nornor02 commited on
Commit
bf730c6
·
1 Parent(s): 0161115

Training in progress, step 500

Browse files
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilroberta-base",
3
+ "architectures": [
4
+ "RobertaForMaskedLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.37.0.dev0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c1423da4b3a10e9bbf360d7bb66d6a52639aa5b0a72e5e35f1919deb1060163
3
+ size 328693404
runs/Dec29_01-55-53_062f1f1a863d/events.out.tfevents.1703814961.062f1f1a863d.42.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35d7fcdbfa3dba32ea7681d691bba8987deb3bfdf43b8602801922cb21df5ff5
3
+ size 4575
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token":"<unk>","sep_token":"</s>","pad_token":"<pad>","cls_token":"<s>","mask_token":"<mask>"}
tokenizer.json ADDED
@@ -0,0 +1,544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "version": "1.0",
3
+ "truncation": null,
4
+ "padding": null,
5
+ "added_tokens": [
6
+ {
7
+ "id": 0,
8
+ "content": "<s>",
9
+ "single_word": false,
10
+ "lstrip": false,
11
+ "rstrip": false,
12
+ "normalized": false,
13
+ "special": true
14
+ },
15
+ {
16
+ "id": 1,
17
+ "content": "<pad>",
18
+ "single_word": false,
19
+ "lstrip": false,
20
+ "rstrip": false,
21
+ "normalized": false,
22
+ "special": true
23
+ },
24
+ {
25
+ "id": 2,
26
+ "content": "</s>",
27
+ "single_word": false,
28
+ "lstrip": false,
29
+ "rstrip": false,
30
+ "normalized": false,
31
+ "special": true
32
+ },
33
+ {
34
+ "id": 3,
35
+ "content": "<unk>",
36
+ "single_word": false,
37
+ "lstrip": false,
38
+ "rstrip": false,
39
+ "normalized": false,
40
+ "special": true
41
+ },
42
+ {
43
+ "id": 4,
44
+ "content": "<mask>",
45
+ "single_word": false,
46
+ "lstrip": false,
47
+ "rstrip": false,
48
+ "normalized": false,
49
+ "special": true
50
+ }
51
+ ],
52
+ "normalizer": null,
53
+ "pre_tokenizer": {
54
+ "type": "WhitespaceSplit"
55
+ },
56
+ "post_processor": null,
57
+ "decoder": null,
58
+ "model": {
59
+ "type": "WordPiece",
60
+ "unk_token": "<unk>",
61
+ "continuing_subword_prefix": "##",
62
+ "max_input_chars_per_word": 100,
63
+ "vocab": {
64
+ "<s>": 0,
65
+ "<pad>": 1,
66
+ "</s>": 2,
67
+ "<unk>": 3,
68
+ "<mask>": 4,
69
+ ".": 5,
70
+ "0": 6,
71
+ "1": 7,
72
+ "2": 8,
73
+ "3": 9,
74
+ "5": 10,
75
+ "6": 11,
76
+ "_": 12,
77
+ "a": 13,
78
+ "b": 14,
79
+ "c": 15,
80
+ "d": 16,
81
+ "e": 17,
82
+ "f": 18,
83
+ "g": 19,
84
+ "h": 20,
85
+ "i": 21,
86
+ "j": 22,
87
+ "l": 23,
88
+ "m": 24,
89
+ "n": 25,
90
+ "o": 26,
91
+ "p": 27,
92
+ "q": 28,
93
+ "r": 29,
94
+ "s": 30,
95
+ "t": 31,
96
+ "u": 32,
97
+ "v": 33,
98
+ "w": 34,
99
+ "x": 35,
100
+ "y": 36,
101
+ "##u": 37,
102
+ "##b": 38,
103
+ "##s": 39,
104
+ "##e": 40,
105
+ "##t": 41,
106
+ "##_": 42,
107
+ "##d": 43,
108
+ "##f": 44,
109
+ "##v": 45,
110
+ "##n": 46,
111
+ "##p": 47,
112
+ "##a": 48,
113
+ "##c": 49,
114
+ "##o": 50,
115
+ "##r": 51,
116
+ "##g": 52,
117
+ "##0": 53,
118
+ "##l": 54,
119
+ "##i": 55,
120
+ "##m": 56,
121
+ "##h": 57,
122
+ "##w": 58,
123
+ "##x": 59,
124
+ "##2": 60,
125
+ "##y": 61,
126
+ "##.": 62,
127
+ "##j": 63,
128
+ "##3": 64,
129
+ "##q": 65,
130
+ "##5": 66,
131
+ "##6": 67,
132
+ "##1": 68,
133
+ "##_t": 69,
134
+ "##ac": 70,
135
+ "##_tac": 71,
136
+ "##ef": 72,
137
+ "##_d": 73,
138
+ "##_def": 74,
139
+ "##re": 75,
140
+ "##in": 76,
141
+ "##al": 77,
142
+ "##al_": 78,
143
+ "##xt": 79,
144
+ "##real_": 80,
145
+ "ext": 81,
146
+ "extreal_": 82,
147
+ "lt": 83,
148
+ "##w_tac": 84,
149
+ "##_in": 85,
150
+ "##ft": 86,
151
+ "##fty": 87,
152
+ "##le": 88,
153
+ "##_infty": 89,
154
+ "##et": 90,
155
+ "rw_tac": 91,
156
+ "##is": 92,
157
+ "##an": 93,
158
+ "##_s": 94,
159
+ "met": 95,
160
+ "##is_tac": 96,
161
+ "metis_tac": 97,
162
+ "##ran": 98,
163
+ "##_tran": 99,
164
+ "##_trans": 100,
165
+ "extreal_m": 101,
166
+ "##lt": 102,
167
+ "##ax": 103,
168
+ "##en": 104,
169
+ "##lt_def": 105,
170
+ "##_le": 106,
171
+ "##te": 107,
172
+ "##le_def": 108,
173
+ "##ore": 109,
174
+ "d_": 110,
175
+ "lt_le": 111,
176
+ "lt_infty": 112,
177
+ "extreal_lt_def": 113,
178
+ "extreal_le_def": 114,
179
+ "##on": 115,
180
+ "##im": 116,
181
+ "##ot": 117,
182
+ "##ite": 118,
183
+ "##ion": 119,
184
+ "##ch": 120,
185
+ "##in_def": 121,
186
+ "##isch": 122,
187
+ "extreal_min_def": 123,
188
+ "##isch_tac": 124,
189
+ "min": 125,
190
+ "max": 126,
191
+ "##e_trans": 127,
192
+ "lte_trans": 128,
193
+ "max_infty": 129,
194
+ "let": 130,
195
+ "##_tot": 131,
196
+ "lt_tot": 132,
197
+ "min_infty": 133,
198
+ "let_trans": 134,
199
+ "lt_total": 135,
200
+ "disch_tac": 136,
201
+ "##_sim": 137,
202
+ "##p_tac": 138,
203
+ "##rite": 139,
204
+ "##write": 140,
205
+ "##write_tac": 141,
206
+ "sr": 142,
207
+ "##bef": 143,
208
+ "srw_tac": 144,
209
+ "##before": 145,
210
+ "gs": 146,
211
+ "extreal_max": 147,
212
+ "extreal_max_def": 148,
213
+ "##e_": 149,
214
+ "##ec": 150,
215
+ "##tion": 151,
216
+ "##pec": 152,
217
+ "##fi": 153,
218
+ "##ation": 154,
219
+ "##cation": 155,
220
+ "##ifi": 156,
221
+ "gspec": 157,
222
+ "##ification": 158,
223
+ "gspecification": 159,
224
+ "##before_def": 160,
225
+ "th": 161,
226
+ "then": 162,
227
+ "##ul": 163,
228
+ "then1": 164,
229
+ "##ts": 165,
230
+ "##ven": 166,
231
+ "##d_s": 167,
232
+ "st": 168,
233
+ "##pac": 169,
234
+ "##d_ss": 170,
235
+ "std_ss": 171,
236
+ "##or": 172,
237
+ "##and": 173,
238
+ "##pace": 174,
239
+ "ful": 175,
240
+ "##l_sim": 176,
241
+ "full_sim": 177,
242
+ "full_simp_tac": 178,
243
+ "##_re": 179,
244
+ "##ab": 180,
245
+ "##_rewrite_tac": 181,
246
+ "##as": 182,
247
+ "##_space": 183,
248
+ "##_e": 184,
249
+ "##s_def": 185,
250
+ "##ep": 186,
251
+ "##ets_def": 187,
252
+ "##orel": 188,
253
+ "d_and": 189,
254
+ "d_and_def": 190,
255
+ "##able": 191,
256
+ "##vents": 192,
257
+ "##_space_def": 193,
258
+ "events": 194,
259
+ "d_before_def": 195,
260
+ "d_or": 196,
261
+ "d_or_def": 197,
262
+ "re": 198,
263
+ "##_n": 199,
264
+ "##ar": 200,
265
+ "##cl": 201,
266
+ "in": 202,
267
+ "##us": 203,
268
+ "##ur": 204,
269
+ "##eas": 205,
270
+ "##clus": 206,
271
+ "##urable": 207,
272
+ "##easurable": 208,
273
+ "##_inclus": 209,
274
+ "d_sim": 210,
275
+ "d_inclus": 211,
276
+ "##ult_def": 212,
277
+ "##_v": 213,
278
+ "##ve_": 214,
279
+ "##ive_": 215,
280
+ "rewrite_tac": 216,
281
+ "d_simult_def": 217,
282
+ "d_inclusive_": 218,
283
+ "##_var": 219,
284
+ "d_inclusive_before_def": 220,
285
+ "##m_rewrite_tac": 221,
286
+ "as": 222,
287
+ "mp_tac": 223,
288
+ "##sion": 224,
289
+ "exten": 225,
290
+ "extension": 226,
291
+ "lb": 227,
292
+ "measurable": 228,
293
+ "##um": 229,
294
+ "##f_n": 230,
295
+ "##of_n": 231,
296
+ "extreal_of_n": 232,
297
+ "##_sets_def": 233,
298
+ "lborel": 234,
299
+ "measurable_sets_def": 235,
300
+ "##um_def": 236,
301
+ "extreal_of_num_def": 237,
302
+ "le": 238,
303
+ "le_": 239,
304
+ "p_space_def": 240,
305
+ "q.": 241,
306
+ "##inite": 242,
307
+ "le_infty": 243,
308
+ "le_lt": 244,
309
+ "##dep": 245,
310
+ "indep": 246,
311
+ "indep_var": 247,
312
+ "##ex": 248,
313
+ "##ists": 249,
314
+ "asm_rewrite_tac": 250,
315
+ "q.ex": 251,
316
+ "##ists_tac": 252,
317
+ "q.exists_tac": 253,
318
+ "dft": 254,
319
+ "dep": 255,
320
+ "extreal_real_": 256,
321
+ "##vent": 257,
322
+ "##_event": 258,
323
+ "dep_rewrite_tac": 259,
324
+ "##ub": 260,
325
+ "##ter": 261,
326
+ "borel": 262,
327
+ "sub": 263,
328
+ "##sets_def": 264,
329
+ "##ma": 265,
330
+ "##_inter": 266,
331
+ "dft_event": 267,
332
+ "extreal_real_le": 268,
333
+ "subsets_def": 269,
334
+ "finite": 270,
335
+ "m_space_def": 271,
336
+ "nor": 272,
337
+ "##mal_": 273,
338
+ "##ing": 274,
339
+ "events_def": 275,
340
+ "normal_": 276,
341
+ "##ct": 277,
342
+ "##om": 278,
343
+ "##real": 279,
344
+ "##_sing": 280,
345
+ "gen": 281,
346
+ "pr": 282,
347
+ "##lim": 283,
348
+ "##hm": 284,
349
+ "##_thm": 285,
350
+ "##_elim": 286,
351
+ "normal_real": 287,
352
+ "gen_tac": 288,
353
+ "pro": 289,
354
+ "##ig": 290,
355
+ "events_inter": 291,
356
+ "indep_vars": 292,
357
+ "et": 293,
358
+ "se": 294,
359
+ "sig": 295,
360
+ "##_c": 296,
361
+ "##nd": 297,
362
+ "##ag": 298,
363
+ "##a_thm": 299,
364
+ "##lect": 300,
365
+ "##et_tac": 301,
366
+ "##imag": 302,
367
+ "##ot_infty": 303,
368
+ "##ma_def": 304,
369
+ "dft_event_def": 305,
370
+ "finite_sing": 306,
371
+ "##_elim_tac": 307,
372
+ "eta_thm": 308,
373
+ "select": 309,
374
+ "sigma_def": 310,
375
+ "select_elim_tac": 311,
376
+ "eq": 312,
377
+ "##un": 313,
378
+ "##_m": 314,
379
+ "##ve": 315,
380
+ "prob": 316,
381
+ "eq_tac": 317,
382
+ "on": 318,
383
+ "rand": 319,
384
+ "space": 320,
385
+ "und": 321,
386
+ "##table": 322,
387
+ "##_before": 323,
388
+ "##finite": 324,
389
+ "##ce_": 325,
390
+ "##oun": 326,
391
+ "##gt": 327,
392
+ "##iab": 328,
393
+ "##reimag": 329,
394
+ "##ist": 330,
395
+ "##asm_rewrite_tac": 331,
396
+ "events_space": 332,
397
+ "in_m": 333,
398
+ "##_variab": 334,
399
+ "lborel_le": 335,
400
+ "##om_variab": 336,
401
+ "prob_": 337,
402
+ "once_": 338,
403
+ "random_variab": 339,
404
+ "space_def": 340,
405
+ "undisch_tac": 341,
406
+ "##ountable": 342,
407
+ "in_measurable": 343,
408
+ "once_asm_rewrite_tac": 344,
409
+ "random_variable_def": 345,
410
+ "##so": 346,
411
+ "##_p": 347,
412
+ "##_as": 348,
413
+ "##dd": 349,
414
+ "##m_s": 350,
415
+ "extreal_le": 351,
416
+ "##_eq": 352,
417
+ "asm_s": 353,
418
+ "##gt0": 354,
419
+ "##soc": 355,
420
+ "##_assoc": 356,
421
+ "extreal_le_eq": 357,
422
+ "asm_set_tac": 358,
423
+ "cd": 359,
424
+ "mul": 360,
425
+ "ne": 361,
426
+ "pi": 362,
427
+ "preimag": 363,
428
+ "##ext": 364,
429
+ "##e_le": 365,
430
+ "##_gt0": 366,
431
+ "##f_def": 367,
432
+ "##not_infty": 368,
433
+ "##r_def": 369,
434
+ "##ym": 370,
435
+ "extreal_mul": 371,
436
+ "gsym": 372,
437
+ "##_not_infty": 373,
438
+ "##omm": 374,
439
+ "##_countable": 375,
440
+ "##_comm": 376,
441
+ "##ver_def": 377,
442
+ "prob_finite": 378,
443
+ "cdf_def": 379,
444
+ "never_def": 380,
445
+ "pie_le": 381,
446
+ "extreal_mul_def": 382,
447
+ "pie_lem": 383,
448
+ "al": 384,
449
+ "add": 385,
450
+ "con": 386,
451
+ "car": 387,
452
+ "ps": 388,
453
+ "##se": 389,
454
+ "##_and": 390,
455
+ "##l_d": 391,
456
+ "##inct": 392,
457
+ "extreal_not_infty": 393,
458
+ "##e_ext": 394,
459
+ "dft_event_and": 395,
460
+ "prove": 396,
461
+ "##istinct": 397,
462
+ "preimage_ext": 398,
463
+ "pie_lemma": 399,
464
+ "all_d": 400,
465
+ "conj": 401,
466
+ "pset_tac": 402,
467
+ "dft_event_and_before": 403,
468
+ "preimage_extreal_": 404,
469
+ "all_distinct": 405,
470
+ "and": 406,
471
+ "countable": 407,
472
+ "dist": 408,
473
+ "ima": 409,
474
+ "me": 410,
475
+ "not": 411,
476
+ "po": 412,
477
+ "rv": 413,
478
+ "##ution": 414,
479
+ "##bution": 415,
480
+ "##ss": 416,
481
+ "##ty": 417,
482
+ "##_l": 418,
483
+ "##_imag": 419,
484
+ "##pty": 420,
485
+ "##ai": 421,
486
+ "##add": 422,
487
+ "##ose": 423,
488
+ "##rv": 424,
489
+ "##ri": 425,
490
+ "##r_thm": 426,
491
+ "##ge_": 427,
492
+ "##mul": 428,
493
+ "##mpty": 429,
494
+ "##2rv": 430,
495
+ "##infty": 431,
496
+ "##al_ss": 432,
497
+ "##real_mul": 433,
498
+ "##real_2rv": 434,
499
+ "##ispec": 435,
500
+ "min_comm": 436,
501
+ "##_empty": 437,
502
+ "events_countable": 438,
503
+ "real": 439,
504
+ "real_ss": 440,
505
+ "##_ninfty": 441,
506
+ "in_elim": 442,
507
+ "q.ispec": 443,
508
+ "dft_before": 444,
509
+ "extreal_real_lt": 445,
510
+ "##_event_gt0": 446,
511
+ "finite_def": 447,
512
+ "finite_countable": 448,
513
+ "normal_real_mul": 449,
514
+ "##_sing_empty": 450,
515
+ "##_preimag": 451,
516
+ "##_pai": 452,
517
+ "mul_not_infty": 453,
518
+ "##_gt0_ninfty": 454,
519
+ "add_assoc": 455,
520
+ "card": 456,
521
+ "conj_assoc": 457,
522
+ "dft_event_and_before_preimag": 458,
523
+ "preimage_extreal_real_2rv": 459,
524
+ "and_inter": 460,
525
+ "countable_imag": 461,
526
+ "distri": 462,
527
+ "image_": 463,
528
+ "mem": 464,
529
+ "not_sing_empty": 465,
530
+ "rv_gt0_ninfty": 466,
531
+ "##bution_def": 467,
532
+ "##osed": 468,
533
+ "events_countable_inter": 469,
534
+ "in_elim_pai": 470,
535
+ "q.ispecl": 471,
536
+ "dft_before_event_gt0": 472,
537
+ "countable_image": 473,
538
+ "distribution_def": 474,
539
+ "image_finite": 475,
540
+ "rv_gt0_ninfty_def": 476,
541
+ "in_elim_pair_thm": 477
542
+ }
543
+ }
544
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44b6f047acbbba00d78e5d1b6224750b5505a5ff60d96b458381bef293b8b769
3
+ size 4283
vocab.txt ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <s>
2
+ <pad>
3
+ </s>
4
+ <unk>
5
+ <mask>
6
+ .
7
+ 0
8
+ 1
9
+ 2
10
+ 3
11
+ 5
12
+ 6
13
+ _
14
+ a
15
+ b
16
+ c
17
+ d
18
+ e
19
+ f
20
+ g
21
+ h
22
+ i
23
+ j
24
+ l
25
+ m
26
+ n
27
+ o
28
+ p
29
+ q
30
+ r
31
+ s
32
+ t
33
+ u
34
+ v
35
+ w
36
+ x
37
+ y
38
+ ##u
39
+ ##b
40
+ ##s
41
+ ##e
42
+ ##t
43
+ ##_
44
+ ##d
45
+ ##f
46
+ ##v
47
+ ##n
48
+ ##p
49
+ ##a
50
+ ##c
51
+ ##o
52
+ ##r
53
+ ##g
54
+ ##0
55
+ ##l
56
+ ##i
57
+ ##m
58
+ ##h
59
+ ##w
60
+ ##x
61
+ ##2
62
+ ##y
63
+ ##.
64
+ ##j
65
+ ##3
66
+ ##q
67
+ ##5
68
+ ##6
69
+ ##1
70
+ ##_t
71
+ ##ac
72
+ ##_tac
73
+ ##ef
74
+ ##_d
75
+ ##_def
76
+ ##re
77
+ ##in
78
+ ##al
79
+ ##al_
80
+ ##xt
81
+ ##real_
82
+ ext
83
+ extreal_
84
+ lt
85
+ ##w_tac
86
+ ##_in
87
+ ##ft
88
+ ##fty
89
+ ##le
90
+ ##_infty
91
+ ##et
92
+ rw_tac
93
+ ##is
94
+ ##an
95
+ ##_s
96
+ met
97
+ ##is_tac
98
+ metis_tac
99
+ ##ran
100
+ ##_tran
101
+ ##_trans
102
+ extreal_m
103
+ ##lt
104
+ ##ax
105
+ ##en
106
+ ##lt_def
107
+ ##_le
108
+ ##te
109
+ ##le_def
110
+ ##ore
111
+ d_
112
+ lt_le
113
+ lt_infty
114
+ extreal_lt_def
115
+ extreal_le_def
116
+ ##on
117
+ ##im
118
+ ##ot
119
+ ##ite
120
+ ##ion
121
+ ##ch
122
+ ##in_def
123
+ ##isch
124
+ extreal_min_def
125
+ ##isch_tac
126
+ min
127
+ max
128
+ ##e_trans
129
+ lte_trans
130
+ max_infty
131
+ let
132
+ ##_tot
133
+ lt_tot
134
+ min_infty
135
+ let_trans
136
+ lt_total
137
+ disch_tac
138
+ ##_sim
139
+ ##p_tac
140
+ ##rite
141
+ ##write
142
+ ##write_tac
143
+ sr
144
+ ##bef
145
+ srw_tac
146
+ ##before
147
+ gs
148
+ extreal_max
149
+ extreal_max_def
150
+ ##e_
151
+ ##ec
152
+ ##tion
153
+ ##pec
154
+ ##fi
155
+ ##ation
156
+ ##cation
157
+ ##ifi
158
+ gspec
159
+ ##ification
160
+ gspecification
161
+ ##before_def
162
+ th
163
+ then
164
+ ##ul
165
+ then1
166
+ ##ts
167
+ ##ven
168
+ ##d_s
169
+ st
170
+ ##pac
171
+ ##d_ss
172
+ std_ss
173
+ ##or
174
+ ##and
175
+ ##pace
176
+ ful
177
+ ##l_sim
178
+ full_sim
179
+ full_simp_tac
180
+ ##_re
181
+ ##ab
182
+ ##_rewrite_tac
183
+ ##as
184
+ ##_space
185
+ ##_e
186
+ ##s_def
187
+ ##ep
188
+ ##ets_def
189
+ ##orel
190
+ d_and
191
+ d_and_def
192
+ ##able
193
+ ##vents
194
+ ##_space_def
195
+ events
196
+ d_before_def
197
+ d_or
198
+ d_or_def
199
+ re
200
+ ##_n
201
+ ##ar
202
+ ##cl
203
+ in
204
+ ##us
205
+ ##ur
206
+ ##eas
207
+ ##clus
208
+ ##urable
209
+ ##easurable
210
+ ##_inclus
211
+ d_sim
212
+ d_inclus
213
+ ##ult_def
214
+ ##_v
215
+ ##ve_
216
+ ##ive_
217
+ rewrite_tac
218
+ d_simult_def
219
+ d_inclusive_
220
+ ##_var
221
+ d_inclusive_before_def
222
+ ##m_rewrite_tac
223
+ as
224
+ mp_tac
225
+ ##sion
226
+ exten
227
+ extension
228
+ lb
229
+ measurable
230
+ ##um
231
+ ##f_n
232
+ ##of_n
233
+ extreal_of_n
234
+ ##_sets_def
235
+ lborel
236
+ measurable_sets_def
237
+ ##um_def
238
+ extreal_of_num_def
239
+ le
240
+ le_
241
+ p_space_def
242
+ q.
243
+ ##inite
244
+ le_infty
245
+ le_lt
246
+ ##dep
247
+ indep
248
+ indep_var
249
+ ##ex
250
+ ##ists
251
+ asm_rewrite_tac
252
+ q.ex
253
+ ##ists_tac
254
+ q.exists_tac
255
+ dft
256
+ dep
257
+ extreal_real_
258
+ ##vent
259
+ ##_event
260
+ dep_rewrite_tac
261
+ ##ub
262
+ ##ter
263
+ borel
264
+ sub
265
+ ##sets_def
266
+ ##ma
267
+ ##_inter
268
+ dft_event
269
+ extreal_real_le
270
+ subsets_def
271
+ finite
272
+ m_space_def
273
+ nor
274
+ ##mal_
275
+ ##ing
276
+ events_def
277
+ normal_
278
+ ##ct
279
+ ##om
280
+ ##real
281
+ ##_sing
282
+ gen
