File size: 42,058 Bytes
b7b614e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 |
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_COMMON_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_COMMON_H_
#ifndef ALLOW_SLOW_GENERIC_DEPTHWISECONV_FALLBACK
#ifdef GEMMLOWP_ALLOW_SLOW_SCALAR_FALLBACK
#define ALLOW_SLOW_GENERIC_DEPTHWISECONV_FALLBACK
#endif
#endif
#include <functional>
#include "edge-impulse-sdk/third_party/gemmlowp/fixedpoint/fixedpoint.h"
#include "edge-impulse-sdk/tensorflow/lite/kernels/internal/cppmath.h"
#include "edge-impulse-sdk/tensorflow/lite/kernels/internal/optimized/neon_check.h"
#include "edge-impulse-sdk/tensorflow/lite/kernels/internal/types.h"
namespace tflite {
constexpr int kReverseShift = -1;
inline void GetActivationMinMax(FusedActivationFunctionType ac,
float* output_activation_min,
float* output_activation_max) {
switch (ac) {
case FusedActivationFunctionType::kNone:
*output_activation_min = std::numeric_limits<float>::lowest();
*output_activation_max = std::numeric_limits<float>::max();
break;
case FusedActivationFunctionType::kRelu:
*output_activation_min = 0.f;
*output_activation_max = std::numeric_limits<float>::max();
break;
case FusedActivationFunctionType::kRelu1:
*output_activation_min = -1.f;
*output_activation_max = 1.f;
break;
case FusedActivationFunctionType::kRelu6:
*output_activation_min = 0.f;
*output_activation_max = 6.f;
break;
}
}
template <typename T>
inline T ActivationFunctionWithMinMax(T x, T output_activation_min,
T output_activation_max) {
using std::max;
using std::min;
return min(max(x, output_activation_min), output_activation_max);
}
// Legacy function, left for compatibility only.
template <FusedActivationFunctionType Ac>
float ActivationFunction(float x) {
float output_activation_min, output_activation_max;
GetActivationMinMax(Ac, &output_activation_min, &output_activation_max);
return ActivationFunctionWithMinMax(x, output_activation_min,
output_activation_max);
}
inline void BiasAndClamp(float clamp_min, float clamp_max, int bias_size,
const float* bias_data, int array_size,
float* array_data) {
// Note: see b/132215220: in May 2019 we thought it would be OK to replace
// this with the Eigen one-liner:
// return (array.colwise() + bias).cwiseMin(clamp_max).cwiseMin(clamp_max).
// This turned out to severely regress performance: +4ms (i.e. 8%) on
// MobileNet v2 / 1.0 / 224. So we keep custom NEON code for now.
TFLITE_DCHECK_EQ((array_size % bias_size), 0);
#ifdef USE_NEON
float* array_ptr = array_data;
float* array_end_ptr = array_ptr + array_size;
const auto clamp_min_vec = vdupq_n_f32(clamp_min);
const auto clamp_max_vec = vdupq_n_f32(clamp_max);
for (; array_ptr != array_end_ptr; array_ptr += bias_size) {
int i = 0;
for (; i <= bias_size - 16; i += 16) {
auto b0 = vld1q_f32(bias_data + i);
auto b1 = vld1q_f32(bias_data + i + 4);
auto b2 = vld1q_f32(bias_data + i + 8);
auto b3 = vld1q_f32(bias_data + i + 12);
auto a0 = vld1q_f32(array_ptr + i);
auto a1 = vld1q_f32(array_ptr + i + 4);
auto a2 = vld1q_f32(array_ptr + i + 8);
auto a3 = vld1q_f32(array_ptr + i + 12);
auto x0 = vaddq_f32(a0, b0);
auto x1 = vaddq_f32(a1, b1);
auto x2 = vaddq_f32(a2, b2);
auto x3 = vaddq_f32(a3, b3);
x0 = vmaxq_f32(clamp_min_vec, x0);
x1 = vmaxq_f32(clamp_min_vec, x1);
x2 = vmaxq_f32(clamp_min_vec, x2);
x3 = vmaxq_f32(clamp_min_vec, x3);
x0 = vminq_f32(clamp_max_vec, x0);
x1 = vminq_f32(clamp_max_vec, x1);
x2 = vminq_f32(clamp_max_vec, x2);
x3 = vminq_f32(clamp_max_vec, x3);
vst1q_f32(array_ptr + i, x0);
vst1q_f32(array_ptr + i + 4, x1);
vst1q_f32(array_ptr + i + 8, x2);
vst1q_f32(array_ptr + i + 12, x3);
}
for (; i <= bias_size - 4; i += 4) {
auto b = vld1q_f32(bias_data + i);
auto a = vld1q_f32(array_ptr + i);
auto x = vaddq_f32(a, b);
x = vmaxq_f32(clamp_min_vec, x);
x = vminq_f32(clamp_max_vec, x);
vst1q_f32(array_ptr + i, x);
}
for (; i < bias_size; i++) {
array_ptr[i] = ActivationFunctionWithMinMax(array_ptr[i] + bias_data[i],
clamp_min, clamp_max);
}
}
#else // not NEON
for (int array_offset = 0; array_offset < array_size;
array_offset += bias_size) {
for (int i = 0; i < bias_size; i++) {
array_data[array_offset + i] = ActivationFunctionWithMinMax(
array_data[array_offset + i] + bias_data[i], clamp_min, clamp_max);
}
}
#endif
}
inline int32_t MultiplyByQuantizedMultiplierSmallerThanOneExp(
int32_t x, int32_t quantized_multiplier, int left_shift) {
using gemmlowp::RoundingDivideByPOT;
using gemmlowp::SaturatingRoundingDoublingHighMul;
return RoundingDivideByPOT(
SaturatingRoundingDoublingHighMul(x, quantized_multiplier), -left_shift);
}
inline int32_t MultiplyByQuantizedMultiplierGreaterThanOne(
int32_t x, int32_t quantized_multiplier, int left_shift) {
using gemmlowp::SaturatingRoundingDoublingHighMul;
return SaturatingRoundingDoublingHighMul(x * (1 << left_shift),
quantized_multiplier);
}
inline int32_t MultiplyByQuantizedMultiplier(int32_t x,
int32_t quantized_multiplier,
int shift) {
using gemmlowp::RoundingDivideByPOT;
using gemmlowp::SaturatingRoundingDoublingHighMul;
int left_shift = shift > 0 ? shift : 0;
int right_shift = shift > 0 ? 0 : -shift;
return RoundingDivideByPOT(SaturatingRoundingDoublingHighMul(
x * (1 << left_shift), quantized_multiplier),
right_shift);
}
inline int32_t MultiplyByQuantizedMultiplier(int64_t x,
int32_t quantized_multiplier,
int shift) {
// Inputs:
// - quantized_multiplier has fixed point at bit 31
// - shift is -31 to +7 (negative for right shift)
//
// Assumptions: The following input ranges are assumed
// - quantize_scale>=0 (the usual range is (1<<30) to (1>>31)-1)
// - scaling is chosen so final scaled result fits in int32_t
// - input x is in the range -(1<<47) <= x < (1<<47)
assert(quantized_multiplier >= 0);
assert(shift >= -31 && shift < 8);
assert(x >= -(static_cast<int64_t>(1) << 47) &&
x < (static_cast<int64_t>(1) << 47));
int32_t reduced_multiplier = (quantized_multiplier < 0x7FFF0000)
? ((quantized_multiplier + (1 << 15)) >> 16)
: 0x7FFF;
int total_shift = 15 - shift;
x = (x * (int64_t)reduced_multiplier) + ((int64_t)1 << (total_shift - 1));
int32_t result = x >> total_shift;
return result;
}
#ifdef USE_NEON
// Round uses ARM's rounding shift right.
inline int32x4x4_t MultiplyByQuantizedMultiplier4Rows(
int32x4x4_t input_val, int32_t quantized_multiplier, int shift) {
const int left_shift = std::max(shift, 0);
const int right_shift = std::min(shift, 0);
int32x4x4_t result;
int32x4_t multiplier_dup = vdupq_n_s32(quantized_multiplier);
int32x4_t left_shift_dup = vdupq_n_s32(left_shift);
int32x4_t right_shift_dup = vdupq_n_s32(right_shift);
result.val[0] =
vrshlq_s32(vqrdmulhq_s32(vshlq_s32(input_val.val[0], left_shift_dup),
multiplier_dup),
right_shift_dup);
result.val[1] =
vrshlq_s32(vqrdmulhq_s32(vshlq_s32(input_val.val[1], left_shift_dup),
multiplier_dup),
right_shift_dup);
result.val[2] =
vrshlq_s32(vqrdmulhq_s32(vshlq_s32(input_val.val[2], left_shift_dup),
multiplier_dup),
right_shift_dup);
result.val[3] =
vrshlq_s32(vqrdmulhq_s32(vshlq_s32(input_val.val[3], left_shift_dup),
multiplier_dup),
right_shift_dup);
return result;
}
#endif
template <typename T>
int CountLeadingZeros(T integer_input) {
static_assert(std::is_unsigned<T>::value,
"Only unsigned integer types handled.");
#if defined(__GNUC__)
return integer_input ? __builtin_clz(integer_input)
: std::numeric_limits<T>::digits;
#else
if (integer_input == 0) {
return std::numeric_limits<T>::digits;
}
const T one_in_leading_positive = static_cast<T>(1)
<< (std::numeric_limits<T>::digits - 1);
int leading_zeros = 0;
while (integer_input < one_in_leading_positive) {
integer_input <<= 1;
++leading_zeros;
}
return leading_zeros;
#endif
}
template <typename T>
inline int CountLeadingSignBits(T integer_input) {
static_assert(std::is_signed<T>::value, "Only signed integer types handled.");
#if defined(__GNUC__) && !defined(__clang__)
return integer_input ? __builtin_clrsb(integer_input)
: std::numeric_limits<T>::digits;
#else
using U = typename std::make_unsigned<T>::type;
return integer_input >= 0
? CountLeadingZeros(static_cast<U>(integer_input)) - 1
: integer_input != std::numeric_limits<T>::min()
? CountLeadingZeros(2 * static_cast<U>(-integer_input) - 1)
: 0;
#endif
}
// Use "count leading zeros" helper functions to do a fast Floor(log_2(x)).
