fomo-face-detection
/
ei-cpp-export
/edge-impulse-sdk
/third_party
/gemmlowp
/fixedpoint
/fixedpoint.h
| // Copyright 2015 The Gemmlowp Authors. All Rights Reserved. | |
| // | |
| // Licensed under the Apache License, Version 2.0 (the "License"); | |
| // you may not use this file except in compliance with the License. | |
| // You may obtain a copy of the License at | |
| // | |
| // http://www.apache.org/licenses/LICENSE-2.0 | |
| // | |
| // Unless required by applicable law or agreed to in writing, software | |
| // distributed under the License is distributed on an "AS IS" BASIS, | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| // See the License for the specific language governing permissions and | |
| // limitations under the License. | |
| // fixedpoint.h: fixed-point arithmetic, with basic operations and | |
| // a few math functions such as tanh. | |
| namespace gemmlowp { | |
| // Part 1: Low-level integer-arithmetic primitives. | |
| // The implementations here are generic implementations valid for | |
| // scalar types (e.g. std::int32_t). Architecture-specific SIMD types | |
| // (e.g. NEON int32x4_t) may be supported by providing | |
| // specializations for them in separate files. | |
| // | |
| // The purpose of these primitives is two-fold: | |
| // - They will be used to implement higher-level fixed-point | |
| // abstractions, namely the FixedPoint class and its arithmetic | |
| // operators. | |
| // - They will be directly used to implement some more involved | |
| // fixed-point computations, e.g. the fixed-point implementation | |
| // of math functions such as tanh. | |
| // Some compile-time traits around raw types to handle SIMD aspects: | |
| // number of lanes, underlying scalar type. | |
| template <typename tIntegerType> | |
| struct FixedPointRawTypeTraits {}; | |
| template <> | |
| struct FixedPointRawTypeTraits<std::int32_t> { | |
| typedef std::int32_t ScalarRawType; | |
| static constexpr int kLanes = 1; | |
| }; | |
| template <> | |
| struct FixedPointRawTypeTraits<std::int16_t> { | |
| typedef std::int16_t ScalarRawType; | |
| static constexpr int kLanes = 1; | |
| }; | |
| // Returns a SIMD value duplicating a scalar value across all lanes. | |
| template <typename tRawType> | |
| tRawType Dup(typename FixedPointRawTypeTraits<tRawType>::ScalarRawType x) { | |
| return x; | |
| } | |
| // Plain bit-wise AND | |
| template <typename tIntegerType> | |
| tIntegerType BitAnd(tIntegerType a, tIntegerType b) { | |
| return a & b; | |
| } | |
| // Plain bit-wise OR | |
| template <typename tIntegerType> | |
| tIntegerType BitOr(tIntegerType a, tIntegerType b) { | |
| return a | b; | |
| } | |
| // Plain bit-wise XOR | |
| template <typename tIntegerType> | |
| tIntegerType BitXor(tIntegerType a, tIntegerType b) { | |
| return a ^ b; | |
| } | |
| // Plain bit-wise NOT | |
| template <typename tIntegerType> | |
| tIntegerType BitNot(tIntegerType a) { | |
| return ~a; | |
| } | |
| // Integer addition. Not saturating. Overflow is undefined behavior. | |
| template <typename tIntegerType> | |
| tIntegerType Add(tIntegerType a, tIntegerType b) { | |
| return a + b; | |
| } | |
| // Integer subtraction. Not saturating. Overflow is undefined behavior. | |
| template <typename tIntegerType> | |
| tIntegerType Mul(tIntegerType a, tIntegerType b) { | |
| return a * b; | |
| } | |
| template <typename tIntegerType> | |
| tIntegerType Sub(tIntegerType a, tIntegerType b) { | |
| return a - b; | |
| } | |
| // Integer unary negative. Not saturating. Overflow is undefined behavior. | |
| template <typename tIntegerType> | |
| tIntegerType Neg(tIntegerType a) { | |
| return -a; | |
| } | |
| // Integer arithmetic left-shift, equivalent to multiplying with a power of two. | |
| // Negative values are OK. In case of overflow, no Undefined | |
| // Behavior, but the results are implementation-defined (in practice, | |
| // they currently are saturated, but we make no commitment to that). The idea | |
| // is that the caller will want to implement the overflowing cases with | |
| // saturation with compare-and-mask, so we don't care about the results | |
| // in the overflow case, we just want to avoid undefined behavior. | |
| // | |
| // tIntegerType may be int32 or any narrower signed type. | |
