991af5f94634 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/community_utils.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/divisive.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/divisive.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..36b8229d4a216c98467a619dbfba22940e58e7c1 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/divisive.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/kclique.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/kclique.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e020eb55980a8a8038ced22e8f427302ad469410 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/kclique.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/kernighan_lin.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/kernighan_lin.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..01ed925ea2ec71407d19cb25d356e2e354a49388 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/kernighan_lin.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/label_propagation.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/label_propagation.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f3e730b09924787521847d85ad99398cc414438f Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/label_propagation.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/louvain.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/louvain.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4401ef3fd0cda5acea1f6ccb796c8b6c1651d215 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/louvain.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/lukes.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/lukes.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b3830ccd2392c6758b02beb9c22d8a68effb3612 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/lukes.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/modularity_max.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/modularity_max.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c68f4b73c73ddf527005c49a153002078e2f236 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/modularity_max.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/quality.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/quality.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bd607662041423cfe6a33c07961b5efe7ef9bdf4 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/__pycache__/quality.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/asyn_fluid.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/asyn_fluid.py new file mode 100644 index 0000000000000000000000000000000000000000..fea72c1bfdbdd451ef653751b56c22445d5da51d --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/asyn_fluid.py @@ -0,0 +1,151 @@ +"""Asynchronous Fluid Communities algorithm for community detection.""" + +from collections import Counter + +import networkx as nx +from networkx.algorithms.components import is_connected +from networkx.exception import NetworkXError +from networkx.utils import groups, not_implemented_for, py_random_state + +__all__ = ["asyn_fluidc"] + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@py_random_state(3) +@nx._dispatchable +def asyn_fluidc(G, k, max_iter=100, seed=None): + """Returns communities in `G` as detected by Fluid Communities algorithm. + + The asynchronous fluid communities algorithm is described in + [1]_. The algorithm is based on the simple idea of fluids interacting + in an environment, expanding and pushing each other. Its initialization is + random, so found communities may vary on different executions. + + The algorithm proceeds as follows. First each of the initial k communities + is initialized in a random vertex in the graph. Then the algorithm iterates + over all vertices in a random order, updating the community of each vertex + based on its own community and the communities of its neighbors. This + process is performed several times until convergence. + At all times, each community has a total density of 1, which is equally + distributed among the vertices it contains. If a vertex changes of + community, vertex densities of affected communities are adjusted + immediately. When a complete iteration over all vertices is done, such that + no vertex changes the community it belongs to, the algorithm has converged + and returns. + + This is the original version of the algorithm described in [1]_. + Unfortunately, it does not support weighted graphs yet. + + Parameters + ---------- + G : NetworkX graph + Graph must be simple and undirected. + + k : integer + The number of communities to be found. + + max_iter : integer + The number of maximum iterations allowed. By default 100. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness`. + + Returns + ------- + communities : iterable + Iterable of communities given as sets of nodes. + + Notes + ----- + k variable is not an optional argument. + + References + ---------- + .. [1] Parés F., Garcia-Gasulla D. et al. "Fluid Communities: A + Competitive and Highly Scalable Community Detection Algorithm". + [https://arxiv.org/pdf/1703.09307.pdf]. + """ + # Initial checks + if not isinstance(k, int): + raise NetworkXError("k must be an integer.") + if not k > 0: + raise NetworkXError("k must be greater than 0.") + if not is_connected(G): + raise NetworkXError("Fluid Communities require connected Graphs.") + if len(G) < k: + raise NetworkXError("k cannot be bigger than the number of nodes.") + # Initialization + max_density = 1.0 + vertices = list(G) + seed.shuffle(vertices) + communities = {n: i for i, n in enumerate(vertices[:k])} + density = {} + com_to_numvertices = {} + for vertex in communities: + com_to_numvertices[communities[vertex]] = 1 + density[communities[vertex]] = max_density + # Set up control variables and start iterating + iter_count = 0 + cont = True + while cont: + cont = False + iter_count += 1 + # Loop over all vertices in graph in a random order + vertices = list(G) + seed.shuffle(vertices) + for vertex in vertices: + # Updating rule + com_counter = Counter() + # Take into account self vertex community + try: + com_counter.update({communities[vertex]: density[communities[vertex]]}) + except KeyError: + pass + # Gather neighbor vertex communities + for v in G[vertex]: + try: + com_counter.update({communities[v]: density[communities[v]]}) + except KeyError: + continue + # Check which is the community with highest density + new_com = -1 + if len(com_counter.keys()) > 0: + max_freq = max(com_counter.values()) + best_communities = [ + com + for com, freq in com_counter.items() + if (max_freq - freq) < 0.0001 + ] + # If actual vertex com in best communities, it is preserved + try: + if communities[vertex] in best_communities: + new_com = communities[vertex] + except KeyError: + pass + # If vertex community changes... + if new_com == -1: + # Set flag of non-convergence + cont = True + # Randomly chose a new community from candidates + new_com = seed.choice(best_communities) + # Update previous community status + try: + com_to_numvertices[communities[vertex]] -= 1 + density[communities[vertex]] = ( + max_density / com_to_numvertices[communities[vertex]] + ) + except KeyError: + pass + # Update new community status + communities[vertex] = new_com + com_to_numvertices[communities[vertex]] += 1 + density[communities[vertex]] = ( + max_density / com_to_numvertices[communities[vertex]] + ) + # If maximum iterations reached --> output actual results + if iter_count > max_iter: + break + # Return results by grouping communities as list of vertices + return iter(groups(communities).values()) diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/centrality.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/centrality.py new file mode 100644 index 0000000000000000000000000000000000000000..43281701d2b630710acba8f3cef6693356aa461a --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/centrality.py @@ -0,0 +1,171 @@ +"""Functions for computing communities based on centrality notions.""" + +import networkx as nx + +__all__ = ["girvan_newman"] + + +@nx._dispatchable(preserve_edge_attrs="most_valuable_edge") +def girvan_newman(G, most_valuable_edge=None): + """Finds communities in a graph using the Girvan–Newman method. + + Parameters + ---------- + G : NetworkX graph + + most_valuable_edge : function + Function that takes a graph as input and outputs an edge. The + edge returned by this function will be recomputed and removed at + each iteration of the algorithm. + + If not specified, the edge with the highest + :func:`networkx.edge_betweenness_centrality` will be used. + + Returns + ------- + iterator + Iterator over tuples of sets of nodes in `G`. Each set of node + is a community, each tuple is a sequence of communities at a + particular level of the algorithm. + + Examples + -------- + To get the first pair of communities:: + + >>> G = nx.path_graph(10) + >>> comp = nx.community.girvan_newman(G) + >>> tuple(sorted(c) for c in next(comp)) + ([0, 1, 2, 3, 4], [5, 6, 7, 8, 9]) + + To get only the first *k* tuples of communities, use + :func:`itertools.islice`:: + + >>> import itertools + >>> G = nx.path_graph(8) + >>> k = 2 + >>> comp = nx.community.girvan_newman(G) + >>> for communities in itertools.islice(comp, k): + ... print(tuple(sorted(c) for c in communities)) + ... + ([0, 1, 2, 3], [4, 5, 6, 7]) + ([0, 1], [2, 3], [4, 5, 6, 7]) + + To stop getting tuples of communities once the number of communities + is greater than *k*, use :func:`itertools.takewhile`:: + + >>> import itertools + >>> G = nx.path_graph(8) + >>> k = 4 + >>> comp = nx.community.girvan_newman(G) + >>> limited = itertools.takewhile(lambda c: len(c) <= k, comp) + >>> for communities in limited: + ... print(tuple(sorted(c) for c in communities)) + ... + ([0, 1, 2, 3], [4, 5, 6, 7]) + ([0, 1], [2, 3], [4, 5, 6, 7]) + ([0, 1], [2, 3], [4, 5], [6, 7]) + + To just choose an edge to remove based on the weight:: + + >>> from operator import itemgetter + >>> G = nx.path_graph(10) + >>> edges = G.edges() + >>> nx.set_edge_attributes(G, {(u, v): v for u, v in edges}, "weight") + >>> def heaviest(G): + ... u, v, w = max(G.edges(data="weight"), key=itemgetter(2)) + ... return (u, v) + ... + >>> comp = nx.community.girvan_newman(G, most_valuable_edge=heaviest) + >>> tuple(sorted(c) for c in next(comp)) + ([0, 1, 2, 3, 4, 5, 6, 7, 8], [9]) + + To utilize edge weights when choosing an edge with, for example, the + highest betweenness centrality:: + + >>> from networkx import edge_betweenness_centrality as betweenness + >>> def most_central_edge(G): + ... centrality = betweenness(G, weight="weight") + ... return max(centrality, key=centrality.get) + ... + >>> G = nx.path_graph(10) + >>> comp = nx.community.girvan_newman(G, most_valuable_edge=most_central_edge) + >>> tuple(sorted(c) for c in next(comp)) + ([0, 1, 2, 3, 4], [5, 6, 7, 8, 9]) + + To specify a different ranking algorithm for edges, use the + `most_valuable_edge` keyword argument:: + + >>> from networkx import edge_betweenness_centrality + >>> from random import random + >>> def most_central_edge(G): + ... centrality = edge_betweenness_centrality(G) + ... max_cent = max(centrality.values()) + ... # Scale the centrality values so they are between 0 and 1, + ... # and add some random noise. + ... centrality = {e: c / max_cent for e, c in centrality.items()} + ... # Add some random noise. + ... centrality = {e: c + random() for e, c in centrality.items()} + ... return max(centrality, key=centrality.get) + ... + >>> G = nx.path_graph(10) + >>> comp = nx.community.girvan_newman(G, most_valuable_edge=most_central_edge) + + Notes + ----- + The Girvan–Newman algorithm detects communities by progressively + removing edges from the original graph. The algorithm removes the + "most valuable" edge, traditionally the edge with the highest + betweenness centrality, at each step. As the graph breaks down into + pieces, the tightly knit community structure is exposed and the + result can be depicted as a dendrogram. + + """ + # If the graph is already empty, simply return its connected + # components. + if G.number_of_edges() == 0: + yield tuple(nx.connected_components(G)) + return + # If no function is provided for computing the most valuable edge, + # use the edge betweenness centrality. + if most_valuable_edge is None: + + def most_valuable_edge(G): + """Returns the edge with the highest betweenness centrality + in the graph `G`. + + """ + # We have guaranteed that the graph is non-empty, so this + # dictionary will never be empty. + betweenness = nx.edge_betweenness_centrality(G) + return max(betweenness, key=betweenness.get) + + # The copy of G here must include the edge weight data. + g = G.copy().to_undirected() + # Self-loops must be removed because their removal has no effect on + # the connected components of the graph. + g.remove_edges_from(nx.selfloop_edges(g)) + while g.number_of_edges() > 0: + yield _without_most_central_edges(g, most_valuable_edge) + + +def _without_most_central_edges(G, most_valuable_edge): + """Returns the connected components of the graph that results from + repeatedly removing the most "valuable" edge in the graph. + + `G` must be a non-empty graph. This function modifies the graph `G` + in-place; that is, it removes edges on the graph `G`. + + `most_valuable_edge` is a function that takes the graph `G` as input + (or a subgraph with one or more edges of `G` removed) and returns an + edge. That edge will be removed and this process will be repeated + until the number of connected components in the graph increases. + + """ + original_num_components = nx.number_connected_components(G) + num_new_components = original_num_components + while num_new_components <= original_num_components: + edge = most_valuable_edge(G) + G.remove_edge(*edge) + new_components = tuple(nx.connected_components(G)) + num_new_components = len(new_components) + return new_components diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/community_utils.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/community_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..ba73a6b30b28410b49babd8f996927a43931124d --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/community_utils.py @@ -0,0 +1,30 @@ +"""Helper functions for community-finding algorithms.""" + +import networkx as nx + +__all__ = ["is_partition"] + + +@nx._dispatchable +def is_partition(G, communities): + """Returns *True* if `communities` is a partition of the nodes of `G`. + + A partition of a universe set is a family of pairwise disjoint sets + whose union is the entire universe set. + + Parameters + ---------- + G : NetworkX graph. + + communities : list or iterable of sets of nodes + If not a list, the iterable is converted internally to a list. + If it is an iterator it is exhausted. + + """ + # Alternate implementation: + # return all(sum(1 if v in c else 0 for c in communities) == 1 for v in G) + if not isinstance(communities, list): + communities = list(communities) + nodes = {n for c in communities for n in c if n in G} + + return len(G) == len(nodes) == sum(len(c) for c in communities) diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/divisive.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/divisive.py new file mode 100644 index 0000000000000000000000000000000000000000..be3c7d863e9d28f6e9c56faea4a60a640f8892bb --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/divisive.py @@ -0,0 +1,216 @@ +import functools + +import networkx as nx + +__all__ = [ + "edge_betweenness_partition", + "edge_current_flow_betweenness_partition", +] + + +@nx._dispatchable(edge_attrs="weight") +def edge_betweenness_partition(G, number_of_sets, *, weight=None): + """Partition created by iteratively removing the highest edge betweenness edge. + + This algorithm works by calculating the edge betweenness for all + edges and removing the edge with the highest value. It is then + determined whether the graph has been broken into at least + `number_of_sets` connected components. + If not the process is repeated. + + Parameters + ---------- + G : NetworkX Graph, DiGraph or MultiGraph + Graph to be partitioned + + number_of_sets : int + Number of sets in the desired partition of the graph + + weight : key, optional, default=None + The key to use if using weights for edge betweenness calculation + + Returns + ------- + C : list of sets + Partition of the nodes of G + + Raises + ------ + NetworkXError + If number_of_sets is <= 0 or if number_of_sets > len(G) + + Examples + -------- + >>> G = nx.karate_club_graph() + >>> part = nx.community.edge_betweenness_partition(G, 2) + >>> {0, 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 19, 21} in part + True + >>> { + ... 2, + ... 8, + ... 9, + ... 14, + ... 15, + ... 18, + ... 20, + ... 22, + ... 23, + ... 24, + ... 25, + ... 26, + ... 27, + ... 28, + ... 29, + ... 30, + ... 31, + ... 32, + ... 33, + ... } in part + True + + See Also + -------- + edge_current_flow_betweenness_partition + + Notes + ----- + This algorithm is fairly slow, as both the calculation of connected + components and edge betweenness relies on all pairs shortest + path algorithms. They could potentially be combined to cut down + on overall computation time. + + References + ---------- + .. [1] Santo Fortunato 'Community Detection in Graphs' Physical Reports + Volume 486, Issue 3-5 p. 75-174 + http://arxiv.org/abs/0906.0612 + """ + if number_of_sets <= 0: + raise nx.NetworkXError("number_of_sets must be >0") + if number_of_sets == 1: + return [set(G)] + if number_of_sets == len(G): + return [{n} for n in G] + if number_of_sets > len(G): + raise nx.NetworkXError("number_of_sets must be <= len(G)") + + H = G.copy() + partition = list(nx.connected_components(H)) + while len(partition) < number_of_sets: + ranking = nx.edge_betweenness_centrality(H, weight=weight) + edge = max(ranking, key=ranking.get) + H.remove_edge(*edge) + partition = list(nx.connected_components(H)) + return partition + + +@nx._dispatchable(edge_attrs="weight") +def edge_current_flow_betweenness_partition(G, number_of_sets, *, weight=None): + """Partition created by removing the highest edge current flow betweenness edge. + + This algorithm works by calculating the edge current flow + betweenness for all edges and removing the edge with the + highest value. It is then determined whether the graph has + been broken into at least `number_of_sets` connected + components. If not the process is repeated. + + Parameters + ---------- + G : NetworkX Graph, DiGraph or MultiGraph + Graph to be partitioned + + number_of_sets : int + Number of sets in the desired partition of the graph + + weight : key, optional (default=None) + The edge attribute key to use as weights for + edge current flow betweenness calculations + + Returns + ------- + C : list of sets + Partition of G + + Raises + ------ + NetworkXError + If number_of_sets is <= 0 or number_of_sets > len(G) + + Examples + -------- + >>> G = nx.karate_club_graph() + >>> part = nx.community.edge_current_flow_betweenness_partition(G, 2) + >>> {0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16, 17, 19, 21} in part + True + >>> {8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33} in part + True + + + See Also + -------- + edge_betweenness_partition + + Notes + ----- + This algorithm is extremely slow, as the recalculation of the edge + current flow betweenness is extremely slow. + + References + ---------- + .. [1] Santo Fortunato 'Community Detection in Graphs' Physical Reports + Volume 486, Issue 3-5 p. 75-174 + http://arxiv.org/abs/0906.0612 + """ + if number_of_sets <= 0: + raise nx.NetworkXError("number_of_sets must be >0") + elif number_of_sets == 1: + return [set(G)] + elif number_of_sets == len(G): + return [{n} for n in G] + elif number_of_sets > len(G): + raise nx.NetworkXError("number_of_sets must be <= len(G)") + + rank = functools.partial( + nx.edge_current_flow_betweenness_centrality, normalized=False, weight=weight + ) + + # current flow requires a connected network so we track the components explicitly + H = G.copy() + partition = list(nx.connected_components(H)) + if len(partition) > 1: + Hcc_subgraphs = [H.subgraph(cc).copy() for cc in partition] + else: + Hcc_subgraphs = [H] + + ranking = {} + for Hcc in Hcc_subgraphs: + ranking.update(rank(Hcc)) + + while len(partition) < number_of_sets: + edge = max(ranking, key=ranking.get) + for cc, Hcc in zip(partition, Hcc_subgraphs): + if edge[0] in cc: + Hcc.remove_edge(*edge) + del ranking[edge] + splitcc_list = list(nx.connected_components(Hcc)) + if len(splitcc_list) > 1: + # there are 2 connected components. split off smaller one + cc_new = min(splitcc_list, key=len) + Hcc_new = Hcc.subgraph(cc_new).copy() + # update edge rankings for Hcc_new + newranks = rank(Hcc_new) + for e, r in newranks.items(): + ranking[e if e in ranking else e[::-1]] = r + # append new cc and Hcc to their lists. + partition.append(cc_new) + Hcc_subgraphs.append(Hcc_new) + + # leave existing cc and Hcc in their lists, but shrink them + Hcc.remove_nodes_from(cc_new) + cc.difference_update(cc_new) + # update edge rankings for Hcc whether it was split or not + newranks = rank(Hcc) + for e, r in newranks.items(): + ranking[e if e in ranking else e[::-1]] = r + break + return partition diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/kclique.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/kclique.py new file mode 100644 index 0000000000000000000000000000000000000000..c72491042046b6f79ba5c7cb4a90ac8822491d84 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/kclique.py @@ -0,0 +1,79 @@ +from collections import defaultdict + +import networkx as nx + +__all__ = ["k_clique_communities"] + + +@nx._dispatchable +def k_clique_communities(G, k, cliques=None): + """Find k-clique communities in graph using the percolation method. + + A k-clique community is the union of all cliques of size k that + can be reached through adjacent (sharing k-1 nodes) k-cliques. + + Parameters + ---------- + G : NetworkX graph + + k : int + Size of smallest clique + + cliques: list or generator + Precomputed cliques (use networkx.find_cliques(G)) + + Returns + ------- + Yields sets of nodes, one for each k-clique community. + + Examples + -------- + >>> G = nx.complete_graph(5) + >>> K5 = nx.convert_node_labels_to_integers(G, first_label=2) + >>> G.add_edges_from(K5.edges()) + >>> c = list(nx.community.k_clique_communities(G, 4)) + >>> sorted(list(c[0])) + [0, 1, 2, 3, 4, 5, 6] + >>> list(nx.community.k_clique_communities(G, 6)) + [] + + References + ---------- + .. [1] Gergely Palla, Imre Derényi, Illés Farkas1, and Tamás Vicsek, + Uncovering the overlapping community structure of complex networks + in nature and society Nature 435, 814-818, 2005, + doi:10.1038/nature03607 + """ + if k < 2: + raise nx.NetworkXError(f"k={k}, k must be greater than 1.") + if cliques is None: + cliques = nx.find_cliques(G) + cliques = [frozenset(c) for c in cliques if len(c) >= k] + + # First index which nodes are in which cliques + membership_dict = defaultdict(list) + for clique in cliques: + for node in clique: + membership_dict[node].append(clique) + + # For each clique, see which adjacent cliques percolate + perc_graph = nx.Graph() + perc_graph.add_nodes_from(cliques) + for clique in cliques: + for adj_clique in _get_adjacent_cliques(clique, membership_dict): + if len(clique.intersection(adj_clique)) >= (k - 1): + perc_graph.add_edge(clique, adj_clique) + + # Connected components of clique graph with perc edges + # are the percolated cliques + for component in nx.connected_components(perc_graph): + yield (frozenset.union(*component)) + + +def _get_adjacent_cliques(clique, membership_dict): + adjacent_cliques = set() + for n in clique: + for adj_clique in membership_dict[n]: + if clique != adj_clique: + adjacent_cliques.add(adj_clique) + return adjacent_cliques diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/kernighan_lin.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/kernighan_lin.py new file mode 100644 index 0000000000000000000000000000000000000000..f6397d82be6fa94273a81a613411cc6a74d8c4cc --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/kernighan_lin.py @@ -0,0 +1,139 @@ +"""Functions for computing the Kernighan–Lin bipartition algorithm.""" + +from itertools import count + +import networkx as nx +from networkx.algorithms.community.community_utils import is_partition +from networkx.utils import BinaryHeap, not_implemented_for, py_random_state + +__all__ = ["kernighan_lin_bisection"] + + +def _kernighan_lin_sweep(edges, side): + """ + This is a modified form of Kernighan-Lin, which moves single nodes at a + time, alternating between sides to keep the bisection balanced. We keep + two min-heaps of swap costs to make optimal-next-move selection fast. + """ + costs0, costs1 = costs = BinaryHeap(), BinaryHeap() + for u, side_u, edges_u in zip(count(), side, edges): + cost_u = sum(w if side[v] else -w for v, w in edges_u) + costs[side_u].insert(u, cost_u if side_u else -cost_u) + + def _update_costs(costs_x, x): + for y, w in edges[x]: + costs_y = costs[side[y]] + cost_y = costs_y.get(y) + if cost_y is not None: + cost_y += 2 * (-w if costs_x is costs_y else w) + costs_y.insert(y, cost_y, True) + + i = 0 + totcost = 0 + while costs0 and costs1: + u, cost_u = costs0.pop() + _update_costs(costs0, u) + v, cost_v = costs1.pop() + _update_costs(costs1, v) + totcost += cost_u + cost_v + i += 1 + yield totcost, i, (u, v) + + +@not_implemented_for("directed") +@py_random_state(4) +@nx._dispatchable(edge_attrs="weight") +def kernighan_lin_bisection(G, partition=None, max_iter=10, weight="weight", seed=None): + """Partition a graph into two blocks using the Kernighan–Lin + algorithm. + + This algorithm partitions a network into two sets by iteratively + swapping pairs of nodes to reduce the edge cut between the two sets. The + pairs are chosen according to a modified form of Kernighan-Lin [1]_, which + moves node individually, alternating between sides to keep the bisection + balanced. + + Parameters + ---------- + G : NetworkX graph + Graph must be undirected. + + partition : tuple + Pair of iterables containing an initial partition. If not + specified, a random balanced partition is used. + + max_iter : int + Maximum number of times to attempt swaps to find an + improvement before giving up. + + weight : key + Edge data key to use as weight. If None, the weights are all + set to one. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness`. + Only used if partition is None + + Returns + ------- + partition : tuple + A pair of sets of nodes representing the bipartition. + + Raises + ------ + NetworkXError + If partition is not a valid partition of the nodes of the graph. + + References + ---------- + .. [1] Kernighan, B. W.; Lin, Shen (1970). + "An efficient heuristic procedure for partitioning graphs." + *Bell Systems Technical Journal* 49: 291--307. + Oxford University Press 2011. + + """ + n = len(G) + labels = list(G) + seed.shuffle(labels) + index = {v: i for i, v in enumerate(labels)} + + if partition is None: + side = [0] * (n // 2) + [1] * ((n + 1) // 2) + else: + try: + A, B = partition + except (TypeError, ValueError) as err: + raise nx.NetworkXError("partition must be two sets") from err + if not is_partition(G, (A, B)): + raise nx.NetworkXError("partition invalid") + side = [0] * n + for a in A: + side[index[a]] = 1 + + if G.is_multigraph(): + edges = [ + [ + (index[u], sum(e.get(weight, 1) for e in d.values())) + for u, d in G[v].items() + ] + for v in labels + ] + else: + edges = [ + [(index[u], e.get(weight, 1)) for u, e in G[v].items()] for v in labels + ] + + for i in range(max_iter): + costs = list(_kernighan_lin_sweep(edges, side)) + min_cost, min_i, _ = min(costs) + if min_cost >= 0: + break + + for _, _, (u, v) in costs[:min_i]: + side[u] = 1 + side[v] = 0 + + A = {u for u, s in zip(labels, side) if s == 0} + B = {u for u, s in zip(labels, side) if s == 1} + return A, B diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/label_propagation.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/label_propagation.py new file mode 100644 index 0000000000000000000000000000000000000000..7488028655af419c617bd3573b98071e012c4eda --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/label_propagation.py @@ -0,0 +1,338 @@ +""" +Label propagation community detection algorithms. +""" + +from collections import Counter, defaultdict, deque + +import networkx as nx +from networkx.utils import groups, not_implemented_for, py_random_state + +__all__ = [ + "label_propagation_communities", + "asyn_lpa_communities", + "fast_label_propagation_communities", +] + + +@py_random_state("seed") +@nx._dispatchable(edge_attrs="weight") +def fast_label_propagation_communities(G, *, weight=None, seed=None): + """Returns communities in `G` as detected by fast label propagation. + + The fast label propagation algorithm is described in [1]_. The algorithm is + probabilistic and the found communities may vary in different executions. + + The algorithm operates as follows. First, the community label of each node is + set to a unique label. The algorithm then repeatedly updates the labels of + the nodes to the most frequent label in their neighborhood. In case of ties, + a random label is chosen from the most frequent labels. + + The algorithm maintains a queue of nodes that still need to be processed. + Initially, all nodes are added to the queue in a random order. Then the nodes + are removed from the queue one by one and processed. If a node updates its label, + all its neighbors that have a different label are added to the queue (if not + already in the queue). The algorithm stops when the queue is empty. + + Parameters + ---------- + G : Graph, DiGraph, MultiGraph, or MultiDiGraph + Any NetworkX graph. + + weight : string, or None (default) + The edge attribute representing a non-negative weight of an edge. If None, + each edge is assumed to have weight one. The weight of an edge is used in + determining the frequency with which a label appears among the neighbors of + a node (edge with weight `w` is equivalent to `w` unweighted edges). + + seed : integer, random_state, or None (default) + Indicator of random number generation state. See :ref:`Randomness`. + + Returns + ------- + communities : iterable + Iterable of communities given as sets of nodes. + + Notes + ----- + Edge directions are ignored for directed graphs. + Edge weights must be non-negative numbers. + + References + ---------- + .. [1] Vincent A. Traag & Lovro Šubelj. "Large network community detection by + fast label propagation." Scientific Reports 13 (2023): 2701. + https://doi.org/10.1038/s41598-023-29610-z + """ + + # Queue of nodes to be processed. + nodes_queue = deque(G) + seed.shuffle(nodes_queue) + + # Set of nodes in the queue. + nodes_set = set(G) + + # Assign unique label to each node. + comms = {node: i for i, node in enumerate(G)} + + while nodes_queue: + # Remove next node from the queue to process. + node = nodes_queue.popleft() + nodes_set.remove(node) + + # Isolated nodes retain their initial label. + if G.degree(node) > 0: + # Compute frequency of labels in node's neighborhood. + label_freqs = _fast_label_count(G, comms, node, weight) + max_freq = max(label_freqs.values()) + + # Always sample new label from most frequent labels. + comm = seed.choice( + [comm for comm in label_freqs if label_freqs[comm] == max_freq] + ) + + if comms[node] != comm: + comms[node] = comm + + # Add neighbors that have different label to the queue. + for nbr in nx.all_neighbors(G, node): + if comms[nbr] != comm and nbr not in nodes_set: + nodes_queue.append(nbr) + nodes_set.add(nbr) + + yield from groups(comms).values() + + +def _fast_label_count(G, comms, node, weight=None): + """Computes the frequency of labels in the neighborhood of a node. + + Returns a dictionary keyed by label to the frequency of that label. + """ + + if weight is None: + # Unweighted (un)directed simple graph. + if not G.is_multigraph(): + label_freqs = Counter(map(comms.get, nx.all_neighbors(G, node))) + + # Unweighted (un)directed multigraph. + else: + label_freqs = defaultdict(int) + for nbr in G[node]: + label_freqs[comms[nbr]] += len(G[node][nbr]) + + if G.is_directed(): + for nbr in G.pred[node]: + label_freqs[comms[nbr]] += len(G.pred[node][nbr]) + + else: + # Weighted undirected simple/multigraph. + label_freqs = defaultdict(float) + for _, nbr, w in G.edges(node, data=weight, default=1): + label_freqs[comms[nbr]] += w + + # Weighted directed simple/multigraph. + if G.is_directed(): + for nbr, _, w in G.in_edges(node, data=weight, default=1): + label_freqs[comms[nbr]] += w + + return label_freqs + + +@py_random_state(2) +@nx._dispatchable(edge_attrs="weight") +def asyn_lpa_communities(G, weight=None, seed=None): + """Returns communities in `G` as detected by asynchronous label + propagation. + + The asynchronous label propagation algorithm is described in + [1]_. The algorithm is probabilistic and the found communities may + vary on different executions. + + The algorithm proceeds as follows. After initializing each node with + a unique label, the algorithm repeatedly sets the label of a node to + be the label that appears most frequently among that nodes + neighbors. The algorithm halts when each node has the label that + appears most frequently among its neighbors. The algorithm is + asynchronous because each node is updated without waiting for + updates on the remaining nodes. + + This generalized version of the algorithm in [1]_ accepts edge + weights. + + Parameters + ---------- + G : Graph + + weight : string + The edge attribute representing the weight of an edge. + If None, each edge is assumed to have weight one. In this + algorithm, the weight of an edge is used in determining the + frequency with which a label appears among the neighbors of a + node: a higher weight means the label appears more often. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness`. + + Returns + ------- + communities : iterable + Iterable of communities given as sets of nodes. + + Notes + ----- + Edge weight attributes must be numerical. + + References + ---------- + .. [1] Raghavan, Usha Nandini, Réka Albert, and Soundar Kumara. "Near + linear time algorithm to detect community structures in large-scale + networks." Physical Review E 76.3 (2007): 036106. + """ + + labels = {n: i for i, n in enumerate(G)} + cont = True + + while cont: + cont = False + nodes = list(G) + seed.shuffle(nodes) + + for node in nodes: + if not G[node]: + continue + + # Get label frequencies among adjacent nodes. + # Depending on the order they are processed in, + # some nodes will be in iteration t and others in t-1, + # making the algorithm asynchronous. + if weight is None: + # initialising a Counter from an iterator of labels is + # faster for getting unweighted label frequencies + label_freq = Counter(map(labels.get, G[node])) + else: + # updating a defaultdict is substantially faster + # for getting weighted label frequencies + label_freq = defaultdict(float) + for _, v, wt in G.edges(node, data=weight, default=1): + label_freq[labels[v]] += wt + + # Get the labels that appear with maximum frequency. + max_freq = max(label_freq.values()) + best_labels = [ + label for label, freq in label_freq.items() if freq == max_freq + ] + + # If the node does not have one of the maximum frequency labels, + # randomly choose one of them and update the node's label. + # Continue the iteration as long as at least one node + # doesn't have a maximum frequency label. + if labels[node] not in best_labels: + labels[node] = seed.choice(best_labels) + cont = True + + yield from groups(labels).values() + + +@not_implemented_for("directed") +@nx._dispatchable +def label_propagation_communities(G): + """Generates community sets determined by label propagation + + Finds communities in `G` using a semi-synchronous label propagation + method [1]_. This method combines the advantages of both the synchronous + and asynchronous models. Not implemented for directed graphs. + + Parameters + ---------- + G : graph + An undirected NetworkX graph. + + Returns + ------- + communities : iterable + A dict_values object that contains a set of nodes for each community. + + Raises + ------ + NetworkXNotImplemented + If the graph is directed + + References + ---------- + .. [1] Cordasco, G., & Gargano, L. (2010, December). Community detection + via semi-synchronous label propagation algorithms. In Business + Applications of Social Network Analysis (BASNA), 2010 IEEE International + Workshop on (pp. 1-8). IEEE. + """ + coloring = _color_network(G) + # Create a unique label for each node in the graph + labeling = {v: k for k, v in enumerate(G)} + while not _labeling_complete(labeling, G): + # Update the labels of every node with the same color. + for color, nodes in coloring.items(): + for n in nodes: + _update_label(n, labeling, G) + + clusters = defaultdict(set) + for node, label in labeling.items(): + clusters[label].add(node) + return clusters.values() + + +def _color_network(G): + """Colors the network so that neighboring nodes all have distinct colors. + + Returns a dict keyed by color to a set of nodes with that color. + """ + coloring = {} # color => set(node) + colors = nx.coloring.greedy_color(G) + for node, color in colors.items(): + if color in coloring: + coloring[color].add(node) + else: + coloring[color] = {node} + return coloring + + +def _labeling_complete(labeling, G): + """Determines whether or not LPA is done. + + Label propagation is complete when all nodes have a label that is + in the set of highest frequency labels amongst its neighbors. + + Nodes with no neighbors are considered complete. + """ + return all( + labeling[v] in _most_frequent_labels(v, labeling, G) for v in G if len(G[v]) > 0 + ) + + +def _most_frequent_labels(node, labeling, G): + """Returns a set of all labels with maximum frequency in `labeling`. + + Input `labeling` should be a dict keyed by node to labels. + """ + if not G[node]: + # Nodes with no neighbors are themselves a community and are labeled + # accordingly, hence the immediate if statement. + return {labeling[node]} + + # Compute the frequencies of all neighbors of node + freqs = Counter(labeling[q] for q in G[node]) + max_freq = max(freqs.values()) + return {label for label, freq in freqs.items() if freq == max_freq} + + +def _update_label(node, labeling, G): + """Updates the label of a node using the Prec-Max tie breaking algorithm + + The algorithm is explained in: 'Community Detection via Semi-Synchronous + Label Propagation Algorithms' Cordasco and Gargano, 2011 + """ + high_labels = _most_frequent_labels(node, labeling, G) + if len(high_labels) == 1: + labeling[node] = high_labels.pop() + elif len(high_labels) > 1: + # Prec-Max + if labeling[node] not in high_labels: + labeling[node] = max(high_labels) diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/louvain.