template <typename Integer>
inline Integer FloorLog2(Integer n) {
static_assert(std::is_integral<Integer>::value, "");
static_assert(std::is_signed<Integer>::value, "");
static_assert(sizeof(Integer) == 4 || sizeof(Integer) == 8, "");
TFLITE_CHECK_GT(n, 0);
if (sizeof(Integer) == 4) {
return 30 - CountLeadingSignBits(n);
} else {
return 62 - CountLeadingSignBits(n);
}
}
// generate INT16 LUT for function(), e.g., table exp(x) and 1/(1+x) used in
// softmax
// func - the function to build the LUT for (e.g exp(x))
// min,max - table limits
// table - pointer to buffer
// num - number of elements in the LUT
inline void gen_lut(double (*func)(double), double min, double max,
int16_t* table, const int num) {
// size of table should equal to num + 1
// last element only for slope calculation
double step = (max - min) / (num - 1);
double half_step = step / 2.0;
for (int i = 0; i < num - 1; i++) {
double sample_val = TfLiteRound(func(min + i * step) * 32768.0);
double midpoint_interp_val =
TfLiteRound((func(min + (i + 1) * step) * 32768.0 +
TfLiteRound(func(min + i * step) * 32768.0)) /
2.0);
double midpoint_val =
TfLiteRound(func(min + i * step + half_step) * 32768.0);
double midpoint_err = midpoint_interp_val - midpoint_val;
double bias = TfLiteRound(midpoint_err / 2.0);
table[i] = std::min<double>(std::max<double>(sample_val - bias, -32768.0),
32767.0);
}
table[num - 1] = std::min<double>(
std::max<double>(TfLiteRound(func(max) * 32768.0), -32768.0), 32767.0);
}
// generate INT16 LUT for function(), e.g., table exp(x) and 1/(1+x) used in
// softmax
// func - the function to build the LUT for (e.g exp(x))
// min,max - table limits
// table - pointer to buffer
// num - number of elements in the LUT
inline void gen_lut(float (*func)(float), float min, float max, int16_t* table,
const int num) {
// size of table should equal to num + 1
// last element only for slope calculation
float step = (max - min) / (num - 1);
float half_step = step / 2.0f;
for (int i = 0; i < num - 1; i++) {
float sample_val = TfLiteRound(func(min + i * step) * 32768.0f);
float midpoint_interp_val =
TfLiteRound((func(min + (i + 1) * step) * 32768.0f +
TfLiteRound(func(min + i * step) * 32768.0f)) /
2.0f);
float midpoint_val =
TfLiteRound(func(min + i * step + half_step) * 32768.0f);
float midpoint_err = midpoint_interp_val - midpoint_val;
float bias = TfLiteRound(midpoint_err / 2.0f);
table[i] = std::min<float>(std::max<float>(sample_val - bias, -32768.0f),
32767.0f);
}
table[num - 1] = std::min<float>(
std::max<float>(TfLiteRound(func(max) * 32768.0f), -32768.0f), 32767.0f);
}
// int16_t func table lookup, e.g., lookup exp() and 1/(1+x) used in softmax
inline int16_t generic_int16_table_lookup(int16_t value, const int16_t* lut) {
// 512 base value, lut[513] only for calculate slope
uint16_t index = static_cast<uint16_t>(256 + (value >> 7));
assert(index < 512 && "LUT index out of range.");
int16_t offset = value & 0x7f;
// base and slope are Q0.15
int16_t base = lut[index];
int16_t slope = lut[index + 1] - lut[index];
// Q0.15 * Q0.7 = Q0.22
// Round and convert from Q0.22 to Q0.15
int32_t delta = (static_cast<int32_t>(slope) * offset + 64) >> 7;
// Q0.15 + Q0.15
return base + delta;
}
// Table of sigmoid(i/24) at 0.16 format - 256 elements.
// We use combined sigmoid and tanh look-up table, since
// tanh(x) = 2*sigmoid(2*x) -1.
// Both functions are symmetric, so the LUT table is only needed
// for the absolute value of the input.
static const uint16_t sigmoid_table_uint16[256] = {
32768, 33451, 34133, 34813, 35493, 36169, 36843, 37513, 38180, 38841, 39498,
40149, 40794, 41432, 42064, 42688, 43304, 43912, 44511, 45102, 45683, 46255,
46817, 47369, 47911, 48443, 48964, 49475, 49975, 50464, 50942, 51409, 51865,
52311, 52745, 53169, 53581, 53983, 54374, 54755, 55125, 55485, 55834, 56174,
56503, 56823, 57133, 57433, 57724, 58007, 58280, 58544, 58800, 59048, 59288,
59519, 59743, 59959, 60168, 60370, 60565, 60753, 60935, 61110, 61279, 61441,
61599, 61750, 61896, 62036, 62172, 62302, 62428, 62549, 62666, 62778, 62886,
62990, 63090, 63186, 63279, 63368, 63454, 63536, 63615, 63691, 63765, 63835,
63903, 63968, 64030, 64090, 64148, 64204, 64257, 64308, 64357, 64405, 64450,
64494, 64536, 64576, 64614, 64652, 64687, 64721, 64754, 64786, 64816, 64845,
64873, 64900, 64926, 64950, 64974, 64997, 65019, 65039, 65060, 65079, 65097,
65115, 65132, 65149, 65164, 65179, 65194, 65208, 65221, 65234, 65246, 65258,
65269, 65280, 65291, 65301, 65310, 65319, 65328, 65337, 65345, 65352, 65360,
65367, 65374, 65381, 65387, 65393, 65399, 65404, 65410, 65415, 65420, 65425,
65429, 65433, 65438, 65442, 65445, 65449, 65453, 65456, 65459, 65462, 65465,
65468, 65471, 65474, 65476, 65479, 65481, 65483, 65485, 65488, 65489, 65491,
65493, 65495, 65497, 65498, 65500, 65501, 65503, 65504, 65505, 65507, 65508,
65509, 65510, 65511, 65512, 65513, 65514, 65515, 65516, 65517, 65517, 65518,
65519, 65520, 65520, 65521, 65522, 65522, 65523, 65523, 65524, 65524, 65525,
65525, 65526, 65526, 65526, 65527, 65527, 65528, 65528, 65528, 65529, 65529,
65529, 65529, 65530, 65530, 65530, 65530, 65531, 65531, 65531, 65531, 65531,
65532, 65532, 65532, 65532, 65532, 65532, 65533, 65533, 65533, 65533, 65533,
65533, 65533, 65533, 65534, 65534, 65534, 65534, 65534, 65534, 65534, 65534,
65534, 65534, 65535};
// TODO(b/77858996): Add these to gemmlowp.
template <typename IntegerType>
IntegerType SaturatingAddNonGemmlowp(IntegerType a, IntegerType b) {
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
return a;
}
template <>
inline std::int32_t SaturatingAddNonGemmlowp(std::int32_t a, std::int32_t b) {
std::int64_t a64 = a;
std::int64_t b64 = b;
std::int64_t sum = a64 + b64;
return static_cast<std::int32_t>(std::min(
static_cast<std::int64_t>(std::numeric_limits<std::int32_t>::max()),
std::max(
static_cast<std::int64_t>(std::numeric_limits<std::int32_t>::min()),
sum)));
}
template <typename tRawType, int tIntegerBits>
gemmlowp::FixedPoint<tRawType, tIntegerBits> SaturatingAddNonGemmlowp(
gemmlowp::FixedPoint<tRawType, tIntegerBits> a,
gemmlowp::FixedPoint<tRawType, tIntegerBits> b) {
return gemmlowp::FixedPoint<tRawType, tIntegerBits>::FromRaw(
SaturatingAddNonGemmlowp(a.raw(), b.raw()));
}
template <typename IntegerType>
IntegerType SaturatingSub(IntegerType a, IntegerType b) {
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
return a;
}
template <>
inline std::int16_t SaturatingSub(std::int16_t a, std::int16_t b) {
std::int32_t a32 = a;
std::int32_t b32 = b;
std::int32_t diff = a32 - b32;
return static_cast<std::int16_t>(
std::min(static_cast<int32_t>(32767),
std::max(static_cast<int32_t>(-32768), diff)));
}
template <>
inline std::int32_t SaturatingSub(std::int32_t a, std::int32_t b) {
std::int64_t a64 = a;
std::int64_t b64 = b;
std::int64_t diff = a64 - b64;
return static_cast<std::int32_t>(std::min(
static_cast<std::int64_t>(std::numeric_limits<std::int32_t>::max()),
std::max(
static_cast<std::int64_t>(std::numeric_limits<std::int32_t>::min()),
diff)));
}
template <typename tRawType, int tIntegerBits>
gemmlowp::FixedPoint<tRawType, tIntegerBits> SaturatingSub(
gemmlowp::FixedPoint<tRawType, tIntegerBits> a,
gemmlowp::FixedPoint<tRawType, tIntegerBits> b) {
return gemmlowp::FixedPoint<tRawType, tIntegerBits>::FromRaw(
SaturatingSub(a.raw(), b.raw()));
}
// End section to be moved to gemmlowp.
template <typename IntegerType>
IntegerType SaturatingRoundingMultiplyByPOTParam(IntegerType x, int exponent) {
if (exponent == 0) {
return x;
}
using ScalarIntegerType =
typename gemmlowp::FixedPointRawTypeTraits<IntegerType>::ScalarRawType;
const IntegerType min =
gemmlowp::Dup<IntegerType>(std::numeric_limits<ScalarIntegerType>::min());
const IntegerType max =
gemmlowp::Dup<IntegerType>(std::numeric_limits<ScalarIntegerType>::max());
const int ScalarIntegerTypeBits = 8 * sizeof(ScalarIntegerType);
const std::int32_t threshold =
((1 << (ScalarIntegerTypeBits - 1 - exponent)) - 1);
const IntegerType positive_mask =
gemmlowp::MaskIfGreaterThan(x, gemmlowp::Dup<IntegerType>(threshold));
const IntegerType negative_mask =
gemmlowp::MaskIfLessThan(x, gemmlowp::Dup<IntegerType>(-threshold));
IntegerType result = gemmlowp::ShiftLeft(x, exponent);
result = gemmlowp::SelectUsingMask(positive_mask, max, result);
result = gemmlowp::SelectUsingMask(negative_mask, min, result);
return result;
}
// If we want to leave IntegerBits fixed, then multiplication
// by a power of two has to be saturating/rounding, not exact anymore.
template <typename tRawType, int tIntegerBits>
gemmlowp::FixedPoint<tRawType, tIntegerBits>
SaturatingRoundingMultiplyByPOTParam(
gemmlowp::FixedPoint<tRawType, tIntegerBits> a, int exponent) {
return gemmlowp::FixedPoint<tRawType, tIntegerBits>::FromRaw(
SaturatingRoundingMultiplyByPOTParam(a.raw(), exponent));
}
// Convert int32_t multiplier to int16_t with rounding.
inline void DownScaleInt32ToInt16Multiplier(int32_t multiplier_int32_t,
int16_t* multiplier_int16_t) {
TFLITE_DCHECK_GE(multiplier_int32_t, 0);
static constexpr int32_t kRoundingOffset = 1 << 15;
if (multiplier_int32_t >=
std::numeric_limits<int32_t>::max() - kRoundingOffset) {
*multiplier_int16_t = std::numeric_limits<int16_t>::max();
return;
}
const int32_t result = (multiplier_int32_t + kRoundingOffset) >> 16;
TFLITE_DCHECK_LE(result << 16, multiplier_int32_t + kRoundingOffset);
TFLITE_DCHECK_GT(result << 16, multiplier_int32_t - kRoundingOffset);
*multiplier_int16_t = result;
TFLITE_DCHECK_EQ(*multiplier_int16_t, result);
}
// Minimum output bits to accommodate log of maximum input range. It actually
// does not matter if one considers, say, [-64,64] or [-64,64).
//
// For example, run this through Octave:
// [0:127; ...
// ceil(log(abs( log(2.^(0:127))+1 ))/log(2)); ...