| template <typename tIntegerType> | |
| tIntegerType ShiftLeft(tIntegerType a, int offset) { | |
| const std::int64_t wide_a = static_cast<std::int64_t>(a); | |
| const std::int64_t wide_shifted = wide_a * (1 << offset); | |
| const auto min = std::numeric_limits<tIntegerType>::min(); | |
| const auto max = std::numeric_limits<tIntegerType>::max(); | |
| return wide_shifted < min | |
| ? min | |
| : wide_shifted > max ? max | |
| : static_cast<tIntegerType>(wide_shifted); | |
| } | |
| // Integer arithmetic right-shift. Not rounding. | |
| // Relying on implementation-defined, but in-practice-consistent, | |
| // C++ compiler behavior. | |
| template <typename tIntegerType> | |
| tIntegerType ShiftRight(tIntegerType a, int offset) { | |
| return a >> offset; | |
| } | |
| // Each bit of the result is set to the corresponding bit of either then_val or | |
| // else_val depending on whether the corresponding bit of if_mask is set. | |
| // Equivalent to the VBSL instruction in ARM NEON. | |
| template <typename tIntegerType> | |
| tIntegerType SelectUsingMask(tIntegerType if_mask, tIntegerType then_val, | |
| tIntegerType else_val) { | |
| return BitXor(BitAnd(if_mask, then_val), BitAnd(BitNot(if_mask), else_val)); | |
| } | |
| // For each input scalar, the corresponding bits of the result are set if the | |
| // input scalar is non-zero. | |
| template <typename tIntegerType> | |
| tIntegerType MaskIfNonZero(tIntegerType a) { | |
| static constexpr tIntegerType zero = 0; | |
| return a ? BitNot(zero) : zero; | |
| } | |
| // For each input scalar, the corresponding bits of the result are set if the | |
| // input scalar is zero. | |
| template <typename tIntegerType> | |
| tIntegerType MaskIfZero(tIntegerType a) { | |
| return MaskIfNonZero<tIntegerType>(!a); | |
| } | |
| // For each pair of input scalars, the corresponding bits of the result are | |
| // set if the input scalars are equal. | |
| template <typename tIntegerType> | |
| tIntegerType MaskIfEqual(tIntegerType a, tIntegerType b) { | |
| return MaskIfNonZero<tIntegerType>(a == b); | |
| } | |
| // For each pair of input scalars, the corresponding bits of the result are | |
| // set if the input scalars are not equal. | |
| template <typename tIntegerType> | |
| tIntegerType MaskIfNotEqual(tIntegerType a, tIntegerType b) { | |
| return MaskIfNonZero<tIntegerType>(a != b); | |
| } | |
| // For each pair of input scalars, the corresponding bits of the result are | |
| // set if the input scalars a, b satisfy a > b. | |
| template <typename tIntegerType> | |
| tIntegerType MaskIfGreaterThan(tIntegerType a, tIntegerType b) { | |
| return MaskIfNonZero<tIntegerType>(a > b); | |
| } | |
| // For each pair of input scalars, the corresponding bits of the result are | |
| // set if the input scalars a, b satisfy a >= b. | |
| template <typename tIntegerType> | |
| tIntegerType MaskIfGreaterThanOrEqual(tIntegerType a, tIntegerType b) { | |
| return MaskIfNonZero<tIntegerType>(a >= b); | |
| } | |
| // For each pair of input scalars, the corresponding bits of the result are | |
| // set if the input scalars a, b satisfy a < b. | |
| template <typename tIntegerType> | |
| tIntegerType MaskIfLessThan(tIntegerType a, tIntegerType b) { | |
| return MaskIfNonZero<tIntegerType>(a < b); | |
| } | |
| // For each pair of input scalars, the corresponding bits of the result are | |
| // set if the input scalars a, b satisfy a <= b. | |
| template <typename tIntegerType> | |
| tIntegerType MaskIfLessThanOrEqual(tIntegerType a, tIntegerType b) { | |
| return MaskIfNonZero<tIntegerType>(a <= b); | |
| } | |
| // Returns true if all of the input scalars are nonzero. | |
| // This function may currently assume that each of the input scalars has either | |
| // all or none of its bits set. Otherwise, its behavior is currently undefined. | |
| template <typename tIntegerType> | |
| bool All(tIntegerType a) { | |
| return a; | |
| } | |
| // Returns true if any of the input scalars are nonzero. | |
| // This function may currently assume that each of the input scalars has either | |
| // all or none of its bits set. Otherwise, its behavior is currently undefined. | |
| template <typename tIntegerType> | |
| bool Any(tIntegerType a) { | |
| return a; | |
| } | |
