import torch from torch.optim import Optimizer import math """ AMP対応完了(202507) p.data -> p 修正済み """ class EmoFact(Optimizer): # クラス定義&初期化 def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.01): defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super().__init__(params, defaults) self._init_lr = lr self.should_stop = False # 停止フラグの初期化 # 感情EMA更新(緊張と安静) def _update_ema(self, state, loss_val): ema = state.setdefault('ema', {}) ema['short'] = 0.3 * loss_val + 0.7 * ema.get('short', loss_val) ema['long'] = 0.01 * loss_val + 0.99 * ema.get('long', loss_val) return ema # 感情スカラー値生成(EMA差分、滑らかな非線形スカラー、tanh 5 * diff で鋭敏さ強調) def _compute_scalar(self, ema): diff = ema['short'] - ema['long'] return math.tanh(5 * diff) # Shadow混合比率(> 0.6:70〜90%、 < -0.6:10%、 abs> 0.3:30%、 平時:0%) def _decide_ratio(self, scalar): if scalar > 0.6: return 0.7 + 0.2 * scalar elif scalar < -0.6: return 0.1 elif abs(scalar) > 0.3: return 0.3 return 0.0 # 損失取得(損失値 loss_val を数値化、感情判定に使用、存在しないパラメータ(更新不要)はスキップ) @torch.no_grad() def step(self, closure=None): loss = closure() if closure is not None else None loss_val = loss.item() if loss is not None else 0.0 for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad state = self.state[p] # 感情EMA更新・スカラー生成 (既存ロジックを維持) ema = self._update_ema(state, loss_val) scalar = self._compute_scalar(ema) ratio = self._decide_ratio(scalar) # shadow_param:必要時のみ更新 (既存ロジックを維持) if ratio > 0: if 'shadow' not in state: state['shadow'] = p.clone() else: p.mul_(1 - ratio).add_(state['shadow'], alpha=ratio) state['shadow'].lerp_(p, 0.05) # --- 勾配補正ロジック --- # 行列の形状が2次元以上の場合、分散情報ベースのAB近似を使用 if grad.dim() >= 2: # 行と列の2乗平均を計算 (分散の軽量な近似) r_sq = torch.mean(grad * grad, dim=tuple(range(1, grad.dim())), keepdim=True).add_(group['eps']) c_sq = torch.mean(grad * grad, dim=0, keepdim=True).add_(group['eps']) # 分散情報から勾配の近似行列を生成 # AB行列として見立てたものを直接生成し更新項を計算する # A = sqrt(r_sq), B = sqrt(c_sq) とすることでAB行列の近似を再現 # これをEMAで平滑化する beta1, beta2 = group['betas'] state.setdefault('exp_avg_r', torch.zeros_like(r_sq)).mul_(beta1).add_(torch.sqrt(r_sq), alpha=1 - beta1) state.setdefault('exp_avg_c', torch.zeros_like(c_sq)).mul_(beta1).add_(torch.sqrt(c_sq), alpha=1 - beta1) # 再構築した近似勾配の平方根の積で正規化 # これにより2次モーメントのような役割を果たす denom = torch.sqrt(state['exp_avg_r'] * state['exp_avg_c']).add_(group['eps']) # 最終的な更新項を計算 update_term = grad / denom # 1次元(ベクトル)の勾配補正(decoupled weight decay 構造に近い) else: exp_avg = state.setdefault('exp_avg', torch.zeros_like(p)) exp_avg_sq = state.setdefault('exp_avg_sq', torch.zeros_like(p)) beta1, beta2 = group['betas'] exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) denom = exp_avg_sq.sqrt().add_(group['eps']) update_term = exp_avg / denom # 最終的なパラメータ更新 (decoupled weight decayも適用) p.add_(p, alpha=-group['weight_decay'] * group['lr']) p.add_(update_term, alpha=-group['lr']) # --- Early Stop ロジック (既存ロジックを維持) --- hist = self.state.setdefault('scalar_hist', []) hist.append(scalar) if len(hist) >= 33: hist.pop(0) # Early Stop判断 if len(self.state['scalar_hist']) >= 32: buf = self.state['scalar_hist'] avg_abs = sum(abs(s) for s in buf) / len(buf) std = sum((s - sum(buf)/len(buf))**2 for s in buf) / len(buf) if avg_abs < 0.05 and std < 0.005: self.should_stop = True return loss """ https://github.com/muooon/EmoNavi Fact is inspired by Adafactor, and its VRAM-friendly design is something everyone loves. """