// ceil(log(abs( log(2.^(0:127))+1 ))/log(2))]
constexpr int min_log_x_output_bits(int input_bits) {
return input_bits > 90 ? 7
: input_bits > 44 ? 6
: input_bits > 21 ? 5
: input_bits > 10 ? 4
: input_bits > 4 ? 3
: input_bits > 1 ? 2
: 1;
}
// Although currently the name of this function says that it cannot handle
// values less than 1, in practice it can handle as low as 1/x_max, where
// x_max is the largest representable input. In other words, the output range
// is symmetric.
template <int OutputIntegerBits, int InputIntegerBits>
inline gemmlowp::FixedPoint<int32_t, OutputIntegerBits>
log_x_for_x_greater_than_or_equal_to_1_impl(
gemmlowp::FixedPoint<int32_t, InputIntegerBits> input_val) {
// assert(__builtin_clz(0u) >= std::numeric_limits<uint32_t>::digits - 1);
// assert(__builtin_clz(0u) <= std::numeric_limits<uint32_t>::digits);
using FixedPoint0 = gemmlowp::FixedPoint<int32_t, 0>;
// The reason for accumulating the result with an extra bit of headroom is
// that z_pow_2_adj * log_2 might be saturated, and adding num_scaled *
// recip_denom will otherwise introduce an error.
static constexpr int kAccumIntegerBits = OutputIntegerBits + 1;
using FixedPointAccum = gemmlowp::FixedPoint<int32_t, kAccumIntegerBits>;
const FixedPoint0 log_2 = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(
FixedPoint0, 1488522236, std::log(2.0));
const FixedPoint0 sqrt_sqrt_half = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(
FixedPoint0, 1805811301, std::sqrt(std::sqrt(0.5)));
const FixedPoint0 sqrt_half = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(
FixedPoint0, 1518500250, std::sqrt(0.5));
const FixedPoint0 one_quarter =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(FixedPoint0, 536870912, 1.0 / 4.0);
const FixedPoint0 alpha_n = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(
FixedPoint0, 117049297, 11.0 / 240.0 * std::sqrt(std::sqrt(2.0)));
const FixedPoint0 alpha_d = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(
FixedPoint0, 127690142, 1.0 / 20.0 * std::sqrt(std::sqrt(2.0)));
const FixedPoint0 alpha_i = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(
FixedPoint0, 1057819769,
2.0 / std::sqrt(std::sqrt(2.0)) - std::sqrt(std::sqrt(2.0)));
const FixedPoint0 alpha_f = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(
FixedPoint0, 638450708, 1.0 / 4.0 * std::sqrt(std::sqrt(2.0)));
const FixedPointAccum shifted_quarter =
gemmlowp::Rescale<kAccumIntegerBits>(one_quarter);
// Reinterpret the input value as Q0.31, because we will figure out the
// required shift "ourselves" instead of using, say, Rescale.
FixedPoint0 z_a = FixedPoint0::FromRaw(input_val.raw());
// z_a_pow_2 = input_integer_bits - z_a_headroom;
int z_a_headroom_plus_1 = CountLeadingZeros(static_cast<uint32_t>(z_a.raw()));
FixedPoint0 r_a_tmp =
SaturatingRoundingMultiplyByPOTParam(z_a, (z_a_headroom_plus_1 - 1));
const int32_t r_a_raw =
SaturatingRoundingMultiplyByPOTParam((r_a_tmp * sqrt_half).raw(), 1);
// z_pow_2_adj = max(z_pow_2_a - 0.75, z_pow_2_b - 0.25);
// z_pow_2_adj = max(InputIntegerBits - z_a_headroom_plus_1 + 0.25,
// InputIntegerBits - z_b_headroom - 0.25);
const FixedPointAccum z_a_pow_2_adj = SaturatingAddNonGemmlowp(
FixedPointAccum::FromRaw(SaturatingRoundingMultiplyByPOTParam(
static_cast<int32_t>(InputIntegerBits - z_a_headroom_plus_1),
31 - kAccumIntegerBits)),
shifted_quarter);
// z_b is treated like z_a, but premultiplying by sqrt(0.5).
FixedPoint0 z_b = z_a * sqrt_half;
int z_b_headroom = CountLeadingZeros(static_cast<uint32_t>(z_b.raw())) - 1;
const int32_t r_b_raw =
SaturatingRoundingMultiplyByPOTParam(z_a.raw(), z_b_headroom);
const FixedPointAccum z_b_pow_2_adj = SaturatingSub(
FixedPointAccum::FromRaw(SaturatingRoundingMultiplyByPOTParam(
static_cast<int32_t>(InputIntegerBits - z_b_headroom),
31 - kAccumIntegerBits)),
shifted_quarter);
const FixedPoint0 r = FixedPoint0::FromRaw(std::min(r_a_raw, r_b_raw));
const FixedPointAccum z_pow_2_adj = FixedPointAccum::FromRaw(
std::max(z_a_pow_2_adj.raw(), z_b_pow_2_adj.raw()));
const FixedPoint0 p = gemmlowp::RoundingHalfSum(r, sqrt_sqrt_half);
FixedPoint0 q = r - sqrt_sqrt_half;
q = q + q;
const FixedPoint0 common_sq = q * q;
const FixedPoint0 num = q * r + q * common_sq * alpha_n;
const FixedPoint0 denom_minus_one_0 =
p * (alpha_i + q + alpha_d * common_sq) + alpha_f * q;
const FixedPoint0 recip_denom =
one_over_one_plus_x_for_x_in_0_1(denom_minus_one_0);
const FixedPointAccum num_scaled = gemmlowp::Rescale<kAccumIntegerBits>(num);
return gemmlowp::Rescale<OutputIntegerBits>(z_pow_2_adj * log_2 +
num_scaled * recip_denom);
}
template <int OutputIntegerBits, int InputIntegerBits>
inline gemmlowp::FixedPoint<int32_t, OutputIntegerBits>
log_x_for_x_greater_than_or_equal_to_1(
gemmlowp::FixedPoint<int32_t, InputIntegerBits> input_val) {
static_assert(
OutputIntegerBits >= min_log_x_output_bits(InputIntegerBits),
"Output integer bits must be sufficient to accommodate logs of inputs.");
return log_x_for_x_greater_than_or_equal_to_1_impl<OutputIntegerBits,
InputIntegerBits>(
input_val);
}
inline int32_t GetReciprocal(int32_t x, int x_integer_digits,
int* num_bits_over_unit) {
int headroom_plus_one = CountLeadingZeros(static_cast<uint32_t>(x));
// This is the number of bits to the left of the binary point above 1.0.