| // Returns (a+b)/2, rounded to the nearest integer. | |
| // Equivalent to VRHADD in the ARM NEON instruction set. | |
| template <typename IntegerType> | |
| IntegerType RoundingHalfSum(IntegerType a, IntegerType b) { | |
| static_assert(std::is_same<IntegerType, void>::value, "unimplemented"); | |
| (void)b; | |
| return a; | |
| } | |
| template <> | |
| inline std::int32_t RoundingHalfSum(std::int32_t a, std::int32_t b) { | |
| std::int64_t a64 = a; | |
| std::int64_t b64 = b; | |
| std::int64_t sum = a64 + b64; | |
| std::int64_t sign = sum >= 0 ? 1 : -1; | |
| return static_cast<std::int32_t>((sum + sign) / 2); | |
| } | |
| template <> | |
| inline std::int16_t RoundingHalfSum(std::int16_t a, std::int16_t b) { | |
| std::int32_t a32 = a; | |
| std::int32_t b32 = b; | |
| std::int32_t sum = a32 + b32; | |
| std::int32_t sign = sum >= 0 ? 1 : -1; | |
| return static_cast<std::int16_t>((sum + sign) / 2); | |
| } | |
| template <typename IntegerType> | |
| IntegerType SaturatingAdd(IntegerType a, IntegerType b) { | |
| static_assert(std::is_same<IntegerType, void>::value, "unimplemented"); | |
| (void)b; | |
| return a; | |
| } | |
| // So far this is only needed for int16. | |
| template <> | |
| inline std::int16_t SaturatingAdd(std::int16_t a, std::int16_t b) { | |
| std::int32_t a32 = a; | |
| std::int32_t b32 = b; | |
| std::int32_t sum = a32 + b32; | |
| return static_cast<std::int16_t>( | |
| std::min(static_cast<std::int32_t>(32767), | |
| std::max(static_cast<std::int32_t>(-32768), sum))); | |
| } | |
| // Returns a+b, saturating if the integers are 16bit or narrower, | |
| // otherwise just a plain addition. | |
| template <typename IntegerType, bool Is16Bit> | |
| struct AddSaturatingIf16BitImpl { | |
| static IntegerType Run(IntegerType a, IntegerType b) { return Add(a, b); } | |
| }; | |
| template <typename IntegerType> | |
| struct AddSaturatingIf16BitImpl<IntegerType, true> { | |
| static IntegerType Run(IntegerType a, IntegerType b) { | |
| return SaturatingAdd(a, b); | |
| } | |
| }; | |
| template <typename IntegerType> | |
| IntegerType AddSaturatingIf16Bit(IntegerType a, IntegerType b) { | |
| using ScalarType = | |
| typename FixedPointRawTypeTraits<IntegerType>::ScalarRawType; | |
| return AddSaturatingIf16BitImpl<IntegerType, sizeof(ScalarType) == 2>::Run(a, | |
| b); | |
| } | |
| // Returns the integer that represents the product of two fixed-point | |
| // numbers, interpreting all integers as fixed-point values in the | |
| // interval [-1, 1), rounding to the nearest value, and saturating | |
| // -1 * -1 to the maximum value (since 1 is not in the half-open | |
| // interval [-1, 1)). | |
| // | |
| // [The explanation below specializes to std::int32_t for example purpose.] | |
| // | |
| // The mapping between IntegerType and the interval [-1, 1) is unique and | |
| // implied by IntegerType, which is assumed to be signed. For example, | |
| // for IntegerType==std::int32_t, the mapping is | |
| // real_value = integer_value / 2^31. | |
| // So in this case, and leaving aside rounding and saturating, this | |
| // function computes ((a / 2^31) * (b / 2^31)) * 2^31, which simplifies to | |
| // (a * b) / 2^31. | |
| // | |
| // The 'doubling' part in the name of this function comes from the fact that | |
| // this operation is very close to a "multiply-high" operation, keeping only | |
| // the top half bits, except that that would be effectively computing | |
| // (a * b) / 2^32, | |
| // so here we are computing 2x that, since | |
| // 1/2^31 = 2 * 1/2^32. | |
| // The idea is to use all of the available 32 bits in the destination int32 | |
| // value. | |
| // | |
| // [End of the explanation specializing to int32.] | |
| // | |
| // This is equivalent to the VQRDMULH instruction in ARM NEON. | |
| template <typename IntegerType> | |
| IntegerType SaturatingRoundingDoublingHighMul(IntegerType a, IntegerType b) { | |
| static_assert(std::is_same<IntegerType, void>::value, "unimplemented"); | |
| (void)b; | |
| return a; | |
| } | |
| // This function implements the same computation as the ARMv7 NEON VQRDMULH | |
| // instruction. | |
| template <> | |
| inline std::int32_t SaturatingRoundingDoublingHighMul(std::int32_t a, | |
| std::int32_t b) { | |
