Equivariance by Contrast: Identifiable Equivariant Embeddings from Unlabeled Finite Group Actions
Abstract
Equivalence by Contrast learns equivariant embeddings from observation pairs without group-specific biases, demonstrating high-fidelity equivariance for both abelian and non-abelian groups.
We propose Equivariance by Contrast (EbC) to learn equivariant embeddings from observation pairs (y, g cdot y), where g is drawn from a finite group acting on the data. Our method jointly learns a latent space and a group representation in which group actions correspond to invertible linear maps -- without relying on group-specific inductive biases. We validate our approach on the infinite dSprites dataset with structured transformations defined by the finite group G:= (R_m times Z_n times Z_n), combining discrete rotations and periodic translations. The resulting embeddings exhibit high-fidelity equivariance, with group operations faithfully reproduced in latent space. On synthetic data, we further validate the approach on the non-abelian orthogonal group O(n) and the general linear group GL(n). We also provide a theoretical proof for identifiability. While broad evaluation across diverse group types on real-world data remains future work, our results constitute the first successful demonstration of general-purpose encoder-only equivariant learning from group action observations alone, including non-trivial non-abelian groups and a product group motivated by modeling affine equivariances in computer vision.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper