File size: 8,441 Bytes
e05eed1 98a67a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
// SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
// SPDX-License-Identifier: Apache-2.0
#include "encode_util.h"
#include <algorithm>
#include <numeric>
#include <sstream>
#include "../third_party/clipper/clipper.hpp"
using namespace std;
namespace graph_detection {
template<typename T>
struct Candidate : Edge {
T C;
Candidate() = default;
Candidate(int32_t a, int32_t b, T c) : Edge(a, b), C(c) {}
};
struct DistStruct {
Candidate<Pointf> A;
Candidate<Pointf> B;
float Dist;
DistStruct() = default;
DistStruct(Candidate<Pointf> a, Candidate<Pointf> b, float dist) : A(a), B(b), Dist(dist) {}
};
template<typename T>
float vec_cos(const Point_<T> &a, const Point_<T> &b)
{
return dot(a, b) / (length(a) * length(b) + 1e-8);
}
template<typename T, typename Fn = std::less<T>>
vector<size_t> arg_sort(const vector<T> &vec, Fn comp = Fn())
{
vector<size_t> ret;
ret.reserve(vec.size());
for (size_t i = 0; i < vec.size(); ++i) {
ret.push_back(i);
}
sort(begin(ret), end(ret),
[&vec, &comp] (size_t idxA, size_t idxB) {
return comp(vec[idxA], vec[idxB]);
}
);
return ret;
}
float edge_length(const Polygon_<float> &poly, const vector<Edge> &edges);
vector<Edge> find_bottom(const Polygon_<float> &poly, bool useVertexOrder)
{
if (poly.Count < 4) {
throw runtime_error("Invalid polygon. Fewer than 4 vertices!");
}
// If we trust the source of the geometries, then this saves us both computation,
// but can also be more reliable since we won't reorder the vertices
if (useVertexOrder) {
if ((poly.Count % 2) == 1) {
throw runtime_error("Can't use trusted vertex order when the vertex count is odd!");
}
int32_t halfCt = poly.Count / 2;
return { { halfCt - 1, halfCt },
{ static_cast<int32_t>(poly.Count) - 1, 0 } };
}
if (poly.Count == 4) {
float d1 = length(poly[1] - poly[0]) + length(poly[2] - poly[3]);
float d2 = length(poly[2] - poly[1]) + length(poly[0] - poly[3]);
if (4 * d1 < d2) {
return { { 0, 1 }, { 2, 3 } };
} else {
return { { 1, 2 }, { 3, 0 } };
}
}
auto idx_wrap = [&poly] (size_t idx) {
return poly[idx % poly.Count];
};
vector<Candidate<float>> candidates;
for (size_t i = 1; i < (poly.Count + 1); ++i) {
auto vPrev = idx_wrap(i) - idx_wrap(i - 1);
auto vNext = idx_wrap(i + 2) - idx_wrap(i + 1);
// We're looking for the segment where the preceding and following segment
// essentially travel in opposite directions
if (vec_cos(vPrev, vNext) < -0.875f) {
auto currSeg = idx_wrap(i) - idx_wrap(i + 1);
candidates.emplace_back(i % poly.Count, (i + 1) % poly.Count, length(currSeg));
}
}
if (candidates.size() != 2 || candidates[0].A == candidates[1].B || candidates[0].B == candidates[1].A) {
// If candidate number < 2, or two bottom are joined, select 2 farthest edge
vector<Candidate<Pointf>> midList;
for (size_t i = 0; i < poly.Count; ++i) {
Pointf midPoint = (idx_wrap(i) + idx_wrap(i + 1)) / 2.0f;
midList.emplace_back(i, (i + 1) % poly.Count, midPoint);
}
vector<DistStruct> distList;
// Only found one good candidate, so search for the edge that's the furthest from this candidate
if (candidates.size() == 1) {
auto idx1a = candidates.back().A;
auto idx1b = candidates.back().B;
Candidate<Pointf> cand1{ idx1a, idx1b, (idx_wrap(idx1a) + idx_wrap(idx1b)) / 2.0f };
for (size_t j = 0; j < poly.Count; ++j) {
auto &cand2 = midList[j];
if (cand1.Touches(cand2)) continue;
float dist = length(cand1.C - cand2.C);
distList.emplace_back(cand1, cand2, dist);
}
} else {
for (size_t i = 0; i < poly.Count; ++i) {
for (size_t j = i + 1; j < poly.Count; ++j) {
auto &cand1 = midList[i];
auto &cand2 = midList[j];
if (cand1.Touches(cand2)) continue;
float dist = length(cand1.C - cand2.C);
distList.emplace_back(cand1, cand2, dist);
}
}
}
sort(begin(distList), end(distList), [] (auto a, auto b) { return a.Dist < b.Dist; });
if (distList.empty()) {
throw runtime_error("No valid bottom candidates found for this polygon!");
}
auto &bEdge = distList.back();
return vector<Edge>{ bEdge.A, bEdge.B };
} else {
return vector<Edge>{ candidates[0], candidates[1] };
}
}
void find_long_edges(const Polygon_<float> &poly, Edge *bottoms, vector<Edge> &outLongEdge1, vector<Edge> &outLongEdge2)
{
int32_t b1End = bottoms[0].B;
int32_t b2End = bottoms[1].B;
int32_t nPoints = poly.Count;
auto accum_into = [nPoints] (int32_t end1, int32_t end2, vector<Edge> &outEdge) {
int32_t i = (end1 + 1) % nPoints;
while ((i % nPoints) != end2) {
int32_t start = i > 0 ? i - 1 : nPoints - 1;
int32_t end = i % nPoints;
outEdge.emplace_back(start, end);
i = (i + 1) % nPoints;
}
};
accum_into(b1End, b2End, outLongEdge1);
accum_into(b2End, b1End, outLongEdge2);
}
float edge_length(const Polygon_<float> &poly, const vector<Edge> &edges)
{
float ret = 0.0f;
for (const Edge &e : edges) {
ret += length(poly[e.B] - poly[e.A]);
}
return ret;
}
vector<float> edge_lengths(const Polygon_<float> &poly, const vector<Edge> &edges)
{
if (edges.empty()) {
throw runtime_error("Found an empty edge!");
}
vector<float> ret;
ret.reserve(edges.size());
for (const Edge &e : edges) {
ret.push_back(length(poly[e.B] - poly[e.A]));
}
return ret;
}
void split_edge_sequence(const Polygon_<float> &poly, const vector<Edge> &edges,
const vector<float> &edgeLengths, float nParts,
vector<Pointf> &outPts);
void split_edge_sequence_by_step(const Polygon_<float> &poly, const vector<Edge> &longEdge1, const vector<Edge> &longEdge2,
float step, vector<Pointf> &outInnerPoints1, vector<Pointf> &outInnerPoints2)
{
auto edgeLengths1 = edge_lengths(poly, longEdge1);
auto edgeLengths2 = edge_lengths(poly, longEdge2);
float totalLength = (accumulate(begin(edgeLengths1), end(edgeLengths1), 0.0f) + accumulate(begin(edgeLengths2), end(edgeLengths2), 0.0f)) / 2;
float nParts = max<float>(ceil(totalLength / step), 2);
split_edge_sequence(poly, longEdge1, edgeLengths1, nParts, outInnerPoints1);
split_edge_sequence(poly, longEdge2, edgeLengths2, nParts, outInnerPoints2);
}
void split_edge_sequence(const Polygon_<float> &poly, const vector<Edge> &edges,
const vector<float> &edgeLengths, float nParts,
vector<Pointf> &outPts)
{
vector<float> elCumSum = vec_cumsum(edgeLengths);
float totalLength = elCumSum.back();
float lengthPerPart = totalLength / (nParts - 1);
size_t iNumParts = nParts;
size_t currNode = 0;
size_t ctr = 0;
for (float i = 0.0f; ctr < iNumParts; i += 1.0f, ++ctr) {
float t = min(i * lengthPerPart, totalLength);
while (t > elCumSum[currNode + 1]) {
++currNode;
}
Edge currEdge = edges[currNode];
Pointf e1 = poly[currEdge.A];
Pointf e2 = poly[currEdge.B];
float currLen = edgeLengths[currNode];
Pointf sampledPt;
if (currLen > 0) {
float deltaT = t - elCumSum[currNode];
float ratio = deltaT / currLen;
sampledPt = e1 + ratio * (e2 - e1);
} else {
sampledPt = e1;
}
outPts.push_back(sampledPt);
}
}
string print_poly(const Polyf &poly) {
ostringstream oss;
oss << "[";
for (size_t i = 0; i < poly.Count; ++i) {
if (i > 0) {
oss << ", ";
}
oss << "(" << poly[i].X << ", " << poly[i].Y << ")";
}
oss << "]";
return oss.str();
}
} // namespace graph_detection
|