| bool overflow = a == b && a == std::numeric_limits<std::int32_t>::min(); | |
| std::int64_t a_64(a); | |
| std::int64_t b_64(b); | |
| std::int64_t ab_64 = a_64 * b_64; | |
| std::int32_t nudge = ab_64 >= 0 ? (1 << 30) : (1 - (1 << 30)); | |
| std::int32_t ab_x2_high32 = | |
| static_cast<std::int32_t>((ab_64 + nudge) / (1ll << 31)); | |
| return overflow ? std::numeric_limits<std::int32_t>::max() : ab_x2_high32; | |
| } | |
| template <> | |
| inline std::int16_t SaturatingRoundingDoublingHighMul(std::int16_t a, | |
| std::int16_t b) { | |
| bool overflow = a == b && a == std::numeric_limits<std::int16_t>::min(); | |
| std::int32_t a_32(a); | |
| std::int32_t b_32(b); | |
| std::int32_t ab_32 = a_32 * b_32; | |
| std::int16_t nudge = ab_32 >= 0 ? (1 << 14) : (1 - (1 << 14)); | |
| std::int16_t ab_x2_high16 = | |
| static_cast<std::int16_t>((ab_32 + nudge) / (1 << 15)); | |
| return overflow ? std::numeric_limits<std::int16_t>::max() : ab_x2_high16; | |
| } | |
| // Correctly-rounded-to-nearest division by a power-of-two. | |
| // Also known as a rounding arithmetic right shift. | |
| template <typename IntegerType> | |
| inline IntegerType RoundingDivideByPOT(IntegerType x, int exponent) { | |
| assert(exponent >= 0); | |
| assert(exponent <= 31); | |
| const IntegerType mask = Dup<IntegerType>((1ll << exponent) - 1); | |
| const IntegerType zero = Dup<IntegerType>(0); | |
| const IntegerType one = Dup<IntegerType>(1); | |
| const IntegerType remainder = BitAnd(x, mask); | |
| const IntegerType threshold = | |
| Add(ShiftRight(mask, 1), BitAnd(MaskIfLessThan(x, zero), one)); | |
| return Add(ShiftRight(x, exponent), | |
| BitAnd(MaskIfGreaterThan(remainder, threshold), one)); | |
| } | |
| // Returns the product of a run-time integer value by a compile-time power | |
| // of two, with either a positive exponent (equivalent to an arithmetic | |
| // left shift, saturating) or a negative exponent (equivalent to an arithmetic | |
| // right shift, rounding to nearest). | |
| template <int Exponent, typename IntegerType, | |
| int ExponentSign = (Exponent > 0 ? 1 : Exponent < 0 ? -1 : 0)> | |
| struct ImplSaturatingRoundingMultiplyByPOT {}; | |
| template <int Exponent, typename IntegerType> | |
| struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, 0> { | |
| static IntegerType eval(IntegerType x) { return x; } | |
| }; | |
| template <int Exponent, typename IntegerType> | |
| struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, 1> { | |
| static IntegerType eval(IntegerType x) { | |
| using ScalarIntegerType = | |
| typename FixedPointRawTypeTraits<IntegerType>::ScalarRawType; | |
| const IntegerType min = | |
| Dup<IntegerType>(std::numeric_limits<ScalarIntegerType>::min()); | |
| const IntegerType max = | |
| Dup<IntegerType>(std::numeric_limits<ScalarIntegerType>::max()); | |
| const int ScalarIntegerTypeBits = 8 * sizeof(ScalarIntegerType); | |
| const std::int32_t threshold = | |
| ((1 << (ScalarIntegerTypeBits - 1 - Exponent)) - 1); | |
| const IntegerType positive_mask = | |
| MaskIfGreaterThan(x, Dup<IntegerType>(threshold)); | |
| const IntegerType negative_mask = | |
| MaskIfLessThan(x, Dup<IntegerType>(-threshold)); | |
| IntegerType result = ShiftLeft(x, Exponent); | |
| result = SelectUsingMask(positive_mask, max, result); | |
| result = SelectUsingMask(negative_mask, min, result); | |
| return result; | |
| } | |
| }; | |
| template <int Exponent, typename IntegerType> | |
| struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, -1> { | |
| static IntegerType eval(IntegerType x) { | |
| return RoundingDivideByPOT<IntegerType>(x, -Exponent); | |
| } | |
| }; | |
| template <int Exponent, typename IntegerType> | |
| IntegerType SaturatingRoundingMultiplyByPOT(IntegerType x) { | |
| return ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType>::eval(x); | |
| } | |
| // Part 2: the FixedPoint class. | |
| // A FixedPoint object represents a fixed-point value stored in the underlying | |
| // integer type tRawType, if tRawType is a plain scalar integer type. | |
| // Alternatively, tRawType may be a SIMD type (e.g. NEON int32x4_t) in which | |
| // case a FixedPoint object represents a corresponding SIMD vector of fixed | |
| // point values. | |
| // | |
| // tIntegerBits describes the range of the fixed-point format: if | |
| // tIntegerBits == m then the range of representable values is the half-open | |
| // interval [-2^m; 2^m) where the open boundary on the right side means that | |
| // 2^m is not representable (how close the maximum representable value is to | |
| // it, depends on bit-depth of tRawType). | |
| // | |
| // In "Q format notation", | |
| // https://en.wikipedia.org/wiki/Q_(number_format) | |
| // we are describing the format | |
| // Qm.n | |
| // where | |
| // m = tIntegerBits | |
| // and | |
| // n = NumberOfBits(tRawType) - (m + 1) | |
| // Note that the (m + 1) in the above line is because we adopt the convention | |
| // that we count the integer bits exclusively of the sign bit; so (m + 1) is | |
| // the total number of integer bits inclusive of the sign bit. | |
| // | |
| // Accordingly, the number of integral representable values in our range | |
| // [-2^m ; 2^m) | |
| // is equal to 2^(m+1). | |
| template <typename tRawType, int tIntegerBits> | |
| class FixedPoint { | |
| public: | |
| typedef tRawType RawType; | |
| typedef FixedPointRawTypeTraits<RawType> RawTypeTraits; | |
| typedef typename RawTypeTraits::ScalarRawType ScalarRawType; | |
| static constexpr int kTotalBits = 8 * sizeof(ScalarRawType); | |
| static constexpr int kIntegerBits = tIntegerBits; | |
| static constexpr int kFractionalBits = kTotalBits - 1 - kIntegerBits; | |
| static_assert(kIntegerBits >= 0 && kIntegerBits < kTotalBits, | |
| "bad IntegerBits"); | |
| typedef FixedPoint<ScalarRawType, kIntegerBits> ScalarFixedPointType; | |
| static const ScalarRawType ScalarRawMin() { | |
| return std::numeric_limits<ScalarRawType>::min(); | |
| } | |
| static const ScalarRawType ScalarRawMax() { | |
| return std::numeric_limits<ScalarRawType>::max(); | |
| } | |
| static const ScalarRawType RawMin() { | |
| return VectorFromScalar(ScalarRawMin()); | |
| } | |
| static const ScalarRawType RawMax() { | |
| return VectorFromScalar(ScalarRawMax()); | |
| } | |
| static FixedPoint FromRaw(RawType x) { | |
| FixedPoint retval; | |
| retval.raw() = x; | |
| return retval; | |
| } | |
| static FixedPoint FromScalarRaw(ScalarRawType x) { | |
| FixedPoint retval; | |
| retval.raw() = Dup<RawType>(x); | |
| return retval; | |
| } | |
| static FixedPoint FromScalarFixedPoint(ScalarFixedPointType x) { | |
| return FromScalarRaw(x.raw()); | |
| } | |
| template <int Exponent> | |
| static FixedPoint ConstantPOT() { | |
| static constexpr int kOffset = kFractionalBits + Exponent; | |
| static_assert( | |
| kOffset < 31, | |
| "Constant not exactly representable in this fixed-point format"); | |
| return FromScalarRaw(ScalarRawType(1) << kOffset); | |
| } | |
| static FixedPoint Zero() { return FromScalarRaw(0); } | |
| static FixedPoint One() { | |
| return FromScalarRaw( | |
| kIntegerBits == 0 | |
| ? ScalarRawMax() | |
| : (ScalarRawType(1) << (kIntegerBits == 0 ? 0 : kFractionalBits))); | |
| } | |
| static FixedPoint FromDouble(double x) { | |
| const double min_bound = static_cast<double>(ScalarRawMin()); | |
| const double max_bound = static_cast<double>(ScalarRawMax()); | |
| return FromScalarRaw(static_cast<ScalarRawType>(std::min( | |
| std::max(round(x * static_cast<double>(1ll << kFractionalBits)), | |
| min_bound), | |
| max_bound))); | |
| } | |
| RawType raw() const { return i_; } | |
| RawType& raw() { return i_; } | |
| private: | |
| RawType i_; | |
| }; | |
| // Part 3: implementation of arithmetic operators for the | |
| // FixedPoint class, and a few related functions. | |
| // A FixedPoint multiplication is just a | |
| // SaturatingRoundingDoublingHighMul operation on the underlying | |
| // raw integer values. The IntegerBits simply add up, as is obvious | |
| // from the fact that the range is [-2^IntegerBits, 2^IntegerBits). | |
| template <typename tRawType, int tIntegerBits_a, int tIntegerBits_b> | |
| FixedPoint<tRawType, tIntegerBits_a + tIntegerBits_b> operator*( | |
| FixedPoint<tRawType, tIntegerBits_a> a, | |
| FixedPoint<tRawType, tIntegerBits_b> b) { | |
| FixedPoint<tRawType, tIntegerBits_a + tIntegerBits_b> c; | |
| c.raw() = SaturatingRoundingDoublingHighMul(a.raw(), b.raw()); | |
| return c; | |
| } | |
| // Tweaking IntegerBits gives exact multiplication by a power of two. | |
