muooon commited on
Commit
b91032e
·
verified ·
1 Parent(s): fc1b1d6

Upload 2 files

Browse files
Files changed (2) hide show
  1. emo-v36-paper(ENG).txt +52 -2
  2. emo-v36-paper(JPN).txt +1 -1
emo-v36-paper(ENG).txt CHANGED
@@ -80,7 +80,57 @@ Efficiency improvements for EmoNavi, EmoFact, and EmoLynx:
80
 
81
  Supplementary Material (2): Formal Proof of emoDrive Boundedness
82
 
83
- (Sections 1-3: Mathematical evaluation of Normal, Acceleration, and Emergency zones)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
  In summary, EmoNAVI encapsulates three forms of "intelligence" within a single update loop:
86
 
@@ -91,7 +141,7 @@ In summary, EmoNAVI encapsulates three forms of "intelligence" within a single u
91
  Action Intelligence (emoDrive): Autonomously decides the "step-size" based on the judgment, similar to COCOB or D-adaptation.
92
 
93
 
94
- 6. References
95
 
96
  Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
97
 
 
80
 
81
  Supplementary Material (2): Formal Proof of emoDrive Boundedness
82
 
83
+ 1. Objective
84
+
85
+ We prove that emoDrive, which applies a dynamic correction to the learning rate in the EmoNAVI update rule, possesses both upper and lower bounds at any step t. This guarantees that the update magnitude \Delta w_t does not explode and that the convergence conditions are satisfied.
86
+
87
+ 2. Lemma: Boundedness of the Emotional Scalar \sigma _t
88
+
89
+ The emotional scalar in EmoNAVI takes the form
90
+ \sigma _t=\tanh (x).
91
+ From the properties of the hyperbolic tangent function, the following holds for any input x\in \mathbb{R}:
92
+ -1<\sigma _t<1.
93
+ Therefore, the absolute value |\sigma _t| always lies within the interval [0,1).
94
+
95
+ 3. Theorem: Proof of the Boundedness of emoDrive
96
+
97
+ Based on the implementation code (v3.6.1), the definition of emoDrive is evaluated by dividing it into the following three regions:
98
+
99
+ (A) Normal Zone (No Intervention Zone):
100
+ |\sigma _t|\leq 0.25\quad \mathrm{or}\quad 0.5<|\sigma _t|\leq 0.75
101
+ In this region, according to the implementation, the value is:
102
+ \mathrm{emoDrive}=1.0.
103
+
104
+ (B) Acceleration Zone (emoDrive Active Region):
105
+ 0.25<|\sigma _t|<0.5
106
+ In this region, emoDrive is defined as:
107
+ \mathrm{emoDrive}=\mathrm{emoDpt}\times (1.0+0.1\cdot \mathrm{trust}),
108
+ where
109
+ \mathrm{emoDpt}=8.0\times |\mathrm{trust}|,
110
+ and trust is the signed value of (1.0-|\sigma _t|).
111
+ - Evaluation of |\mathrm{trust}|:
112
+ For |\sigma _t|\in (0.25,0.5), we have
113
+ |\mathrm{trust}|\in (0.5,0.75).- Range of emoDpt:
114
+ 8.0\times 0.5<\mathrm{emoDpt}<8.0\times 0.75- hence
115
+ 4.0<\mathrm{emoDpt}<6.0.- Overall evaluation:
116
+ The factor 1.0+0.1\cdot \mathrm{trust} lies within the range 0.9 to 1.1 regardless of the sign of trust.
117
+ Therefore, the maximum value B_{\mathrm{up}} in the acceleration zone satisfies:
118
+ B_{\mathrm{up}}<6.0\times 1.1=6.6.
119
+
120
+ (C) Emergency Zone (Rapid Braking Zone):
121
+ |\sigma _t|>0.75
122
+ In this region,
123
+ \mathrm{emoDrive}=\mathrm{coeff},
124
+ where
125
+ \mathrm{coeff}=1.0-|\mathrm{scalar}|.
126
+ Since |\sigma _t|\in (0.75,1.0), the minimum value B_{\mathrm{low}} satisfies:
127
+ 0<B_{\mathrm{low}}\leq 0.25.
128
+
129
+ 4. Conclusion
130
+ From the above evaluations, we have proven that emoDrive satisfies the following boundedness condition in all regions:
131
+ 0<(1-|\sigma _{\max }|)\leq \mathrm{emoDrive}\leq 6.6.
132
+ (Even when |\sigma _t| approaches 1, implementation details such as eps ensure that a small positive value is maintained.)
133
+ The existence of this bounded multiplicative coefficient provides the mathematical foundation that allows EmoNAVI to retain the Adam‑type convergence rate O(1/T) while achieving constant‑factor acceleration.
134
 
135
  In summary, EmoNAVI encapsulates three forms of "intelligence" within a single update loop:
136
 
 
141
  Action Intelligence (emoDrive): Autonomously decides the "step-size" based on the judgment, similar to COCOB or D-adaptation.
142
 
143
 
144
+ References
145
 
146
  Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
147
 
emo-v36-paper(JPN).txt CHANGED
@@ -128,7 +128,7 @@ emoDrive=1.0
128
  行動の知能 (emoDrive): 判定に基づき、COCOB や D-adapt のように「歩幅(Step-size)」を自律的に決定する。
129
 
130
 
131
- 6. 参考文献 (References)
132
 
133
  Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization.
134
 
 
128
  行動の知能 (emoDrive): 判定に基づき、COCOB や D-adapt のように「歩幅(Step-size)」を自律的に決定する。
129
 
130
 
131
+ 参考文献 (References)
132
 
133
  Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization.
134