Papers
arxiv:2601.12029

sangkuriang: A pseudo-spectral Python library for Korteweg-de Vries soliton simulation

Published on Jan 17
· Submitted by
Sandy Hardian Susanto Herho
on Jan 22
Authors:
,
,

Abstract

The Korteweg-de Vries (KdV) equation serves as a foundational model in nonlinear wave physics, describing the balance between dispersive spreading and nonlinear steepening that gives rise to solitons. This article introduces sangkuriang, an open-source Python library for solving this equation using Fourier pseudo-spectral spatial discretization coupled with adaptive high-order time integration. The implementation leverages just-in-time (JIT) compilation for computational efficiency while maintaining accessibility for instructional purposes. Validation encompasses progressively complex scenarios including isolated soliton propagation, symmetric two-wave configurations, overtaking collisions between waves of differing amplitudes, and three-body interactions. Conservation of the classical invariants is monitored throughout, with deviations remaining small across all test cases. Measured soliton velocities conform closely to theoretical predictions based on the amplitude-velocity relationship characteristic of integrable systems. Complementary diagnostics drawn from information theory and recurrence analysis confirm that computed solutions preserve the regular phase-space structure expected for completely integrable dynamics. The solver outputs data in standard scientific formats compatible with common analysis tools and generates visualizations of spatiotemporal wave evolution. By combining numerical accuracy with practical accessibility on modest computational resources, sangkuriang offers a platform suitable for both classroom demonstrations of nonlinear wave phenomena and exploratory research into soliton dynamics.

Community

Paper author Paper submitter

Korteweg-de Vries (KdV) equation serves as a foundational model in nonlinear wave physics, describing the balance between dispersive spreading and nonlinear steepening that gives rise to solitons. This article introduces sangkuriang, an open-source Python library for solving this equation using Fourier pseudo-spectral spatial discretization coupled with adaptive high-order time integration. The implementation leverages just-in-time (JIT) compilation for computational efficiency while maintaining accessibility for instructional purposes. Validation encompasses progressively complex scenarios including isolated soliton propagation, symmetric two-wave configurations, overtaking collisions between waves of differing amplitudes, and three-body interactions. Conservation of the classical invariants is monitored throughout, with deviations remaining small across all test cases. Measured soliton velocities conform closely to theoretical predictions based on the amplitude-velocity relationship characteristic of integrable systems. Complementary diagnostics drawn from information theory and recurrence analysis confirm that computed solutions preserve the regular phase-space structure expected for completely integrable dynamics. The solver outputs data in standard scientific formats compatible with common analysis tools and generates visualizations of spatiotemporal wave evolution. By combining numerical accuracy with practical accessibility on modest computational resources, sangkuriang offers a platform suitable for both classroom demonstrations of nonlinear wave phenomena and exploratory research into soliton dynamics.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2601.12029 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2601.12029 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2601.12029 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.