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/louvain.py new file mode 100644 index 0000000000000000000000000000000000000000..959c93a5104b1f68ad67aef1b85bd28adbfc32ec --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/louvain.py @@ -0,0 +1,382 @@ +"""Function for detecting communities based on Louvain Community Detection +Algorithm""" + +import itertools +from collections import defaultdict, deque + +import networkx as nx +from networkx.algorithms.community import modularity +from networkx.utils import py_random_state + +__all__ = ["louvain_communities", "louvain_partitions"] + + +@py_random_state("seed") +@nx._dispatchable(edge_attrs="weight") +def louvain_communities( + G, weight="weight", resolution=1, threshold=0.0000001, max_level=None, seed=None +): + r"""Find the best partition of a graph using the Louvain Community Detection + Algorithm. + + Louvain Community Detection Algorithm is a simple method to extract the community + structure of a network. This is a heuristic method based on modularity optimization. [1]_ + + The algorithm works in 2 steps. On the first step it assigns every node to be + in its own community and then for each node it tries to find the maximum positive + modularity gain by moving each node to all of its neighbor communities. If no positive + gain is achieved the node remains in its original community. + + The modularity gain obtained by moving an isolated node $i$ into a community $C$ can + easily be calculated by the following formula (combining [1]_ [2]_ and some algebra): + + .. math:: + \Delta Q = \frac{k_{i,in}}{2m} - \gamma\frac{ \Sigma_{tot} \cdot k_i}{2m^2} + + where $m$ is the size of the graph, $k_{i,in}$ is the sum of the weights of the links + from $i$ to nodes in $C$, $k_i$ is the sum of the weights of the links incident to node $i$, + $\Sigma_{tot}$ is the sum of the weights of the links incident to nodes in $C$ and $\gamma$ + is the resolution parameter. + + For the directed case the modularity gain can be computed using this formula according to [3]_ + + .. math:: + \Delta Q = \frac{k_{i,in}}{m} + - \gamma\frac{k_i^{out} \cdot\Sigma_{tot}^{in} + k_i^{in} \cdot \Sigma_{tot}^{out}}{m^2} + + where $k_i^{out}$, $k_i^{in}$ are the outer and inner weighted degrees of node $i$ and + $\Sigma_{tot}^{in}$, $\Sigma_{tot}^{out}$ are the sum of in-going and out-going links incident + to nodes in $C$. + + The first phase continues until no individual move can improve the modularity. + + The second phase consists in building a new network whose nodes are now the communities + found in the first phase. To do so, the weights of the links between the new nodes are given by + the sum of the weight of the links between nodes in the corresponding two communities. Once this + phase is complete it is possible to reapply the first phase creating bigger communities with + increased modularity. + + The above two phases are executed until no modularity gain is achieved (or is less than + the `threshold`, or until `max_levels` is reached). + + Be careful with self-loops in the input graph. These are treated as + previously reduced communities -- as if the process had been started + in the middle of the algorithm. Large self-loop edge weights thus + represent strong communities and in practice may be hard to add + other nodes to. If your input graph edge weights for self-loops + do not represent already reduced communities you may want to remove + the self-loops before inputting that graph. + + Parameters + ---------- + G : NetworkX graph + weight : string or None, optional (default="weight") + The name of an edge attribute that holds the numerical value + used as a weight. If None then each edge has weight 1. + resolution : float, optional (default=1) + If resolution is less than 1, the algorithm favors larger communities. + Greater than 1 favors smaller communities + threshold : float, optional (default=0.0000001) + Modularity gain threshold for each level. If the gain of modularity + between 2 levels of the algorithm is less than the given threshold + then the algorithm stops and returns the resulting communities. + max_level : int or None, optional (default=None) + The maximum number of levels (steps of the algorithm) to compute. + Must be a positive integer or None. If None, then there is no max + level and the threshold parameter determines the stopping condition. + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness`. + + Returns + ------- + list + A list of sets (partition of `G`). Each set represents one community and contains + all the nodes that constitute it. + + Examples + -------- + >>> import networkx as nx + >>> G = nx.petersen_graph() + >>> nx.community.louvain_communities(G, seed=123) + [{0, 4, 5, 7, 9}, {1, 2, 3, 6, 8}] + + Notes + ----- + The order in which the nodes are considered can affect the final output. In the algorithm + the ordering happens using a random shuffle. + + References + ---------- + .. [1] Blondel, V.D. et al. Fast unfolding of communities in + large networks. J. Stat. Mech 10008, 1-12(2008). https://doi.org/10.1088/1742-5468/2008/10/P10008 + .. [2] Traag, V.A., Waltman, L. & van Eck, N.J. From Louvain to Leiden: guaranteeing + well-connected communities. Sci Rep 9, 5233 (2019). https://doi.org/10.1038/s41598-019-41695-z + .. [3] Nicolas Dugué, Anthony Perez. Directed Louvain : maximizing modularity in directed networks. + [Research Report] Université d’Orléans. 2015. hal-01231784. https://hal.archives-ouvertes.fr/hal-01231784 + + See Also + -------- + louvain_partitions + """ + + partitions = louvain_partitions(G, weight, resolution, threshold, seed) + if max_level is not None: + if max_level <= 0: + raise ValueError("max_level argument must be a positive integer or None") + partitions = itertools.islice(partitions, max_level) + final_partition = deque(partitions, maxlen=1) + return final_partition.pop() + + +@py_random_state("seed") +@nx._dispatchable(edge_attrs="weight") +def louvain_partitions( + G, weight="weight", resolution=1, threshold=0.0000001, seed=None +): + """Yields partitions for each level of the Louvain Community Detection Algorithm + + Louvain Community Detection Algorithm is a simple method to extract the community + structure of a network. This is a heuristic method based on modularity optimization. [1]_ + + The partitions at each level (step of the algorithm) form a dendrogram of communities. + A dendrogram is a diagram representing a tree and each level represents + a partition of the G graph. The top level contains the smallest communities + and as you traverse to the bottom of the tree the communities get bigger + and the overall modularity increases making the partition better. + + Each level is generated by executing the two phases of the Louvain Community + Detection Algorithm. + + Be careful with self-loops in the input graph. These are treated as + previously reduced communities -- as if the process had been started + in the middle of the algorithm. Large self-loop edge weights thus + represent strong communities and in practice may be hard to add + other nodes to. If your input graph edge weights for self-loops + do not represent already reduced communities you may want to remove + the self-loops before inputting that graph. + + Parameters + ---------- + G : NetworkX graph + weight : string or None, optional (default="weight") + The name of an edge attribute that holds the numerical value + used as a weight. If None then each edge has weight 1. + resolution : float, optional (default=1) + If resolution is less than 1, the algorithm favors larger communities. + Greater than 1 favors smaller communities + threshold : float, optional (default=0.0000001) + Modularity gain threshold for each level. If the gain of modularity + between 2 levels of the algorithm is less than the given threshold + then the algorithm stops and returns the resulting communities. + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness`. + + Yields + ------ + list + A list of sets (partition of `G`). Each set represents one community and contains + all the nodes that constitute it. + + References + ---------- + .. [1] Blondel, V.D. et al. Fast unfolding of communities in + large networks. J. Stat. Mech 10008, 1-12(2008) + + See Also + -------- + louvain_communities + """ + + partition = [{u} for u in G.nodes()] + if nx.is_empty(G): + yield partition + return + mod = modularity(G, partition, resolution=resolution, weight=weight) + is_directed = G.is_directed() + if G.is_multigraph(): + graph = _convert_multigraph(G, weight, is_directed) + else: + graph = G.__class__() + graph.add_nodes_from(G) + graph.add_weighted_edges_from(G.edges(data=weight, default=1)) + + m = graph.size(weight="weight") + partition, inner_partition, improvement = _one_level( + graph, m, partition, resolution, is_directed, seed + ) + improvement = True + while improvement: + # gh-5901 protect the sets in the yielded list from further manipulation here + yield [s.copy() for s in partition] + new_mod = modularity( + graph, inner_partition, resolution=resolution, weight="weight" + ) + if new_mod - mod <= threshold: + return + mod = new_mod + graph = _gen_graph(graph, inner_partition) + partition, inner_partition, improvement = _one_level( + graph, m, partition, resolution, is_directed, seed + ) + + +def _one_level(G, m, partition, resolution=1, is_directed=False, seed=None): + """Calculate one level of the Louvain partitions tree + + Parameters + ---------- + G : NetworkX Graph/DiGraph + The graph from which to detect communities + m : number + The size of the graph `G`. + partition : list of sets of nodes + A valid partition of the graph `G` + resolution : positive number + The resolution parameter for computing the modularity of a partition + is_directed : bool + True if `G` is a directed graph. + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness`. + + """ + node2com = {u: i for i, u in enumerate(G.nodes())} + inner_partition = [{u} for u in G.nodes()] + if is_directed: + in_degrees = dict(G.in_degree(weight="weight")) + out_degrees = dict(G.out_degree(weight="weight")) + Stot_in = list(in_degrees.values()) + Stot_out = list(out_degrees.values()) + # Calculate weights for both in and out neighbors without considering self-loops + nbrs = {} + for u in G: + nbrs[u] = defaultdict(float) + for _, n, wt in G.out_edges(u, data="weight"): + if u != n: + nbrs[u][n] += wt + for n, _, wt in G.in_edges(u, data="weight"): + if u != n: + nbrs[u][n] += wt + else: + degrees = dict(G.degree(weight="weight")) + Stot = list(degrees.values()) + nbrs = {u: {v: data["weight"] for v, data in G[u].items() if v != u} for u in G} + rand_nodes = list(G.nodes) + seed.shuffle(rand_nodes) + nb_moves = 1 + improvement = False + while nb_moves > 0: + nb_moves = 0 + for u in rand_nodes: + best_mod = 0 + best_com = node2com[u] + weights2com = _neighbor_weights(nbrs[u], node2com) + if is_directed: + in_degree = in_degrees[u] + out_degree = out_degrees[u] + Stot_in[best_com] -= in_degree + Stot_out[best_com] -= out_degree + remove_cost = ( + -weights2com[best_com] / m + + resolution + * (out_degree * Stot_in[best_com] + in_degree * Stot_out[best_com]) + / m**2 + ) + else: + degree = degrees[u] + Stot[best_com] -= degree + remove_cost = -weights2com[best_com] / m + resolution * ( + Stot[best_com] * degree + ) / (2 * m**2) + for nbr_com, wt in weights2com.items(): + if is_directed: + gain = ( + remove_cost + + wt / m + - resolution + * ( + out_degree * Stot_in[nbr_com] + + in_degree * Stot_out[nbr_com] + ) + / m**2 + ) + else: + gain = ( + remove_cost + + wt / m + - resolution * (Stot[nbr_com] * degree) / (2 * m**2) + ) + if gain > best_mod: + best_mod = gain + best_com = nbr_com + if is_directed: + Stot_in[best_com] += in_degree + Stot_out[best_com] += out_degree + else: + Stot[best_com] += degree + if best_com != node2com[u]: + com = G.nodes[u].get("nodes", {u}) + partition[node2com[u]].difference_update(com) + inner_partition[node2com[u]].remove(u) + partition[best_com].update(com) + inner_partition[best_com].add(u) + improvement = True + nb_moves += 1 + node2com[u] = best_com + partition = list(filter(len, partition)) + inner_partition = list(filter(len, inner_partition)) + return partition, inner_partition, improvement + + +def _neighbor_weights(nbrs, node2com): + """Calculate weights between node and its neighbor communities. + + Parameters + ---------- + nbrs : dictionary + Dictionary with nodes' neighbors as keys and their edge weight as value. + node2com : dictionary + Dictionary with all graph's nodes as keys and their community index as value. + + """ + weights = defaultdict(float) + for nbr, wt in nbrs.items(): + weights[node2com[nbr]] += wt + return weights + + +def _gen_graph(G, partition): + """Generate a new graph based on the partitions of a given graph""" + H = G.__class__() + node2com = {} + for i, part in enumerate(partition): + nodes = set() + for node in part: + node2com[node] = i + nodes.update(G.nodes[node].get("nodes", {node})) + H.add_node(i, nodes=nodes) + + for node1, node2, wt in G.edges(data=True): + wt = wt["weight"] + com1 = node2com[node1] + com2 = node2com[node2] + temp = H.get_edge_data(com1, com2, {"weight": 0})["weight"] + H.add_edge(com1, com2, weight=wt + temp) + return H + + +def _convert_multigraph(G, weight, is_directed): + """Convert a Multigraph to normal Graph""" + if is_directed: + H = nx.DiGraph() + else: + H = nx.Graph() + H.add_nodes_from(G) + for u, v, wt in G.edges(data=weight, default=1): + if H.has_edge(u, v): + H[u][v]["weight"] += wt + else: + H.add_edge(u, v, weight=wt) + return H diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/lukes.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/lukes.py new file mode 100644 index 0000000000000000000000000000000000000000..08dd7cd52ff414c1397e3effea504853f3c9caf7 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/lukes.py @@ -0,0 +1,227 @@ +"""Lukes Algorithm for exact optimal weighted tree partitioning.""" + +from copy import deepcopy +from functools import lru_cache +from random import choice + +import networkx as nx +from networkx.utils import not_implemented_for + +__all__ = ["lukes_partitioning"] + +D_EDGE_W = "weight" +D_EDGE_VALUE = 1.0 +D_NODE_W = "weight" +D_NODE_VALUE = 1 +PKEY = "partitions" +CLUSTER_EVAL_CACHE_SIZE = 2048 + + +def _split_n_from(n, min_size_of_first_part): + # splits j in two parts of which the first is at least + # the second argument + assert n >= min_size_of_first_part + for p1 in range(min_size_of_first_part, n + 1): + yield p1, n - p1 + + +@nx._dispatchable(node_attrs="node_weight", edge_attrs="edge_weight") +def lukes_partitioning(G, max_size, node_weight=None, edge_weight=None): + """Optimal partitioning of a weighted tree using the Lukes algorithm. + + This algorithm partitions a connected, acyclic graph featuring integer + node weights and float edge weights. The resulting clusters are such + that the total weight of the nodes in each cluster does not exceed + max_size and that the weight of the edges that are cut by the partition + is minimum. The algorithm is based on [1]_. + + Parameters + ---------- + G : NetworkX graph + + max_size : int + Maximum weight a partition can have in terms of sum of + node_weight for all nodes in the partition + + edge_weight : key + Edge data key to use as weight. If None, the weights are all + set to one. + + node_weight : key + Node data key to use as weight. If None, the weights are all + set to one. The data must be int. + + Returns + ------- + partition : list + A list of sets of nodes representing the clusters of the + partition. + + Raises + ------ + NotATree + If G is not a tree. + TypeError + If any of the values of node_weight is not int. + + References + ---------- + .. [1] Lukes, J. A. (1974). + "Efficient Algorithm for the Partitioning of Trees." + IBM Journal of Research and Development, 18(3), 217–224. + + """ + # First sanity check and tree preparation + if not nx.is_tree(G): + raise nx.NotATree("lukes_partitioning works only on trees") + else: + if nx.is_directed(G): + root = [n for n, d in G.in_degree() if d == 0] + assert len(root) == 1 + root = root[0] + t_G = deepcopy(G) + else: + root = choice(list(G.nodes)) + # this has the desirable side effect of not inheriting attributes + t_G = nx.dfs_tree(G, root) + + # Since we do not want to screw up the original graph, + # if we have a blank attribute, we make a deepcopy + if edge_weight is None or node_weight is None: + safe_G = deepcopy(G) + if edge_weight is None: + nx.set_edge_attributes(safe_G, D_EDGE_VALUE, D_EDGE_W) + edge_weight = D_EDGE_W + if node_weight is None: + nx.set_node_attributes(safe_G, D_NODE_VALUE, D_NODE_W) + node_weight = D_NODE_W + else: + safe_G = G + + # Second sanity check + # The values of node_weight MUST BE int. + # I cannot see any room for duck typing without incurring serious + # danger of subtle bugs. + all_n_attr = nx.get_node_attributes(safe_G, node_weight).values() + for x in all_n_attr: + if not isinstance(x, int): + raise TypeError( + "lukes_partitioning needs integer " + f"values for node_weight ({node_weight})" + ) + + # SUBROUTINES ----------------------- + # these functions are defined here for two reasons: + # - brevity: we can leverage global "safe_G" + # - caching: signatures are hashable + + @not_implemented_for("undirected") + # this is intended to be called only on t_G + def _leaves(gr): + for x in gr.nodes: + if not nx.descendants(gr, x): + yield x + + @not_implemented_for("undirected") + def _a_parent_of_leaves_only(gr): + tleaves = set(_leaves(gr)) + for n in set(gr.nodes) - tleaves: + if all(x in tleaves for x in nx.descendants(gr, n)): + return n + + @lru_cache(CLUSTER_EVAL_CACHE_SIZE) + def _value_of_cluster(cluster): + valid_edges = [e for e in safe_G.edges if e[0] in cluster and e[1] in cluster] + return sum(safe_G.edges[e][edge_weight] for e in valid_edges) + + def _value_of_partition(partition): + return sum(_value_of_cluster(frozenset(c)) for c in partition) + + @lru_cache(CLUSTER_EVAL_CACHE_SIZE) + def _weight_of_cluster(cluster): + return sum(safe_G.nodes[n][node_weight] for n in cluster) + + def _pivot(partition, node): + ccx = [c for c in partition if node in c] + assert len(ccx) == 1 + return ccx[0] + + def _concatenate_or_merge(partition_1, partition_2, x, i, ref_weight): + ccx = _pivot(partition_1, x) + cci = _pivot(partition_2, i) + merged_xi = ccx.union(cci) + + # We first check if we can do the merge. + # If so, we do the actual calculations, otherwise we concatenate + if _weight_of_cluster(frozenset(merged_xi)) <= ref_weight: + cp1 = list(filter(lambda x: x != ccx, partition_1)) + cp2 = list(filter(lambda x: x != cci, partition_2)) + + option_2 = [merged_xi] + cp1 + cp2 + return option_2, _value_of_partition(option_2) + else: + option_1 = partition_1 + partition_2 + return option_1, _value_of_partition(option_1) + + # INITIALIZATION ----------------------- + leaves = set(_leaves(t_G)) + for lv in leaves: + t_G.nodes[lv][PKEY] = {} + slot = safe_G.nodes[lv][node_weight] + t_G.nodes[lv][PKEY][slot] = [{lv}] + t_G.nodes[lv][PKEY][0] = [{lv}] + + for inner in [x for x in t_G.nodes if x not in leaves]: + t_G.nodes[inner][PKEY] = {} + slot = safe_G.nodes[inner][node_weight] + t_G.nodes[inner][PKEY][slot] = [{inner}] + nx._clear_cache(t_G) + + # CORE ALGORITHM ----------------------- + while True: + x_node = _a_parent_of_leaves_only(t_G) + weight_of_x = safe_G.nodes[x_node][node_weight] + best_value = 0 + best_partition = None + bp_buffer = {} + x_descendants = nx.descendants(t_G, x_node) + for i_node in x_descendants: + for j in range(weight_of_x, max_size + 1): + for a, b in _split_n_from(j, weight_of_x): + if ( + a not in t_G.nodes[x_node][PKEY] + or b not in t_G.nodes[i_node][PKEY] + ): + # it's not possible to form this particular weight sum + continue + + part1 = t_G.nodes[x_node][PKEY][a] + part2 = t_G.nodes[i_node][PKEY][b] + part, value = _concatenate_or_merge(part1, part2, x_node, i_node, j) + + if j not in bp_buffer or bp_buffer[j][1] < value: + # we annotate in the buffer the best partition for j + bp_buffer[j] = part, value + + # we also keep track of the overall best partition + if best_value <= value: + best_value = value + best_partition = part + + # as illustrated in Lukes, once we finished a child, we can + # discharge the partitions we found into the graph + # (the key phrase is make all x == x') + # so that they are used by the subsequent children + for w, (best_part_for_vl, vl) in bp_buffer.items(): + t_G.nodes[x_node][PKEY][w] = best_part_for_vl + bp_buffer.clear() + + # the absolute best partition for this node + # across all weights has to be stored at 0 + t_G.nodes[x_node][PKEY][0] = best_partition + t_G.remove_nodes_from(x_descendants) + + if x_node == root: + # the 0-labeled partition of root + # is the optimal one for the whole tree + return t_G.nodes[root][PKEY][0] diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/modularity_max.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/modularity_max.py new file mode 100644 index 0000000000000000000000000000000000000000..f465e01c6b20ec0a34c7d8402ebdfb6e3e1b4e0e --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/modularity_max.py @@ -0,0 +1,451 @@ +"""Functions for detecting communities based on modularity.""" + +from collections import defaultdict + +import networkx as nx +from networkx.algorithms.community.quality import modularity +from networkx.utils import not_implemented_for +from networkx.utils.mapped_queue import MappedQueue + +__all__ = [ + "greedy_modularity_communities", + "naive_greedy_modularity_communities", +] + + +def _greedy_modularity_communities_generator(G, weight=None, resolution=1): + r"""Yield community partitions of G and the modularity change at each step. + + This function performs Clauset-Newman-Moore greedy modularity maximization [2]_ + At each step of the process it yields the change in modularity that will occur in + the next step followed by yielding the new community partition after that step. + + Greedy modularity maximization begins with each node in its own community + and repeatedly joins the pair of communities that lead to the largest + modularity until one community contains all nodes (the partition has one set). + + This function maximizes the generalized modularity, where `resolution` + is the resolution parameter, often expressed as $\gamma$. + See :func:`~networkx.algorithms.community.quality.modularity`. + + Parameters + ---------- + G : NetworkX graph + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + resolution : float (default=1) + If resolution is less than 1, modularity favors larger communities. + Greater than 1 favors smaller communities. + + Yields + ------ + Alternating yield statements produce the following two objects: + + communities: dict_values + A dict_values of frozensets of nodes, one for each community. + This represents a partition of the nodes of the graph into communities. + The first yield is the partition with each node in its own community. + + dq: float + The change in modularity when merging the next two communities + that leads to the largest modularity. + + See Also + -------- + modularity + + References + ---------- + .. [1] Newman, M. E. J. "Networks: An Introduction", page 224 + Oxford University Press 2011. + .. [2] Clauset, A., Newman, M. E., & Moore, C. + "Finding community structure in very large networks." + Physical Review E 70(6), 2004. + .. [3] Reichardt and Bornholdt "Statistical Mechanics of Community + Detection" Phys. Rev. E74, 2006. + .. [4] Newman, M. E. J."Analysis of weighted networks" + Physical Review E 70(5 Pt 2):056131, 2004. + """ + directed = G.is_directed() + N = G.number_of_nodes() + + # Count edges (or the sum of edge-weights for weighted graphs) + m = G.size(weight) + q0 = 1 / m + + # Calculate degrees (notation from the papers) + # a : the fraction of (weighted) out-degree for each node + # b : the fraction of (weighted) in-degree for each node + if directed: + a = {node: deg_out * q0 for node, deg_out in G.out_degree(weight=weight)} + b = {node: deg_in * q0 for node, deg_in in G.in_degree(weight=weight)} + else: + a = b = {node: deg * q0 * 0.5 for node, deg in G.degree(weight=weight)} + + # this preliminary step collects the edge weights for each node pair + # It handles multigraph and digraph and works fine for graph. + dq_dict = defaultdict(lambda: defaultdict(float)) + for u, v, wt in G.edges(data=weight, default=1): + if u == v: + continue + dq_dict[u][v] += wt + dq_dict[v][u] += wt + + # now scale and subtract the expected edge-weights term + for u, nbrdict in dq_dict.items(): + for v, wt in nbrdict.items(): + dq_dict[u][v] = q0 * wt - resolution * (a[u] * b[v] + b[u] * a[v]) + + # Use -dq to get a max_heap instead of a min_heap + # dq_heap holds a heap for each node's neighbors + dq_heap = {u: MappedQueue({(u, v): -dq for v, dq in dq_dict[u].items()}) for u in G} + # H -> all_dq_heap holds a heap with the best items for each node + H = MappedQueue([dq_heap[n].heap[0] for n in G if len(dq_heap[n]) > 0]) + + # Initialize single-node communities + communities = {n: frozenset([n]) for n in G} + yield communities.values() + + # Merge the two communities that lead to the largest modularity + while len(H) > 1: + # Find best merge + # Remove from heap of row maxes + # Ties will be broken by choosing the pair with lowest min community id + try: + negdq, u, v = H.pop() + except IndexError: + break + dq = -negdq + yield dq + # Remove best merge from row u heap + dq_heap[u].pop() + # Push new row max onto H + if len(dq_heap[u]) > 0: + H.push(dq_heap[u].heap[0]) + # If this element was also at the root of row v, we need to remove the + # duplicate entry from H + if dq_heap[v].heap[0] == (v, u): + H.remove((v, u)) + # Remove best merge from row v heap + dq_heap[v].remove((v, u)) + # Push new row max onto H + if len(dq_heap[v]) > 0: + H.push(dq_heap[v].heap[0]) + else: + # Duplicate wasn't in H, just remove from row v heap + dq_heap[v].remove((v, u)) + + # Perform merge + communities[v] = frozenset(communities[u] | communities[v]) + del communities[u] + + # Get neighbor communities connected to the merged communities + u_nbrs = set(dq_dict[u]) + v_nbrs = set(dq_dict[v]) + all_nbrs = (u_nbrs | v_nbrs) - {u, v} + both_nbrs = u_nbrs & v_nbrs + # Update dq for merge of u into v + for w in all_nbrs: + # Calculate new dq value + if w in both_nbrs: + dq_vw = dq_dict[v][w] + dq_dict[u][w] + elif w in v_nbrs: + dq_vw = dq_dict[v][w] - resolution * (a[u] * b[w] + a[w] * b[u]) + else: # w in u_nbrs + dq_vw = dq_dict[u][w] - resolution * (a[v] * b[w] + a[w] * b[v]) + # Update rows v and w + for row, col in [(v, w), (w, v)]: + dq_heap_row = dq_heap[row] + # Update dict for v,w only (u is removed below) + dq_dict[row][col] = dq_vw + # Save old max of per-row heap + if len(dq_heap_row) > 0: + d_oldmax = dq_heap_row.heap[0] + else: + d_oldmax = None + # Add/update heaps + d = (row, col) + d_negdq = -dq_vw + # Save old value for finding heap index + if w in v_nbrs: + # Update existing element in per-row heap + dq_heap_row.update(d, d, priority=d_negdq) + else: + # We're creating a new nonzero element, add to heap + dq_heap_row.push(d, priority=d_negdq) + # Update heap of row maxes if necessary + if d_oldmax is None: + # No entries previously in this row, push new max + H.push(d, priority=d_negdq) + else: + # We've updated an entry in this row, has the max changed? + row_max = dq_heap_row.heap[0] + if d_oldmax != row_max or d_oldmax.priority != row_max.priority: + H.update(d_oldmax, row_max) + + # Remove row/col u from dq_dict matrix + for w in dq_dict[u]: + # Remove from dict + dq_old = dq_dict[w][u] + del dq_dict[w][u] + # Remove from heaps if we haven't already + if w != v: + # Remove both row and column + for row, col in [(w, u), (u, w)]: + dq_heap_row = dq_heap[row] + # Check if replaced dq is row max + d_old = (row, col) + if dq_heap_row.heap[0] == d_old: + # Update per-row heap and heap of row maxes + dq_heap_row.remove(d_old) + H.remove(d_old) + # Update row max + if len(dq_heap_row) > 0: + H.push(dq_heap_row.heap[0]) + else: + # Only update per-row heap + dq_heap_row.remove(d_old) + + del dq_dict[u] + # Mark row u as deleted, but keep placeholder + dq_heap[u] = MappedQueue() + # Merge u into v and update a + a[v] += a[u] + a[u] = 0 + if directed: + b[v] += b[u] + b[u] = 0 + + yield communities.values() + + +@nx._dispatchable(edge_attrs="weight") +def greedy_modularity_communities( + G, + weight=None, + resolution=1, + cutoff=1, + best_n=None, +): + r"""Find communities in G using greedy modularity maximization. + + This function uses Clauset-Newman-Moore greedy modularity maximization [2]_ + to find the community partition with the largest modularity. + + Greedy modularity maximization begins with each node in its own community + and repeatedly joins the pair of communities that lead to the largest + modularity until no further increase in modularity is possible (a maximum). + Two keyword arguments adjust the stopping condition. `cutoff` is a lower + limit on the number of communities so you can stop the process before + reaching a maximum (used to save computation time). `best_n` is an upper + limit on the number of communities so you can make the process continue + until at most n communities remain even if the maximum modularity occurs + for more. To obtain exactly n communities, set both `cutoff` and `best_n` to n. + + This function maximizes the generalized modularity, where `resolution` + is the resolution parameter, often expressed as $\gamma$. + See :func:`~networkx.algorithms.community.quality.modularity`. + + Parameters + ---------- + G : NetworkX graph + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + resolution : float, optional (default=1) + If resolution is less than 1, modularity favors larger communities. + Greater than 1 favors smaller communities. + + cutoff : int, optional (default=1) + A minimum number of communities below which the merging process stops. + The process stops at this number of communities even if modularity + is not maximized. The goal is to let the user stop the process early. + The process stops before the cutoff if it finds a maximum of modularity. + + best_n : int or None, optional (default=None) + A maximum number of communities above which the merging process will + not stop. This forces community merging to continue after modularity + starts to decrease until `best_n` communities remain. + If ``None``, don't force it to continue beyond a maximum. + + Raises + ------ + ValueError : If the `cutoff` or `best_n` value is not in the range + ``[1, G.number_of_nodes()]``, or if `best_n` < `cutoff`. + + Returns + ------- + communities: list + A list of frozensets of nodes, one for each community. + Sorted by length with largest communities first. + + Examples + -------- + >>> G = nx.karate_club_graph() + >>> c = nx.community.greedy_modularity_communities(G) + >>> sorted(c[0]) + [8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] + + See Also + -------- + modularity + + References + ---------- + .. [1] Newman, M. E. J. "Networks: An Introduction", page 224 + Oxford University Press 2011. + .. [2] Clauset, A., Newman, M. E., & Moore, C. + "Finding community structure in very large networks." + Physical Review E 70(6), 2004. + .. [3] Reichardt and Bornholdt "Statistical Mechanics of Community + Detection" Phys. Rev. E74, 2006. + .. [4] Newman, M. E. J."Analysis of weighted networks" + Physical Review E 70(5 Pt 2):056131, 2004. + """ + if not G.size(): + return [{n} for n in G] + + if (cutoff < 1) or (cutoff > G.number_of_nodes()): + raise ValueError(f"cutoff must be between 1 and {len(G)}. Got {cutoff}.") + if best_n is not None: + if (best_n < 1) or (best_n > G.number_of_nodes()): + raise ValueError(f"best_n must be between 1 and {len(G)}. Got {best_n}.") + if best_n < cutoff: + raise ValueError(f"Must have best_n >= cutoff. Got {best_n} < {cutoff}") + if best_n == 1: + return [set(G)] + else: + best_n = G.number_of_nodes() + + # retrieve generator object to construct output + community_gen = _greedy_modularity_communities_generator( + G, weight=weight, resolution=resolution + ) + + # construct the first best community + communities = next(community_gen) + + # continue merging communities until one of the breaking criteria is satisfied + while len(communities) > cutoff: + try: + dq = next(community_gen) + # StopIteration occurs when communities are the connected components + except StopIteration: + communities = sorted(communities, key=len, reverse=True) + # if best_n requires more merging, merge big sets for highest modularity + while len(communities) > best_n: + comm1, comm2, *rest = communities + communities = [comm1 ^ comm2] + communities.extend(rest) + return communities + + # keep going unless max_mod is reached or best_n says to merge more + if dq < 0 and len(communities) <= best_n: + break + communities = next(community_gen) + + return sorted(communities, key=len, reverse=True) + + +@not_implemented_for("directed") +@not_implemented_for("multigraph") +@nx._dispatchable(edge_attrs="weight") +def naive_greedy_modularity_communities(G, resolution=1, weight=None): + r"""Find communities in G using greedy modularity maximization. + + This implementation is O(n^4), much slower than alternatives, but it is + provided as an easy-to-understand reference implementation. + + Greedy modularity maximization begins with each node in its own community + and joins the pair of communities that most increases modularity until no + such pair exists. + + This function maximizes the generalized modularity, where `resolution` + is the resolution parameter, often expressed as $\gamma$. + See :func:`~networkx.algorithms.community.quality.modularity`. + + Parameters + ---------- + G : NetworkX graph + Graph must be simple and undirected. + + resolution : float (default=1) + If resolution is less than 1, modularity favors larger communities. + Greater than 1 favors smaller communities. + + weight : string or None, optional (default=None) + The name of an edge attribute that holds the numerical value used + as a weight. If None, then each edge has weight 1. + The degree is the sum of the edge weights adjacent to the node. + + Returns + ------- + list + A list of sets of nodes, one for each community. + Sorted by length with largest communities first. + + Examples + -------- + >>> G = nx.karate_club_graph() + >>> c = nx.community.naive_greedy_modularity_communities(G) + >>> sorted(c[0]) + [8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] + + See Also + -------- + greedy_modularity_communities + modularity + """ + # First create one community for each node + communities = [frozenset([u]) for u in G.nodes()] + # Track merges + merges = [] + # Greedily merge communities until no improvement is possible + old_modularity = None + new_modularity = modularity(G, communities, resolution=resolution, weight=weight) + while old_modularity is None or new_modularity > old_modularity: + # Save modularity for comparison + old_modularity = new_modularity + # Find best pair to merge + trial_communities = list(communities) + to_merge = None + for i, u in enumerate(communities): + for j, v in enumerate(communities): + # Skip i==j and empty communities + if j <= i or len(u) == 0 or len(v) == 0: + continue + # Merge communities u and v + trial_communities[j] = u | v + trial_communities[i] = frozenset([]) + trial_modularity = modularity( + G, trial_communities, resolution=resolution, weight=weight + ) + if trial_modularity >= new_modularity: + # Check if strictly better or tie + if trial_modularity > new_modularity: + # Found new best, save modularity and group indexes + new_modularity = trial_modularity + to_merge = (i, j, new_modularity - old_modularity) + elif to_merge and min(i, j) < min(to_merge[0], to_merge[1]): + # Break ties by choosing pair with lowest min id + new_modularity = trial_modularity + to_merge = (i, j, new_modularity - old_modularity) + # Un-merge + trial_communities[i] = u + trial_communities[j] = v + if to_merge is not None: + # If the best merge improves modularity, use it + merges.append(to_merge) + i, j, dq = to_merge + u, v = communities[i], communities[j] + communities[j] = u | v + communities[i] = frozenset([]) + # Remove empty communities and sort + return sorted((c for c in communities if len(c) > 0), key=len, reverse=True) diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/community/quality.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/quality.py new file mode 100644 index 0000000000000000000000000000000000000000..f09a6d454af24b38841de473d9e4584bb3a460e9 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/community/quality.py @@ -0,0 +1,346 @@ +"""Functions for measuring the quality of a partition (into +communities). + +""" + +from itertools import combinations + +import networkx as nx +from networkx import NetworkXError +from networkx.algorithms.community.community_utils import is_partition +from networkx.utils.decorators import argmap + +__all__ = ["modularity", "partition_quality"] + + +class NotAPartition(NetworkXError): + """Raised if a given collection is not a partition.""" + + def __init__(self, G, collection): + msg = f"{collection} is not a valid partition of the graph {G}" + super().__init__(msg) + + +def _require_partition(G, partition): + """Decorator to check that a valid partition is input to a function + + Raises :exc:`networkx.NetworkXError` if the partition is not valid. + + This decorator should be used on functions whose first two arguments + are a graph and a partition of the nodes of that graph (in that + order):: + + >>> @require_partition + ... def foo(G, partition): + ... print("partition is valid!") + ... + >>> G = nx.complete_graph(5) + >>> partition = [{0, 1}, {2, 3}, {4}] + >>> foo(G, partition) + partition is valid! + >>> partition = [{0}, {2, 3}, {4}] + >>> foo(G, partition) + Traceback (most recent call last): + ... + networkx.exception.NetworkXError: `partition` is not a valid partition of the nodes of G + >>> partition = [{0, 1}, {1, 2, 3}, {4}] + >>> foo(G, partition) + Traceback (most recent call last): + ... + networkx.exception.NetworkXError: `partition` is not a valid partition of the nodes of G + + """ + if is_partition(G, partition): + return G, partition + raise nx.NetworkXError("`partition` is not a valid partition of the nodes of G") + + +require_partition = argmap(_require_partition, (0, 1)) + + +@nx._dispatchable +def intra_community_edges(G, partition): + """Returns the number of intra-community edges for a partition of `G`. + + Parameters + ---------- + G : NetworkX graph. + + partition : iterable of sets of nodes + This must be a partition of the nodes of `G`. + + The "intra-community edges" are those edges joining a pair of nodes + in the same block of the partition. + + """ + return sum(G.subgraph(block).size() for block in partition) + + +@nx._dispatchable +def inter_community_edges(G, partition): + """Returns the number of inter-community edges for a partition of `G`. + according to the given + partition of the nodes of `G`. + + Parameters + ---------- + G : NetworkX graph. + + partition : iterable of sets of nodes + This must be a partition of the nodes of `G`. + + The *inter-community edges* are those edges joining a pair of nodes + in different blocks of the partition. + + Implementation note: this function creates an intermediate graph + that may require the same amount of memory as that of `G`. + + """ + # Alternate implementation that does not require constructing a new + # graph object (but does require constructing an affiliation + # dictionary): + # + # aff = dict(chain.from_iterable(((v, block) for v in block) + # for block in partition)) + # return sum(1 for u, v in G.edges() if aff[u] != aff[v]) + # + MG = nx.MultiDiGraph if G.is_directed() else nx.MultiGraph + return nx.quotient_graph(G, partition, create_using=MG).size() + + +@nx._dispatchable +def inter_community_non_edges(G, partition): + """Returns the number of inter-community non-edges according to the + given partition of the nodes of `G`. + + Parameters + ---------- + G : NetworkX graph. + + partition : iterable of sets of nodes + This must be a partition of the nodes of `G`. + + A *non-edge* is a pair of nodes (undirected if `G` is undirected) + that are not adjacent in `G`. The *inter-community non-edges* are + those non-edges on a pair of nodes in different blocks of the + partition. + + Implementation note: this function creates two intermediate graphs, + which may require up to twice the amount of memory as required to + store `G`. + + """ + # Alternate implementation that does not require constructing two + # new graph objects (but does require constructing an affiliation + # dictionary): + # + # aff = dict(chain.from_iterable(((v, block) for v in block) + # for block in partition)) + # return sum(1 for u, v in nx.non_edges(G) if aff[u] != aff[v]) + # + return inter_community_edges(nx.complement(G), partition) + + +@nx._dispatchable(edge_attrs="weight") +def modularity(G, communities, weight="weight", resolution=1): + r"""Returns the modularity of the given partition of the graph. + + Modularity is defined in [1]_ as + + .. math:: + Q = \frac{1}{2m} \sum_{ij} \left( A_{ij} - \gamma\frac{k_ik_j}{2m}\right) + \delta(c_i,c_j) + + where $m$ is the number of edges (or sum of all edge weights as in [5]_), + $A$ is the adjacency matrix of `G`, $k_i$ is the (weighted) degree of $i$, + $\gamma$ is the resolution parameter, and $\delta(c_i, c_j)$ is 1 if $i$ and + $j$ are in the same community else 0. + + According to [2]_ (and verified by some algebra) this can be reduced to + + .. math:: + Q = \sum_{c=1}^{n} + \left[ \frac{L_c}{m} - \gamma\left( \frac{k_c}{2m} \right) ^2 \right] + + where the sum iterates over all communities $c$, $m$ is the number of edges, + $L_c$ is the number of intra-community links for community $c$, + $k_c$ is the sum of degrees of the nodes in community $c$, + and $\gamma$ is the resolution parameter. + + The resolution parameter sets an arbitrary tradeoff between intra-group + edges and inter-group edges. More complex grouping patterns can be + discovered by analyzing the same network with multiple values of gamma + and then combining the results [3]_. That said, it is very common to + simply use gamma=1. More on the choice of gamma is in [4]_. + + The second formula is the one actually used in calculation of the modularity. + For directed graphs the second formula replaces $k_c$ with $k^{in}_c k^{out}_c$. + + Parameters + ---------- + G : NetworkX Graph + + communities : list or iterable of set of nodes + These node sets must represent a partition of G's nodes. + + weight : string or None, optional (default="weight") + The edge attribute that holds the numerical value used + as a weight. If None or an edge does not have that attribute, + then that edge has weight 1. + + resolution : float (default=1) + If resolution is less than 1, modularity favors larger communities. + Greater than 1 favors smaller communities. + + Returns + ------- + Q : float + The modularity of the partition. + + Raises + ------ + NotAPartition + If `communities` is not a partition of the nodes of `G`. + + Examples + -------- + >>> G = nx.barbell_graph(3, 0) + >>> nx.community.modularity(G, [{0, 1, 2}, {3, 4, 5}]) + 0.35714285714285715 + >>> nx.community.modularity(G, nx.community.label_propagation_communities(G)) + 0.35714285714285715 + + References + ---------- + .. [1] M. E. J. Newman "Networks: An Introduction", page 224. + Oxford University Press, 2011. + .. [2] Clauset, Aaron, Mark EJ Newman, and Cristopher Moore. + "Finding community structure in very large networks." + Phys. Rev. E 70.6 (2004). + .. [3] Reichardt and Bornholdt "Statistical Mechanics of Community Detection" + Phys. Rev. E 74, 016110, 2006. https://doi.org/10.1103/PhysRevE.74.016110 + .. [4] M. E. J. Newman, "Equivalence between modularity optimization and + maximum likelihood methods for community detection" + Phys. Rev. E 94, 052315, 2016. https://doi.org/10.1103/PhysRevE.94.052315 + .. [5] Blondel, V.D. et al. "Fast unfolding of communities in large + networks" J. Stat. Mech 10008, 1-12 (2008). + https://doi.org/10.1088/1742-5468/2008/10/P10008 + """ + if not isinstance(communities, list): + communities = list(communities) + if not is_partition(G, communities): + raise NotAPartition(G, communities) + + directed = G.is_directed() + if directed: + out_degree = dict(G.out_degree(weight=weight)) + in_degree = dict(G.in_degree(weight=weight)) + m = sum(out_degree.values()) + norm = 1 / m**2 + else: + out_degree = in_degree = dict(G.degree(weight=weight)) + deg_sum = sum(out_degree.values()) + m = deg_sum / 2 + norm = 1 / deg_sum**2 + + def community_contribution(community): + comm = set(community) + L_c = sum(wt for u, v, wt in G.edges(comm, data=weight, default=1) if v in comm) + + out_degree_sum = sum(out_degree[u] for u in comm) + in_degree_sum = sum(in_degree[u] for u in comm) if directed else out_degree_sum + + return L_c / m - resolution * out_degree_sum * in_degree_sum * norm + + return sum(map(community_contribution, communities)) + + +@require_partition +@nx._dispatchable +def partition_quality(G, partition): + """Returns the coverage and performance of a partition of G. + + The *coverage* of a partition is the ratio of the number of + intra-community edges to the total number of edges in the graph. + + The *performance* of a partition is the number of + intra-community edges plus inter-community non-edges divided by the total + number of potential edges. + + This algorithm has complexity $O(C^2 + L)$ where C is the number of communities and L is the number of links. + + Parameters + ---------- + G : NetworkX graph + + partition : sequence + Partition of the nodes of `G`, represented as a sequence of + sets of nodes (blocks). Each block of the partition represents a + community. + + Returns + ------- + (float, float) + The (coverage, performance) tuple of the partition, as defined above. + + Raises + ------ + NetworkXError + If `partition` is not a valid partition of the nodes of `G`. + + Notes + ----- + If `G` is a multigraph; + - for coverage, the multiplicity of edges is counted + - for performance, the result is -1 (total number of possible edges is not defined) + + References + ---------- + .. [1] Santo Fortunato. + "Community Detection in Graphs". + *Physical Reports*, Volume 486, Issue 3--5 pp. 75--174 + + """ + + node_community = {} + for i, community in enumerate(partition): + for node in community: + node_community[node] = i + + # `performance` is not defined for multigraphs + if not G.is_multigraph(): + # Iterate over the communities, quadratic, to calculate `possible_inter_community_edges` + possible_inter_community_edges = sum( + len(p1) * len(p2) for p1, p2 in combinations(partition, 2) + ) + + if G.is_directed(): + possible_inter_community_edges *= 2 + else: + possible_inter_community_edges = 0 + + # Compute the number of edges in the complete graph -- `n` nodes, + # directed or undirected, depending on `G` + n = len(G) + total_pairs = n * (n - 1) + if not G.is_directed(): + total_pairs //= 2 + + intra_community_edges = 0 + inter_community_non_edges = possible_inter_community_edges + + # Iterate over the links to count `intra_community_edges` and `inter_community_non_edges` + for e in G.edges(): + if node_community[e[0]] == node_community[e[1]]: + intra_community_edges += 1 + else: + inter_community_non_edges -= 1 + + coverage = intra_community_edges / len(G.edges) + + if G.is_multigraph(): + performance = -1.0 + else: + performance = (intra_community_edges + inter_community_non_edges) / total_pairs + + return coverage, performance diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__init__.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/__init__.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/__init__.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fa41475e25fc5f2c4450bdc2296e0b724f9c2a5f Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/__init__.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_all.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_all.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b07e70da5fa9e355dc7f58ede0b68c134b0f918e Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_all.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..801231c5c48ed2ba52126810eb9b796fee063dc8 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_product.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_product.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ac3997123c7e06fa6d6ff8f464f57fef7b54eb8 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_product.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_unary.cpython-311.pyc b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_unary.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea96cf61f84572a4ccb49fb93a28c106d3eed945 Binary files /dev/null and b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/__pycache__/test_unary.cpython-311.pyc differ diff --git a/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/test_product.py b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/test_product.py new file mode 100644 index 0000000000000000000000000000000000000000..8ee54b93012c79531f2732da282072754da82046 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/networkx/algorithms/operators/tests/test_product.py @@ -0,0 +1,491 @@ +import pytest + +import networkx as nx +from networkx.utils import edges_equal + + +def test_tensor_product_raises(): + with pytest.raises(nx.NetworkXError): + P = nx.tensor_product(nx.DiGraph(), nx.Graph()) + + +def test_tensor_product_null(): + null = nx.null_graph() + empty10 = nx.empty_graph(10) + K3 = nx.complete_graph(3) + K10 = nx.complete_graph(10) + P3 = nx.path_graph(3) + P10 = nx.path_graph(10) + # null graph + G = nx.tensor_product(null, null) + assert nx.is_isomorphic(G, null) + # null_graph X anything = null_graph and v.v. + G = nx.tensor_product(null, empty10) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(null, K3) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(null, K10) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(null, P3) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(null, P10) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(empty10, null) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(K3, null) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(K10, null) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(P3, null) + assert nx.is_isomorphic(G, null) + G = nx.tensor_product(P10, null) + assert nx.is_isomorphic(G, null) + + +def test_tensor_product_size(): + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + K5 = nx.complete_graph(5) + + G = nx.tensor_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.tensor_product(K3, K5) + assert nx.number_of_nodes(G) == 3 * 5 + + +def test_tensor_product_combinations(): + # basic smoke test, more realistic tests would be useful + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.tensor_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.tensor_product(P5, nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.tensor_product(nx.MultiGraph(P5), K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.tensor_product(nx.MultiGraph(P5), nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + + G = nx.tensor_product(nx.DiGraph(P5), nx.DiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + + +def test_tensor_product_classic_result(): + K2 = nx.complete_graph(2) + G = nx.petersen_graph() + G = nx.tensor_product(G, K2) + assert nx.is_isomorphic(G, nx.desargues_graph()) + + G = nx.cycle_graph(5) + G = nx.tensor_product(G, K2) + assert nx.is_isomorphic(G, nx.cycle_graph(10)) + + G = nx.tetrahedral_graph() + G = nx.tensor_product(G, K2) + assert nx.is_isomorphic(G, nx.cubical_graph()) + + +def test_tensor_product_random(): + G = nx.erdos_renyi_graph(10, 2 / 10.0) + H = nx.erdos_renyi_graph(10, 2 / 10.0) + GH = nx.tensor_product(G, H) + + for u_G, u_H in GH.nodes(): + for v_G, v_H in GH.nodes(): + if H.has_edge(u_H, v_H) and G.has_edge(u_G, v_G): + assert GH.has_edge((u_G, u_H), (v_G, v_H)) + else: + assert not GH.has_edge((u_G, u_H), (v_G, v_H)) + + +def test_cartesian_product_multigraph(): + G = nx.MultiGraph() + G.add_edge(1, 2, key=0) + G.add_edge(1, 2, key=1) + H = nx.MultiGraph() + H.add_edge(3, 4, key=0) + H.add_edge(3, 4, key=1) + GH = nx.cartesian_product(G, H) + assert set(GH) == {(1, 3), (2, 3), (2, 4), (1, 4)} + assert {(frozenset([u, v]), k) for u, v, k in GH.edges(keys=True)} == { + (frozenset([u, v]), k) + for u, v, k in [ + ((1, 3), (2, 3), 0), + ((1, 3), (2, 3), 1), + ((1, 3), (1, 4), 0), + ((1, 3), (1, 4), 1), + ((2, 3), (2, 4), 0), + ((2, 3), (2, 4), 1), + ((2, 4), (1, 4), 0), + ((2, 4), (1, 4), 1), + ] + } + + +def test_cartesian_product_raises(): + with pytest.raises(nx.NetworkXError): + P = nx.cartesian_product(nx.DiGraph(), nx.Graph()) + + +def test_cartesian_product_null(): + null = nx.null_graph() + empty10 = nx.empty_graph(10) + K3 = nx.complete_graph(3) + K10 = nx.complete_graph(10) + P3 = nx.path_graph(3) + P10 = nx.path_graph(10) + # null graph + G = nx.cartesian_product(null, null) + assert nx.is_isomorphic(G, null) + # null_graph X anything = null_graph and v.v. + G = nx.cartesian_product(null, empty10) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(null, K3) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(null, K10) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(null, P3) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(null, P10) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(empty10, null) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(K3, null) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(K10, null) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(P3, null) + assert nx.is_isomorphic(G, null) + G = nx.cartesian_product(P10, null) + assert nx.is_isomorphic(G, null) + + +def test_cartesian_product_size(): + # order(GXH)=order(G)*order(H) + K5 = nx.complete_graph(5) + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.cartesian_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + assert nx.number_of_edges(G) == nx.number_of_edges(P5) * nx.number_of_nodes( + K3 + ) + nx.number_of_edges(K3) * nx.number_of_nodes(P5) + G = nx.cartesian_product(K3, K5) + assert nx.number_of_nodes(G) == 3 * 5 + assert nx.number_of_edges(G) == nx.number_of_edges(K5) * nx.number_of_nodes( + K3 + ) + nx.number_of_edges(K3) * nx.number_of_nodes(K5) + + +def test_cartesian_product_classic(): + # test some classic product graphs + P2 = nx.path_graph(2) + P3 = nx.path_graph(3) + # cube = 2-path X 2-path + G = nx.cartesian_product(P2, P2) + G = nx.cartesian_product(P2, G) + assert nx.is_isomorphic(G, nx.cubical_graph()) + + # 3x3 grid + G = nx.cartesian_product(P3, P3) + assert nx.is_isomorphic(G, nx.grid_2d_graph(3, 3)) + + +def test_cartesian_product_random(): + G = nx.erdos_renyi_graph(10, 2 / 10.0) + H = nx.erdos_renyi_graph(10, 2 / 10.0) + GH = nx.cartesian_product(G, H) + + for u_G, u_H in GH.nodes(): + for v_G, v_H in GH.nodes(): + if (u_G == v_G and H.has_edge(u_H, v_H)) or ( + u_H == v_H and G.has_edge(u_G, v_G) + ): + assert GH.has_edge((u_G, u_H), (v_G, v_H)) + else: + assert not GH.has_edge((u_G, u_H), (v_G, v_H)) + + +def test_lexicographic_product_raises(): + with pytest.raises(nx.NetworkXError): + P = nx.lexicographic_product(nx.DiGraph(), nx.Graph()) + + +def test_lexicographic_product_null(): + null = nx.null_graph() + empty10 = nx.empty_graph(10) + K3 = nx.complete_graph(3) + K10 = nx.complete_graph(10) + P3 = nx.path_graph(3) + P10 = nx.path_graph(10) + # null graph + G = nx.lexicographic_product(null, null) + assert nx.is_isomorphic(G, null) + # null_graph X anything = null_graph and v.v. + G = nx.lexicographic_product(null, empty10) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(null, K3) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(null, K10) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(null, P3) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(null, P10) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(empty10, null) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(K3, null) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(K10, null) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(P3, null) + assert nx.is_isomorphic(G, null) + G = nx.lexicographic_product(P10, null) + assert nx.is_isomorphic(G, null) + + +def test_lexicographic_product_size(): + K5 = nx.complete_graph(5) + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.lexicographic_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.lexicographic_product(K3, K5) + assert nx.number_of_nodes(G) == 3 * 5 + + +def test_lexicographic_product_combinations(): + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.lexicographic_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.lexicographic_product(nx.MultiGraph(P5), K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.lexicographic_product(P5, nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.lexicographic_product(nx.MultiGraph(P5), nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + + # No classic easily found classic results for lexicographic product + + +def test_lexicographic_product_random(): + G = nx.erdos_renyi_graph(10, 2 / 10.0) + H = nx.erdos_renyi_graph(10, 2 / 10.0) + GH = nx.lexicographic_product(G, H) + + for u_G, u_H in GH.nodes(): + for v_G, v_H in GH.nodes(): + if G.has_edge(u_G, v_G) or (u_G == v_G and H.has_edge(u_H, v_H)): + assert GH.has_edge((u_G, u_H), (v_G, v_H)) + else: + assert not GH.has_edge((u_G, u_H), (v_G, v_H)) + + +def test_strong_product_raises(): + with pytest.raises(nx.NetworkXError): + P = nx.strong_product(nx.DiGraph(), nx.Graph()) + + +def test_strong_product_null(): + null = nx.null_graph() + empty10 = nx.empty_graph(10) + K3 = nx.complete_graph(3) + K10 = nx.complete_graph(10) + P3 = nx.path_graph(3) + P10 = nx.path_graph(10) + # null graph + G = nx.strong_product(null, null) + assert nx.is_isomorphic(G, null) + # null_graph X anything = null_graph and v.v. + G = nx.strong_product(null, empty10) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(null, K3) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(null, K10) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(null, P3) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(null, P10) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(empty10, null) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(K3, null) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(K10, null) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(P3, null) + assert nx.is_isomorphic(G, null) + G = nx.strong_product(P10, null) + assert nx.is_isomorphic(G, null) + + +def test_strong_product_size(): + K5 = nx.complete_graph(5) + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.strong_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.strong_product(K3, K5) + assert nx.number_of_nodes(G) == 3 * 5 + + +def test_strong_product_combinations(): + P5 = nx.path_graph(5) + K3 = nx.complete_graph(3) + G = nx.strong_product(P5, K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.strong_product(nx.MultiGraph(P5), K3) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.strong_product(P5, nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + G = nx.strong_product(nx.MultiGraph(P5), nx.MultiGraph(K3)) + assert nx.number_of_nodes(G) == 5 * 3 + + # No classic easily found classic results for strong product + + +def test_strong_product_random(): + G = nx.erdos_renyi_graph(10, 2 / 10.0) + H = nx.erdos_renyi_graph(10, 2 / 10.0) + GH = nx.strong_product(G, H) + + for u_G, u_H in GH.nodes(): + for v_G, v_H in GH.nodes(): + if ( + (u_G == v_G and H.has_edge(u_H, v_H)) + or (u_H == v_H and G.has_edge(u_G, v_G)) + or (G.has_edge(u_G, v_G) and H.has_edge(u_H, v_H)) + ): + assert GH.has_edge((u_G, u_H), (v_G, v_H)) + else: + assert not GH.has_edge((u_G, u_H), (v_G, v_H)) + + +def test_graph_power_raises(): + with pytest.raises(nx.NetworkXNotImplemented): + nx.power(nx.MultiDiGraph(), 2) + + +def test_graph_power(): + # wikipedia example for graph power + G = nx.cycle_graph(7) + G.add_edge(6, 7) + G.add_edge(7, 8) + G.add_edge(8, 9) + G.add_edge(9, 2) + H = nx.power(G, 2) + + assert edges_equal( + list(H.edges()), + [ + (0, 1), + (0, 2), + (0, 5), + (0, 6), + (0, 7), + (1, 9), + (1, 2), + (1, 3), + (1, 6), + (2, 3), + (2, 4), + (2, 8), + (2, 9), + (3, 4), + (3, 5), + (3, 9), + (4, 5), + (4, 6), + (5, 6), + (5, 7), + (6, 7), + (6, 8), + (7, 8), + (7, 9), + (8, 9), + ], + ) + + +def test_graph_power_negative(): + with pytest.raises(ValueError): + nx.power(nx.Graph(), -1) + + +def test_rooted_product_raises(): + with pytest.raises(nx.NodeNotFound): + nx.rooted_product(nx.Graph(), nx.path_graph(2), 10) + + +def test_rooted_product(): + G = nx.cycle_graph(5) + H = nx.Graph() + H.add_edges_from([("a", "b"), ("b", "c"), ("b", "d")]) + R = nx.rooted_product(G, H, "a") + assert len(R) == len(G) * len(H) + assert R.size() == G.size() + len(G) * H.size() + + +def test_corona_product(): + G = nx.cycle_graph(3) + H = nx.path_graph(2) + C = nx.corona_product(G, H) + assert len(C) == (len(G) * len(H)) + len(G) + assert C.size() == G.size() + len(G) * H.size() + len(G) * len(H) + + +def test_modular_product(): + G = nx.path_graph(3) + H = nx.path_graph(4) + M = nx.modular_product(G, H) + assert len(M) == len(G) * len(H) + + assert edges_equal( + list(M.edges()), + [ + ((0, 0), (1, 1)), + ((0, 0), (2, 2)), + ((0, 0), (2, 3)), + ((0, 1), (1, 0)), + ((0, 1), (1, 2)), + ((0, 1), (2, 3)), + ((0, 2), (1, 1)), + ((0, 2), (1, 3)), + ((0, 2), (2, 0)), + ((0, 3), (1, 2)), + ((0, 3), (2, 0)), + ((0, 3), (2, 1)), + ((1, 0), (2, 1)), + ((1, 1), (2, 0)), + ((1, 1), (2, 2)), + ((1, 2), (2, 1)), + ((1, 2), (2, 3)), + ((1, 3), (2, 2)), + ], + ) + + +def test_modular_product_raises(): + G = nx.Graph([(0, 1), (1, 2), (2, 0)]) + H = nx.Graph([(0, 1), (1, 2), (2, 0)]) + DG = nx.DiGraph([(0, 1), (1, 2), (2, 0)]) + DH = nx.DiGraph([(0, 1), (1, 2), (2, 0)]) + with pytest.raises(nx.NetworkXNotImplemented): + nx.modular_product(G, DH) + with pytest.raises(nx.NetworkXNotImplemented): + nx.modular_product(DG, H) + with pytest.raises(nx.NetworkXNotImplemented): + nx.modular_product(DG, DH) + + MG = nx.MultiGraph([(0, 1), (1, 2), (2, 0), (0, 1)]) + MH = nx.MultiGraph([(0, 1), (1, 2), (2, 0), (0, 1)]) + with pytest.raises(nx.NetworkXNotImplemented): + nx.modular_product(G, MH) + with pytest.raises(nx.NetworkXNotImplemented): + nx.modular_product(MG, H) + with pytest.raises(nx.NetworkXNotImplemented): + nx.modular_product(MG, MH) + with pytest.raises(nx.NetworkXNotImplemented): + # check multigraph with no multiedges + nx.modular_product(nx.MultiGraph(G), H) diff --git a/.venv/lib/python3.11/site-packages/torio/lib/_torio_ffmpeg4.so b/.venv/lib/python3.11/site-packages/torio/lib/_torio_ffmpeg4.so new file mode 100644 index 0000000000000000000000000000000000000000..f54eb3fb5dd9da17452ecdf5e74c2ba6a32a6c52 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/torio/lib/_torio_ffmpeg4.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:921522ef36fbb4289993a5748f41fa86a8202b783d68c0db725eb3aa83bd1a87 +size 484112 diff --git a/.venv/lib/python3.11/site-packages/torio/lib/_torio_ffmpeg6.so b/.venv/lib/python3.11/site-packages/torio/lib/_torio_ffmpeg6.so new file mode 100644 index 0000000000000000000000000000000000000000..cc6f8a8e9e4a3e90e43d8e061951f267c6e9aca0 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/torio/lib/_torio_ffmpeg6.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b5c28d3cbb785b8ab938eb39e160071459afb39e722d328f45d8a6bd655d169d +size 484112 diff --git a/.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg4.so b/.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg4.so new file mode 100644 index 0000000000000000000000000000000000000000..73d590534b5f82cecf63a6e875e9b68994d9b94a --- /dev/null +++ b/.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg4.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d28f3d04472f3c39ebd46d79977f38d1edd45bb4258fc0d670a91917336b53f8 +size 652112 diff --git a/.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg5.so b/.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg5.so new file mode 100644 index 0000000000000000000000000000000000000000..367dd26b271c9e1201f820359f08c7d120555aa1 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg5.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:28e41769585ff595af195c074ee7a1fb0106f9d99ae0ebe8ca6b9d5e4dad5334 +size 652112 diff --git a/.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg6.so b/.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg6.so new file mode 100644 index 0000000000000000000000000000000000000000..1d10e997e8548ea1d62d1e17838c1db6646de249 --- /dev/null +++ b/.venv/lib/python3.11/site-packages/torio/lib/libtorio_ffmpeg6.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:95c4b93648ba909f47851cca94123dd0fa6512f5c0576d7ad029b61dd85ddd72 +size 652112