Truncated Matrix Completion - An Empirical Study
Abstract
Low-rank matrix completion methods are evaluated under data-dependent sampling conditions that better reflect real-world scenarios compared to traditional independent sampling assumptions.
Low-rank Matrix Completion (LRMC) describes the problem where we wish to recover missing entries of partially observed low-rank matrix. Most existing matrix completion work deals with sampling procedures that are independent of the underlying data values. While this assumption allows the derivation of nice theoretical guarantees, it seldom holds in real-world applications. In this paper, we consider various settings where the sampling mask is dependent on the underlying data values, motivated by applications in sensing, sequential decision-making, and recommender systems. Through a series of experiments, we study and compare the performance of various LRMC algorithms that were originally successful for data-independent sampling patterns.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper