File size: 8,007 Bytes
fd8c8b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# Implementation Guide
This document provides a roadmap for implementing the BitLinear functionality, following the structure defined in the project skeleton. This is here to give insight on how one can replicate this process to different operations.
## Implementation Order
### Phase 1: Python Baseline (Correctness First)
Start here to establish correctness before optimizing.
#### 1.1 Quantization (`bitlinear/quantization.py`)
Order of implementation:
1. `absmax_scale()` - Simple max computation
2. `ternary_quantize()` - Threshold-based quantization to {-1, 0, +1}
3. `weight_to_ternary()` - Combines the above
4. Test thoroughly with `tests/test_quantization.py`
**Key considerations:**
- Threshold selection (try 0.33 * scale or 0.5 * scale)
- Per-channel vs. global scaling trade-offs
- Numerical stability (avoid division by zero)
#### 1.2 Functional Operations (`bitlinear/functional.py`)
Order of implementation:
1. `bitlinear_python()` - Core ternary matmul
```python
# Pseudocode:
output = torch.matmul(x, W_ternary.T)
output = output * gamma.unsqueeze(0)
if bias is not None:
output = output + bias
return output
```
2. `greedy_ternary_decomposition()` - Iterative residual quantization
```python
# Pseudocode:
residual = W.clone()
for i in range(k):
W_t, gamma = weight_to_ternary(residual)
store W_t and gamma
residual = residual - gamma * W_t
```
3. `multi_ternary_linear_python()` - Sum of k ternary operations
4. Test with `tests/test_functional.py`
#### 1.3 Layer Modules (`bitlinear/layers.py`)
Order of implementation:
1. `BitLinear.__init__()` and `reset_parameters()`
- Initialize dense weights using kaiming_uniform
- Quantize to ternary using `weight_to_ternary()`
- Store as buffers or parameters
2. `BitLinear.forward()` - Call `bitlinear_python()`
3. `BitLinear.from_linear()` - Conversion utility
4. `MultiTernaryLinear` - Similar structure
5. `convert_linear_to_bitlinear()` - Recursive module conversion
6. Test with `tests/test_layers.py`
**Testing strategy:**
- Compare output shapes with nn.Linear
- Verify ternary weight values
- Test conversion from pre-trained weights
- Validate in Transformer example
### Phase 2: Memory Optimization
#### 2.1 Base-3 Packing (`bitlinear/packing.py`)
Implement packing for memory efficiency:
1. `pack_ternary_base3()` - 5 values per byte
2. `unpack_ternary_base3()` - Reverse operation
3. Verify roundtrip: pack → unpack == identity
**Packing scheme:**
```
Map: -1 → 0, 0 → 1, +1 → 2 (base-3 digits)
Pack 5 digits per byte: d0 + d1*3 + d2*9 + d3*27 + d4*81
```
### Phase 3: C++ Extensions (Optional but Recommended)
#### 3.1 CPU Implementation (`bitlinear/cpp/bitlinear.cpp`)
1. Implement `bitlinear_cpu_forward()`
- Basic matrix multiplication with ternary weights
- Exploit ternary structure (skip multiplications)
2. Implement `multi_ternary_cpu_forward()`
3. Test integration with Python
**Optimization opportunities (later):**
- AVX/AVX512 vectorization
- OpenMP parallelization
- Cache-efficient tiling
#### 3.2 CUDA Kernels (`bitlinear/cpp/bitlinear_kernel.cu`)
Only after CPU version works!
1. Basic kernel without optimization
- Thread per output element
- Simple accumulation
2. Optimized kernel:
- Shared memory tiling
- Warp-level reductions
- Memory coalescing
- Exploit ternary (conditional accumulation)
3. Advanced (optional):
- Tensor Core utilization
- Mixed precision
- Fused kernels (activation quantization + matmul)
**Performance targets:**
- Should be faster than PyTorch's F.linear for large matrices
- Aim for 2-5x speedup from ternary optimization
### Phase 4: Training Support
#### 4.1 Quantization-Aware Training (QAT)
Modify layers to support gradient flow:
1. Straight-through estimator for ternary quantization
2. Learnable scaling factors (gamma)
3. Fine-tuning pre-trained models
#### 4.2 Initialization Strategies
Experiment with initialization for ternary weights:
- Standard kaiming_uniform then quantize
- Specialized initialization for ternary
- Better threshold selection
## Testing Strategy
### Unit Tests
Run frequently during development:
```bash
pytest tests/test_quantization.py -v
pytest tests/test_functional.py -v
pytest tests/test_layers.py -v
```
### Integration Tests
Test full pipelines:
1. Dense model → quantization → inference
2. Transformer with BitLinear layers
3. Save/load model checkpoints
### Numerical Correctness
Compare with reference:
```python
# Create same layer in dense and ternary
linear = nn.Linear(512, 512)
bitlinear = BitLinear.from_linear(linear)
x = torch.randn(32, 512)
out_dense = linear(x)
out_ternary = bitlinear(x)
# Should be similar (not identical due to quantization)
error = torch.norm(out_dense - out_ternary) / torch.norm(out_dense)
print(f"Relative error: {error:.4f}") # Expect ~0.1-0.3
```
## Common Pitfalls
### Quantization
- **Pitfall:** Wrong threshold → too many zeros or not enough
- **Solution:** Start with 0.5 * scale, tune empirically
### Shape Handling
- **Pitfall:** Broadcasting errors with gamma
- **Solution:** Use `.unsqueeze()` carefully, test various input shapes
### CUDA Compilation
- **Pitfall:** CUDA version mismatches
- **Solution:** Match PyTorch's CUDA version, use CPU-only build first
### Gradients
- **Pitfall:** No gradient flow through ternary quantization
- **Solution:** Implement straight-through estimator for QAT
## Performance Benchmarks
Create benchmarks to track progress:
```python
import time
import torch
from bitlinear import BitLinear
def benchmark(layer, x, n_runs=100):
# Warmup
for _ in range(10):
_ = layer(x)
# Benchmark
start = time.time()
for _ in range(n_runs):
_ = layer(x)
end = time.time()
return (end - start) / n_runs
# Compare
linear = nn.Linear(2048, 2048).cuda()
bitlinear = BitLinear(2048, 2048).cuda()
x = torch.randn(128, 2048).cuda()
time_linear = benchmark(linear, x)
time_bitlinear = benchmark(bitlinear, x)
print(f"nn.Linear: {time_linear*1000:.2f} ms")
print(f"BitLinear: {time_bitlinear*1000:.2f} ms")
print(f"Speedup: {time_linear/time_bitlinear:.2f}x")
```
## Next Steps After Skeleton
1. **Implement Phase 1** (Python baseline)
- Start with `absmax_scale()` and `ternary_quantize()`
- Test each function as you go
- Don't move to next phase until tests pass
2. **Validate with Examples**
- Run `examples/basic_usage.py`
- Run `examples/transformer_example.py`
- Check output similarity and memory savings
3. **Optimize if Needed**
- Profile to find bottlenecks
- Implement C++/CUDA only after Python works
- Measure performance improvements
4. **Documentation**
- Add docstring details from implementation
- Create API documentation
- Write usage tutorials
## Resources
### Papers
- BitNet: https://arxiv.org/abs/2310.11453
- Ternary Neural Networks: https://jmlr.org/papers/volume26/24-2050/24-2050.pdf
### PyTorch Resources
- Custom Extensions: https://pytorch.org/tutorials/advanced/cpp_extension.html
- CUDA Programming: https://pytorch.org/tutorials/advanced/custom_ops.html
### Quantization
- QAT Guide: https://pytorch.org/docs/stable/quantization.html
- Straight-through Estimator: Bengio et al., 2013
## Questions to Consider
As you implement, think about:
1. **Memory vs. Speed:** Packed weights save memory but need unpacking
2. **Training vs. Inference:** Different requirements for gradients
3. **Compatibility:** Should work with existing PyTorch features (DDP, AMP, etc.)
4. **Extensibility:** Easy to add new quantization schemes?
Good luck with implementation! Start with correctness, then optimize.
|