| template <int tExponent, typename tRawType, int tIntegerBits> | |
| FixedPoint<tRawType, tExponent + tIntegerBits> ExactMulByPot( | |
| FixedPoint<tRawType, tIntegerBits> a) { | |
| FixedPoint<tRawType, tExponent + tIntegerBits> c; | |
| c.raw() = a.raw(); | |
| return c; | |
| } | |
| // If we want to leave IntegerBits fixed, then multiplication | |
| // by a power of two has to be saturating/rounding, not exact anymore. | |
| template <int tExponent, typename tRawType, int tIntegerBits> | |
| FixedPoint<tRawType, tIntegerBits> SaturatingRoundingMultiplyByPOT( | |
| FixedPoint<tRawType, tIntegerBits> a) { | |
| return FixedPoint<tRawType, tIntegerBits>::FromRaw( | |
| SaturatingRoundingMultiplyByPOT<tExponent>(a.raw())); | |
| } | |
| // Generic arithmetic operators. | |
| MAKE_FIXEDPOINT_UNARY_FUNC(operator-, Neg) | |
| MAKE_FIXEDPOINT_UNARY_FUNC(operator~, BitNot) | |
| MAKE_FIXEDPOINT_BINARY_FUNC(operator+, Add) | |
| MAKE_FIXEDPOINT_BINARY_FUNC(operator-, Sub) | |
| MAKE_FIXEDPOINT_BINARY_FUNC(operator&, BitAnd) | |
| MAKE_FIXEDPOINT_BINARY_FUNC(operator^, BitXor) | |
| MAKE_FIXEDPOINT_BINARY_FUNC(operator|, BitOr) | |
| MAKE_FIXEDPOINT_BINARY_FUNC(RoundingHalfSum, RoundingHalfSum) | |
| MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(MaskIfZero) | |
| MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(MaskIfNonZero) | |
| MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfEqual) | |
| MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfNotEqual) | |
| MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfGreaterThan) | |
| MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfGreaterThanOrEqual) | |
| MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfLessThan) | |
| MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfLessThanOrEqual) | |
| template <typename tRawType, int tIntegerBits> | |
| FixedPoint<tRawType, tIntegerBits> SelectUsingMask( | |
| tRawType if_mask, FixedPoint<tRawType, tIntegerBits> then_val, | |
| FixedPoint<tRawType, tIntegerBits> else_val) { | |
| return FixedPoint<tRawType, tIntegerBits>::FromRaw( | |
| SelectUsingMask(if_mask, then_val.raw(), else_val.raw())); | |
| } | |
| template <typename tRawType, int tIntegerBits> | |
| bool operator==(FixedPoint<tRawType, tIntegerBits> a, | |
| FixedPoint<tRawType, tIntegerBits> b) { | |
| return All(MaskIfEqual(a.raw(), b.raw())); | |
| } | |
| template <typename tRawType, int tIntegerBits> | |
| bool operator!=(FixedPoint<tRawType, tIntegerBits> a, | |
| FixedPoint<tRawType, tIntegerBits> b) { | |
| return !(a == b); | |
| } | |
| template <typename tRawType, int tIntegerBits> | |
| FixedPoint<tRawType, tIntegerBits> SaturatingAdd( | |
| FixedPoint<tRawType, tIntegerBits> a, | |
| FixedPoint<tRawType, tIntegerBits> b) { | |
| return FixedPoint<tRawType, tIntegerBits>::FromRaw( | |
| SaturatingAdd(a.raw(), b.raw())); | |
| } | |
| template <typename tRawType, int tIntegerBits> | |
| FixedPoint<tRawType, tIntegerBits> AddSaturatingIf16Bit( | |
| FixedPoint<tRawType, tIntegerBits> a, | |
| FixedPoint<tRawType, tIntegerBits> b) { | |
| return FixedPoint<tRawType, tIntegerBits>::FromRaw( | |
| AddSaturatingIf16Bit(a.raw(), b.raw())); | |
| } | |
| // Conversion to floating-point. | |
| template <typename tRawType, int tIntegerBits> | |
| double ToDouble(FixedPoint<tRawType, tIntegerBits> x) { | |
| static_assert(FixedPointRawTypeTraits<tRawType>::kLanes == 1, | |
| "not applicable to SIMD types"); | |
| typedef FixedPoint<tRawType, tIntegerBits> F; | |
| return x.raw() / static_cast<double>(1ll << F::kFractionalBits); | |
| } | |
| // Rescale changes the number of IntegerBits and updates the underlying | |
| // raw integer value accordingly. | |
| template <int tIntegerBitsDst, typename tRawType, int tIntegerBitsSrc> | |
| FixedPoint<tRawType, tIntegerBitsDst> Rescale( | |
| FixedPoint<tRawType, tIntegerBitsSrc> x) { | |
| static constexpr int kExponent = tIntegerBitsSrc - tIntegerBitsDst; | |
| FixedPoint<tRawType, tIntegerBitsDst> result; | |
| result.raw() = SaturatingRoundingMultiplyByPOT<kExponent>(x.raw()); | |
| return result; | |
| } | |
| // CheckedFixedPointConstant allows to specify fixed-point constants | |
| // initialized as real numbers, in a way that does not compile floating-point | |
| // arithmetic in production code, yet still checks agreement with the | |
| // floating-point expressions when asserts are enabled. | |
| // | |
| // The raw integer value provided is always a int32, encoding a 32-bit | |
| // fixed-point value, regardless of the actual Scalar type. This allows | |
| // writing generic code that applies just as well to the 32-bit and 16-bit | |
| // cases. In the 16-bit case, the raw integer value is internally | |
| // rounding-shifted by 16 bits to the right. | |
| template <typename FixedPointType> | |
| inline typename FixedPointType::ScalarRawType RescaleConstantInitializer( | |
| std::int32_t int32_value) { | |
| typedef typename FixedPointType::ScalarRawType ScalarRawType; | |
| static constexpr int ScalarTypeBits = 8 * sizeof(ScalarRawType); | |
| return static_cast<ScalarRawType>( | |
| RoundingDivideByPOT<std::int32_t>(int32_value, 32 - ScalarTypeBits)); | |
| } | |
| template <typename FixedPointType> | |
| FixedPointType CheckedFixedPointConstant(std::int32_t raw_value, | |
| double double_value) { | |
| const FixedPointType result = FixedPointType::FromScalarRaw(raw_value); | |
| assert(result == FixedPointType::FromDouble(double_value)); | |
| return result; | |
| } | |
| // Implementation of exponential function. | |
| // Returns exp(x) for x in [-1/4, 0). | |
| template <typename tRawType> | |
| FixedPoint<tRawType, 0> exp_on_interval_between_negative_one_quarter_and_0_excl( | |
| FixedPoint<tRawType, 0> a) { | |
| typedef FixedPoint<tRawType, 0> F; | |
| const F constant_term = | |
| GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F, 1895147668, std::exp(-1.0 / 8.0)); | |
| const F constant_1_over_3 = | |
| GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F, 715827883, 1.0 / 3.0); | |
| // We're evaluating a Taylor expansion around -1/8, so we do the change of | |
| // variable: x = a + 1/8. | |
| // In fixed-point with 0 integer bits, 1/8 is represented by 1 << 28. | |
| F x = a + F::template ConstantPOT<-3>(); | |
| F x2 = x * x; | |
| F x3 = x2 * x; | |
| F x4 = x2 * x2; | |
| F x4_over_4 = SaturatingRoundingMultiplyByPOT<-2>(x4); | |
| F x4_over_24_plus_x3_over_6_plus_x2_over_2 = | |
| SaturatingRoundingMultiplyByPOT<-1>( | |
| ((x4_over_4 + x3) * constant_1_over_3) + x2); | |
| return AddSaturatingIf16Bit( | |
| constant_term, | |
| constant_term * (x + x4_over_24_plus_x3_over_6_plus_x2_over_2)); | |
| } | |
| // Returns exp(x) for x < 0. | |
| template <typename tRawType, int tIntegerBits> | |
| FixedPoint<tRawType, 0> exp_on_negative_values( | |
| FixedPoint<tRawType, tIntegerBits> a) { | |
| typedef FixedPoint<tRawType, tIntegerBits> InputF; | |
| typedef FixedPoint<tRawType, 0> ResultF; | |
| static constexpr int kFractionalBits = InputF::kFractionalBits; | |
| static constexpr int kIntegerBits = InputF::kIntegerBits; | |
| const InputF kOneQuarter = InputF::template ConstantPOT<-2>(); | |
| InputF mask = kOneQuarter - InputF::FromScalarRaw(1); | |
| InputF a_mod_quarter_minus_one_quarter = (a & mask) - kOneQuarter; | |
| ResultF result = exp_on_interval_between_negative_one_quarter_and_0_excl( | |
| Rescale<0>(a_mod_quarter_minus_one_quarter)); | |
| tRawType remainder = (a_mod_quarter_minus_one_quarter - a).raw(); | |
| GEMMLOWP_EXP_BARREL_SHIFTER(-2, 1672461947); | |
| GEMMLOWP_EXP_BARREL_SHIFTER(-1, 1302514674); | |
| GEMMLOWP_EXP_BARREL_SHIFTER(+0, 790015084); | |
| GEMMLOWP_EXP_BARREL_SHIFTER(+1, 290630308); | |
| GEMMLOWP_EXP_BARREL_SHIFTER(+2, 39332535); | |
| GEMMLOWP_EXP_BARREL_SHIFTER(+3, 720401); | |
| GEMMLOWP_EXP_BARREL_SHIFTER(+4, 242); | |
| static constexpr int clampB = kIntegerBits > 5 ? 36 - kIntegerBits : 0; | |
| if (kIntegerBits > 5) { | |
| const InputF clamp = | |
| GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(InputF, -(1 << clampB), -32.0); | |
| result = SelectUsingMask(MaskIfLessThan(a, clamp), ResultF::Zero(), result); | |
| } | |
| result = SelectUsingMask(MaskIfZero(a), ResultF::One(), result); | |
| return result; | |
| } | |
| // Implementation of tanh: (1 - exp(-2x)) / (1 + exp(-2x)). | |
| // Returns (1 - x) / (1 + x) for x in (0, 1). | |
| template <typename tRawType> | |
| FixedPoint<tRawType, 0> one_minus_x_over_one_plus_x_for_x_in_0_1( | |
| FixedPoint<tRawType, 0> a) { | |
| typedef FixedPoint<tRawType, 0> F0; | |
| typedef FixedPoint<tRawType, 2> F2; | |
| F0 half_denominator = RoundingHalfSum(a, F0::One()); | |
| // Newton-Raphson division | |
| // https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division | |
| // Refer to that page for the logic behind the 48/17 and 32/17 constants. | |
| const F2 constant_48_over_17 = | |
| GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, 1515870810, 48.0 / 17.0); | |
| const F2 constant_neg_32_over_17 = | |
| GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, -1010580540, -32.0 / 17.0); | |
| F2 x = constant_48_over_17 + half_denominator * constant_neg_32_over_17; | |
| for (int i = 0; i < 3; i++) { | |
| F2 half_denominator_times_x = half_denominator * x; | |
| F2 one_minus_half_denominator_times_x = | |
| F2::One() - half_denominator_times_x; | |
| x = x + Rescale<2>(x * one_minus_half_denominator_times_x); | |
| } | |
| return Rescale<0>(x - F2::One()); | |
| } | |
| // Returns -tanh(x) for x < 0. | |
| template <typename tRawType, int tIntegerBits> | |
| FixedPoint<tRawType, 0> neg_tanh_on_negative_values( | |
| FixedPoint<tRawType, tIntegerBits> a) { | |
| return one_minus_x_over_one_plus_x_for_x_in_0_1( | |
| exp_on_negative_values(ExactMulByPot<1>(a))); | |
| } | |
| // Returns tanh(x) for any x. | |
| template <typename tRawType, int tIntegerBits> | |
| FixedPoint<tRawType, 0> tanh(FixedPoint<tRawType, tIntegerBits> a) { | |
| typedef FixedPoint<tRawType, tIntegerBits> InputF; | |
| typedef FixedPoint<tRawType, 0> ResultF; | |
| tRawType mask_if_negative = MaskIfLessThan(a, InputF::Zero()); | |
| tRawType mask_if_zero = MaskIfZero(a); | |
| InputF n = SelectUsingMask(mask_if_negative, a, -a); | |
| ResultF t = neg_tanh_on_negative_values(n); | |
| return SelectUsingMask(mask_if_zero, ResultF::Zero(), | |
| SelectUsingMask(mask_if_negative, -t, t)); | |
| } | |
| // Implementation of logistic function. | |
| // Returns 1 / (1 + x) for x in (0, 1). | |
| template <typename tRawType> | |
| FixedPoint<tRawType, 0> one_over_one_plus_x_for_x_in_0_1( | |
| FixedPoint<tRawType, 0> a) { | |
| typedef FixedPoint<tRawType, 0> F0; | |
| typedef FixedPoint<tRawType, 2> F2; | |
| F0 half_denominator = RoundingHalfSum(a, F0::One()); | |
| // Newton-Raphson division | |
| // https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division | |
| // Refer to that page for the logic behind the 48/17 and 32/17 constants. | |
| const F2 constant_48_over_17 = | |
| GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, 1515870810, 48.0 / 17.0); | |
| const F2 constant_neg_32_over_17 = | |
| GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, -1010580540, -32.0 / 17.0); | |
| F2 x = constant_48_over_17 + half_denominator * constant_neg_32_over_17; | |
| for (int i = 0; i < 3; i++) { | |
| F2 half_denominator_times_x = half_denominator * x; | |
| F2 one_minus_half_denominator_times_x = | |
| F2::One() - half_denominator_times_x; | |
| x = x + Rescale<2>(x * one_minus_half_denominator_times_x); | |
| } | |
| return Rescale<0>(ExactMulByPot<-1>(x)); | |
| } | |
| // Returns logistic(x) = 1 / (1 + exp(-x)) for x > 0. | |
| template <typename tRawType, int tIntegerBits> | |
| FixedPoint<tRawType, 0> logistic_on_positive_values( | |
| FixedPoint<tRawType, tIntegerBits> a) { | |
| return one_over_one_plus_x_for_x_in_0_1(exp_on_negative_values(-a)); | |
| } | |
| // Returns logistic(x) = 1 / (1 + exp(-x)) for any x. | |
| template <typename tRawType, int tIntegerBits> | |
| FixedPoint<tRawType, 0> logistic(FixedPoint<tRawType, tIntegerBits> a) { | |
| typedef FixedPoint<tRawType, tIntegerBits> InputF; | |
| typedef FixedPoint<tRawType, 0> ResultF; | |
| tRawType mask_if_positive = MaskIfGreaterThan(a, InputF::Zero()); | |
| tRawType mask_if_zero = MaskIfZero(a); | |
| InputF abs_input = SelectUsingMask(mask_if_positive, a, -a); | |
| ResultF result_if_positive = logistic_on_positive_values(abs_input); | |
| ResultF result_if_negative = ResultF::One() - result_if_positive; | |
| const ResultF one_half = | |
| GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(ResultF, 1 << 30, 0.5); | |
| return SelectUsingMask(mask_if_zero, one_half, | |
| SelectUsingMask(mask_if_positive, result_if_positive, | |
| result_if_negative)); | |
| } | |
| } // end namespace gemmlowp | |