// Consider x=1.25. In that case shifted_scale=0.8 and
// no later adjustment will be needed.
*num_bits_over_unit = x_integer_digits - headroom_plus_one;
const int32_t shifted_sum_minus_one =
static_cast<int32_t>((static_cast<uint32_t>(x) << headroom_plus_one) -
(static_cast<uint32_t>(1) << 31));
gemmlowp::FixedPoint<int32_t, 0> shifted_scale =
gemmlowp::one_over_one_plus_x_for_x_in_0_1(
gemmlowp::FixedPoint<int32_t, 0>::FromRaw(shifted_sum_minus_one));
return shifted_scale.raw();
}
inline void GetInvSqrtQuantizedMultiplierExp(int32_t input, int reverse_shift,
int32_t* output_inv_sqrt,
int* output_shift) {
TFLITE_DCHECK_GE(input, 0);
if (input <= 1) {
// Handle the input value 1 separately to avoid overflow in that case
// in the general computation below (b/143972021). Also handle 0 as if it
// were a 1. 0 is an invalid input here (divide by zero) and 1 is a valid
// but rare/unrealistic input value. We can expect both to occur in some
// incompletely trained models, but probably not in fully trained models.
*output_inv_sqrt = std::numeric_limits<std::int32_t>::max();
*output_shift = 0;
return;
}
TFLITE_DCHECK_GT(input, 1);
*output_shift = 11;
while (input >= (1 << 29)) {
input /= 4;
++*output_shift;
}
const unsigned max_left_shift_bits =
CountLeadingZeros(static_cast<uint32_t>(input)) - 1;
const unsigned max_left_shift_bit_pairs = max_left_shift_bits / 2;
const unsigned left_shift_bit_pairs = max_left_shift_bit_pairs - 1;
*output_shift -= left_shift_bit_pairs;
input <<= 2 * left_shift_bit_pairs;
TFLITE_DCHECK_GE(input, (1 << 27));
TFLITE_DCHECK_LT(input, (1 << 29));
using gemmlowp::FixedPoint;
using gemmlowp::Rescale;
using gemmlowp::SaturatingRoundingMultiplyByPOT;
// Using 3 integer bits gives us enough room for the internal arithmetic in
// this Newton-Raphson iteration.
using F3 = FixedPoint<int32_t, 3>;
using F0 = FixedPoint<int32_t, 0>;
const F3 fixedpoint_input = F3::FromRaw(input >> 1);
const F3 fixedpoint_half_input =
SaturatingRoundingMultiplyByPOT<-1>(fixedpoint_input);
const F3 fixedpoint_half_three =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F3, (1 << 28) + (1 << 27), 1.5);
// Newton-Raphson iteration
// Naive unoptimized starting guess: x = 1
F3 x = F3::One();
// Naive unoptimized number of iterations: 5
for (int i = 0; i < 5; i++) {
const F3 x3 = Rescale<3>(x * x * x);
x = Rescale<3>(fixedpoint_half_three * x - fixedpoint_half_input * x3);
}
const F0 fixedpoint_half_sqrt_2 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F0, 1518500250, std::sqrt(2.) / 2.);
x = x * fixedpoint_half_sqrt_2;
*output_inv_sqrt = x.raw();
if (*output_shift < 0) {
*output_inv_sqrt <<= -*output_shift;
*output_shift = 0;
}
// Convert right shift (right is positive) to left shift.
*output_shift *= reverse_shift;
}
// DO NOT USE THIS STRUCT FOR NEW FUNCTIONALITY BEYOND IMPLEMENTING
// BROADCASTING.
//
// NdArrayDesc<N> describes the shape and memory layout of an N-dimensional
// rectangular array of numbers.
//
// NdArrayDesc<N> is basically identical to Dims<N> defined in types.h.
// However, as Dims<N> is to be deprecated, this class exists as an adaptor
// to enable simple unoptimized implementations of element-wise broadcasting
// operations.
template <int N>
struct NdArrayDesc {
// The "extent" of each dimension. Indices along dimension d must be in the
// half-open interval [0, extents[d]).
int extents[N];
// The number of *elements* (not bytes) between consecutive indices of each
// dimension.
int strides[N];
};
// DO NOT USE THIS FUNCTION FOR NEW FUNCTIONALITY BEYOND IMPLEMENTING
// BROADCASTING.
//
// Same as Offset(), except takes as NdArrayDesc<N> instead of Dims<N>.
inline int SubscriptToIndex(const NdArrayDesc<4>& desc, int i0, int i1, int i2,
int i3) {
TFLITE_DCHECK(i0 >= 0 && i0 < desc.extents[0]);
TFLITE_DCHECK(i1 >= 0 && i1 < desc.extents[1]);
TFLITE_DCHECK(i2 >= 0 && i2 < desc.extents[2]);
TFLITE_DCHECK(i3 >= 0 && i3 < desc.extents[3]);
return i0 * desc.strides[0] + i1 * desc.strides[1] + i2 * desc.strides[2] +
i3 * desc.strides[3];
}
inline int SubscriptToIndex(const NdArrayDesc<5>& desc, int indexes[5]) {
return indexes[0] * desc.strides[0] + indexes[1] * desc.strides[1] +
indexes[2] * desc.strides[2] + indexes[3] * desc.strides[3] +
indexes[4] * desc.strides[4];
}
inline int SubscriptToIndex(const NdArrayDesc<8>& desc, int indexes[8]) {
return indexes[0] * desc.strides[0] + indexes[1] * desc.strides[1] +
indexes[2] * desc.strides[2] + indexes[3] * desc.strides[3] +
indexes[4] * desc.strides[4] + indexes[5] * desc.strides[5] +
indexes[6] * desc.strides[6] + indexes[7] * desc.strides[7];
}
// Given the dimensions of the operands for an element-wise binary broadcast,
// adjusts them so that they can be directly iterated over with simple loops.