283
+ pr
284
+ ##lim
285
+ ##hm
286
+ ##_thm
287
+ ##_elim
288
+ normal_real
289
+ gen_tac
290
+ pro
291
+ ##ig
292
+ events_inter
293
+ indep_vars
294
+ et
295
+ se
296
+ sig
297
+ ##_c
298
+ ##nd
299
+ ##ag
300
+ ##a_thm
301
+ ##lect
302
+ ##et_tac
303
+ ##imag
304
+ ##ot_infty
305
+ ##ma_def
306
+ dft_event_def
307
+ finite_sing
308
+ ##_elim_tac
309
+ eta_thm
310
+ select
311
+ sigma_def
312
+ select_elim_tac
313
+ eq
314
+ ##un
315
+ ##_m
316
+ ##ve
317
+ prob
318
+ eq_tac
319
+ on
320
+ rand
321
+ space
322
+ und
323
+ ##table
324
+ ##_before
325
+ ##finite
326
+ ##ce_
327
+ ##oun
328
+ ##gt
329
+ ##iab
330
+ ##reimag
331
+ ##ist
332
+ ##asm_rewrite_tac
333
+ events_space
334
+ in_m
335
+ ##_variab
336
+ lborel_le
337
+ ##om_variab
338
+ prob_
339
+ once_
340
+ random_variab
341
+ space_def
342
+ undisch_tac
343
+ ##ountable
344
+ in_measurable
345
+ once_asm_rewrite_tac
346
+ random_variable_def
347
+ ##so
348
+ ##_p
349
+ ##_as
350
+ ##dd
351
+ ##m_s
352
+ extreal_le
353
+ ##_eq
354
+ asm_s
355
+ ##gt0
356
+ ##soc
357
+ ##_assoc
358
+ extreal_le_eq
359
+ asm_set_tac
360
+ cd
361
+ mul
362
+ ne
363
+ pi
364
+ preimag
365
+ ##ext
366
+ ##e_le
367
+ ##_gt0
368
+ ##f_def
369
+ ##not_infty
370
+ ##r_def
371
+ ##ym
372
+ extreal_mul
373
+ gsym
374
+ ##_not_infty
375
+ ##omm
376
+ ##_countable
377
+ ##_comm
378
+ ##ver_def
379
+ prob_finite
380
+ cdf_def
381
+ never_def
382
+ pie_le
383
+ extreal_mul_def
384
+ pie_lem
385
+ al
386
+ add
387
+ con
388
+ car
389
+ ps
390
+ ##se
391
+ ##_and
392
+ ##l_d
393
+ ##inct
394
+ extreal_not_infty
395
+ ##e_ext
396
+ dft_event_and
397
+ prove
398
+ ##istinct
399
+ preimage_ext
400
+ pie_lemma
401
+ all_d
402
+ conj
403
+ pset_tac
404
+ dft_event_and_before
405
+ preimage_extreal_
406
+ all_distinct
407
+ and
408
+ countable
409
+ dist
410
+ ima
411
+ me
412
+ not
413
+ po
414
+ rv
415
+ ##ution
416
+ ##bution
417
+ ##ss
418
+ ##ty
419
+ ##_l
420
+ ##_imag
421
+ ##pty
422
+ ##ai
423
+ ##add
424
+ ##ose
425
+ ##rv
426
+ ##ri
427
+ ##r_thm
428
+ ##ge_
429
+ ##mul
430
+ ##mpty
431
+ ##2rv
432
+ ##infty
433
+ ##al_ss
434
+ ##real_mul
435
+ ##real_2rv
436
+ ##ispec
437
+ min_comm
438
+ ##_empty
439
+ events_countable
440
+ real
441
+ real_ss
442
+ ##_ninfty
443
+ in_elim
444
+ q.ispec
445
+ dft_before
446
+ extreal_real_lt
447
+ ##_event_gt0
448
+ finite_def
449
+ finite_countable
450
+ normal_real_mul
451
+ ##_sing_empty
452
+ ##_preimag
453
+ ##_pai
454
+ mul_not_infty
455
+ ##_gt0_ninfty
456
+ add_assoc
457
+ card
458
+ conj_assoc
459
+ dft_event_and_before_preimag
460
+ preimage_extreal_real_2rv
461
+ and_inter
462
+ countable_imag
463
+ distri
464
+ image_
465
+ mem
466
+ not_sing_empty
467
+ rv_gt0_ninfty
468
+ ##bution_def
469
+ ##osed
470
+ events_countable_inter
471
+ in_elim_pai
472
+ q.ispecl
473
+ dft_before_event_gt0
474
+ countable_image
475
+ distribution_def
476
+ image_finite
477
+ rv_gt0_ninfty_def
478
+ in_elim_pair_thm