// Returns the adjusted dims as instances of NdArrayDesc in 'desc0_out' and
// 'desc1_out'. 'desc0_out' and 'desc1_out' cannot be nullptr.
//
// This function assumes that the two input shapes are compatible up to
// broadcasting and the shorter one has already been prepended with 1s to be the
// same length. E.g., if shape0 is (1, 16, 16, 64) and shape1 is (1, 64),
// shape1 must already have been prepended to be (1, 1, 1, 64). Recall that
// Dims<N> refer to shapes in reverse order. In this case, input0_dims will be
// (64, 16, 16, 1) and input1_dims will be (64, 1, 1, 1).
//
// When two shapes are compatible up to broadcasting, for each dimension d,
// the input extents are either equal, or one of them is 1.
//
// This function performs the following for each dimension d:
// - If the extents are equal, then do nothing since the loop that walks over
// both of the input arrays is correct.
// - Otherwise, one (and only one) of the extents must be 1. Say extent0 is 1
// and extent1 is e1. Then set extent0 to e1 and stride0 *to 0*. This allows
// array0 to be referenced *at any index* in dimension d and still access the
// same slice.
template <int N>
inline void NdArrayDescsForElementwiseBroadcast(const Dims<N>& input0_dims,
const Dims<N>& input1_dims,
NdArrayDesc<N>* desc0_out,
NdArrayDesc<N>* desc1_out) {
TFLITE_DCHECK(desc0_out != nullptr);
TFLITE_DCHECK(desc1_out != nullptr);
// Copy dims to desc.
for (int i = 0; i < N; ++i) {
desc0_out->extents[i] = input0_dims.sizes[i];
desc0_out->strides[i] = input0_dims.strides[i];
desc1_out->extents[i] = input1_dims.sizes[i];
desc1_out->strides[i] = input1_dims.strides[i];
}
// Walk over each dimension. If the extents are equal do nothing.
// Otherwise, set the desc with extent 1 to have extent equal to the other and
// stride 0.
for (int i = 0; i < N; ++i) {
const int extent0 = ArraySize(input0_dims, i);
const int extent1 = ArraySize(input1_dims, i);
if (extent0 != extent1) {
if (extent0 == 1) {
desc0_out->strides[i] = 0;
desc0_out->extents[i] = extent1;
} else {
TFLITE_DCHECK_EQ(extent1, 1);
desc1_out->strides[i] = 0;
desc1_out->extents[i] = extent0;
}
}
}
}
// Copies dims to desc, calculating strides.
template <int N>
inline void CopyDimsToDesc(const RuntimeShape& input_shape,
NdArrayDesc<N>* desc_out) {
int desc_stride = 1;
for (int i = N - 1; i >= 0; --i) {
desc_out->extents[i] = input_shape.Dims(i);
desc_out->strides[i] = desc_stride;
desc_stride *= input_shape.Dims(i);
}
}
template <int N>
inline void NdArrayDescsForElementwiseBroadcast(
const RuntimeShape& input0_shape, const RuntimeShape& input1_shape,
NdArrayDesc<N>* desc0_out, NdArrayDesc<N>* desc1_out) {
TFLITE_DCHECK(desc0_out != nullptr);
TFLITE_DCHECK(desc1_out != nullptr);
auto extended_input0_shape = RuntimeShape::ExtendedShape(N, input0_shape);
auto extended_input1_shape = RuntimeShape::ExtendedShape(N, input1_shape);
// Copy dims to desc, calculating strides.
CopyDimsToDesc<N>(extended_input0_shape, desc0_out);
CopyDimsToDesc<N>(extended_input1_shape, desc1_out);
// Walk over each dimension. If the extents are equal do nothing.
// Otherwise, set the desc with extent 1 to have extent equal to the other and
// stride 0.
for (int i = 0; i < N; ++i) {
const int extent0 = extended_input0_shape.Dims(i);
const int extent1 = extended_input1_shape.Dims(i);
if (extent0 != extent1) {
if (extent0 == 1) {
desc0_out->strides[i] = 0;
desc0_out->extents[i] = extent1;
} else {
TFLITE_DCHECK_EQ(extent1, 1);
desc1_out->strides[i] = 0;
desc1_out->extents[i] = extent0;
}
}
}
}
template <int N>
inline void NdArrayDescsForElementwiseBroadcast(
const RuntimeShape& input0_shape, const RuntimeShape& input1_shape,
const RuntimeShape& input2_shape, NdArrayDesc<N>* desc0_out,
NdArrayDesc<N>* desc1_out, NdArrayDesc<N>* desc2_out) {
TFLITE_DCHECK(desc0_out != nullptr);
TFLITE_DCHECK(desc1_out != nullptr);
TFLITE_DCHECK(desc2_out != nullptr);
auto extended_input0_shape = RuntimeShape::ExtendedShape(N, input0_shape);
auto extended_input1_shape = RuntimeShape::ExtendedShape(N, input1_shape);
auto extended_input2_shape = RuntimeShape::ExtendedShape(N, input2_shape);
// Copy dims to desc, calculating strides.
CopyDimsToDesc<N>(extended_input0_shape, desc0_out);
CopyDimsToDesc<N>(extended_input1_shape, desc1_out);
CopyDimsToDesc<N>(extended_input2_shape, desc2_out);
// Walk over each dimension. If the extents are equal do nothing.
// Otherwise, set the desc with extent 1 to have extent equal to the other and
// stride 0.
for (int i = 0; i < N; ++i) {
const int extent0 = extended_input0_shape.Dims(i);
const int extent1 = extended_input1_shape.Dims(i);
const int extent2 = extended_input2_shape.Dims(i);
int extent = extent0;
if (extent1 != 1) extent = extent1;
if (extent2 != 1) extent = extent2;
TFLITE_DCHECK(extent0 == 1 || extent0 == extent);
TFLITE_DCHECK(extent1 == 1 || extent1 == extent);
TFLITE_DCHECK(extent2 == 1 || extent2 == extent);
if (!(extent0 == extent1 && extent1 == extent2)) {
if (extent0 == 1) {
desc0_out->strides[i] = 0;
desc0_out->extents[i] = extent;
}
if (extent1 == 1) {
desc1_out->strides[i] = 0;
desc1_out->extents[i] = extent;
}
if (extent2 == 1) {
desc2_out->strides[i] = 0;
desc2_out->extents[i] = extent;
}
}
}
}
// Detailed implementation of NDOpsHelper, the indexes must be a zero array.
// This implementation is equivalent to N nested loops. Ex, if N=4, it can be
// re-writen as:
// for (int b = 0; b < output.extents[0]; ++b) {
// for (int y = 0; y < output.extents[1]; ++y) {
// for (int x = 0; x < output.extents[2]; ++x) {
// for (int c = 0; c < output.extents[3]; ++c) {
// calc({b,y,x,c});
// }
// }
// }
// }
template <int N, int DIM, typename Calc>
typename std::enable_if<DIM != N - 1, void>::type NDOpsHelperImpl(
const NdArrayDesc<N>& output, const Calc& calc, int indexes[N]) {
for (indexes[DIM] = 0; indexes[DIM] < output.extents[DIM]; ++indexes[DIM]) {
NDOpsHelperImpl<N, DIM + 1, Calc>(output, calc, indexes);
}
}
template <int N, int DIM, typename Calc>
typename std::enable_if<DIM == N - 1, void>::type NDOpsHelperImpl(
const NdArrayDesc<N>& output, const Calc& calc, int indexes[N]) {
for (indexes[DIM] = 0; indexes[DIM] < output.extents[DIM]; ++indexes[DIM]) {
calc(indexes);
}
}
// Execute the calc function in the innermost iteration based on the shape of
// the output. The calc function should take a single argument of type int[N].
template <int N, typename Calc>
inline void NDOpsHelper(const NdArrayDesc<N>& output, const Calc& calc) {
int indexes[N] = {0};
NDOpsHelperImpl<N, 0, Calc>(output, calc, indexes);
}
// Copied from gemmlowp::RoundDown when we dropped direct dependency on
// gemmlowp.
//
// Returns the runtime argument rounded down to the nearest multiple of
// the fixed Modulus.
template <unsigned Modulus, typename Integer>
Integer RoundDown(Integer i) {
return i - (i % Modulus);
}
// Copied from gemmlowp::RoundUp when we dropped direct dependency on
// gemmlowp.
//
// Returns the runtime argument rounded up to the nearest multiple of
// the fixed Modulus.
template <unsigned Modulus, typename Integer>
Integer RoundUp(Integer i) {
return RoundDown<Modulus>(i + Modulus - 1);
}
// Copied from gemmlowp::CeilQuotient when we dropped direct dependency on
// gemmlowp.
//
// Returns the quotient a / b rounded up ('ceil') to the nearest integer.
template <typename Integer>
Integer CeilQuotient(Integer a, Integer b) {
return (a + b - 1) / b;
}
// This function is a copy of gemmlowp::HowManyThreads, copied when we dropped
// the direct dependency of internal/optimized/ on gemmlowp.
//
// It computes a reasonable number of threads to use for a GEMM of shape
// (rows, cols, depth).
//
// TODO(b/131910176): get rid of this function by switching each call site
// to its own more sensible logic for its own workload.
template <int KernelRows>
inline int LegacyHowManyThreads(int max_num_threads, int rows, int cols,
int depth) {
// Early-exit in the default case where multi-threading is disabled.
if (max_num_threads == 1) {
return 1;
}
// Ensure that each thread has KernelRows rows to process, if at all possible.
int thread_count = std::min(max_num_threads, rows / KernelRows);
// Limit the number of threads according to the overall size of the problem.
if (thread_count > 1) {
// Empirically determined value.
static constexpr std::uint64_t min_cubic_size_per_thread = 64 * 1024;
// We can only multiply two out of three sizes without risking overflow
const std::uint64_t cubic_size =
std::uint64_t(rows) * std::uint64_t(cols) * std::uint64_t(depth);
thread_count = std::min(
thread_count, static_cast<int>(cubic_size / min_cubic_size_per_thread));
}
if (thread_count < 1) {
thread_count = 1;
}
assert(thread_count > 0 && thread_count <= max_num_threads);
return thread_count;
}
template <typename T>
void optimized_ops_preload_l1_stream(const T* ptr) {
#ifdef __GNUC__
// builtin offered by GCC-compatible compilers including clang
__builtin_prefetch(ptr, /* 0 means read */ 0, /* 0 means no locality */ 0);
#else
(void)ptr;
#endif
}
template <typename T>
void optimized_ops_preload_l1_keep(const T* ptr) {
#ifdef __GNUC__
// builtin offered by GCC-compatible compilers including clang
__builtin_prefetch(ptr, /* 0 means read */ 0, /* 3 means high locality */ 3);
#else
(void)ptr;
#endif
}
template <typename T>
void optimized_ops_prefetch_write_l1_keep(const T* ptr) {
#ifdef __GNUC__
// builtin offered by GCC-compatible compilers including clang
__builtin_prefetch(ptr, /* 1 means write */ 1, /* 3 means high locality */ 3);
#else
(void)ptr;
#endif
}
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_COMMON_H_
|