File size: 6,622 Bytes
2571f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import warnings
import torch


def _flatten(sequence):
    flat = [p.contiguous().view(-1) for p in sequence]
    return torch.cat(flat) if len(flat) > 0 else torch.tensor([])


def _flatten_convert_none_to_zeros(sequence, like_sequence):
    flat = [
        p.contiguous().view(-1) if p is not None else torch.zeros_like(q).view(-1)
        for p, q in zip(sequence, like_sequence)
    ]
    return torch.cat(flat) if len(flat) > 0 else torch.tensor([])


def _possibly_nonzero(x):
    return isinstance(x, torch.Tensor) or x != 0


def _scaled_dot_product(scale, xs, ys):
    """Calculate a scaled, vector inner product between lists of Tensors."""
    # Using _possibly_nonzero lets us avoid wasted computation.
    return sum([(scale * x) * y for x, y in zip(xs, ys) if _possibly_nonzero(x) or _possibly_nonzero(y)])


def _dot_product(xs, ys):
    """Calculate the vector inner product between two lists of Tensors."""
    return sum([x * y for x, y in zip(xs, ys)])


def _has_converged(y0, y1, rtol, atol):
    """Checks that each element is within the error tolerance."""
    error_tol = tuple(atol + rtol * torch.max(torch.abs(y0_), torch.abs(y1_)) for y0_, y1_ in zip(y0, y1))
    error = tuple(torch.abs(y0_ - y1_) for y0_, y1_ in zip(y0, y1))
    return all((error_ < error_tol_).all() for error_, error_tol_ in zip(error, error_tol))


def _convert_to_tensor(a, dtype=None, device=None):
    if not isinstance(a, torch.Tensor):
        a = torch.tensor(a)
    if dtype is not None:
        a = a.type(dtype)
    if device is not None:
        a = a.to(device)
    return a


def _is_finite(tensor):
    _check = (tensor == float('inf')) + (tensor == float('-inf')) + torch.isnan(tensor)
    return not _check.any()


def _decreasing(t):
    return (t[1:] < t[:-1]).all()


def _assert_increasing(t):  
    assert (t[1:] > t[:-1]).all(), 't must be strictly increasing or decrasing'


def _is_iterable(inputs):
    try:
        iter(inputs)
        return True
    except TypeError:
        return False


def _norm(x):
    """Compute RMS norm."""
    if torch.is_tensor(x):
        return x.norm() / (x.numel()**0.5)
    else:
        return torch.sqrt(sum(x_.norm()**2 for x_ in x) / sum(x_.numel() for x_ in x))


def _handle_unused_kwargs(solver, unused_kwargs):
    if len(unused_kwargs) > 0:
        warnings.warn('{}: Unexpected arguments {}'.format(solver.__class__.__name__, unused_kwargs))


def _select_initial_step(fun, t0, y0, order, rtol, atol, f0=None):
    """Empirically select a good initial step.

    The algorithm is described in [1]_.

    Parameters
    ----------
    fun : callable
        Right-hand side of the system.
    t0 : float
        Initial value of the independent variable.
    y0 : ndarray, shape (n,)
        Initial value of the dependent variable.
    direction : float
        Integration direction.
    order : float
        Method order.
    rtol : float
        Desired relative tolerance.
    atol : float
        Desired absolute tolerance.

    Returns
    -------
    h_abs : float
        Absolute value of the suggested initial step.

    References
    ----------
    .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
           Equations I: Nonstiff Problems", Sec. II.4.
    """
    t0 = t0.to(y0[0])
    if f0 is None:
        f0 = fun(t0, y0)

    rtol = rtol if _is_iterable(rtol) else [rtol] * len(y0)
    atol = atol if _is_iterable(atol) else [atol] * len(y0)

    scale = tuple(atol_ + torch.abs(y0_) * rtol_ for y0_, atol_, rtol_ in zip(y0, atol, rtol))

    d0 = tuple(_norm(y0_ / scale_) for y0_, scale_ in zip(y0, scale))
    d1 = tuple(_norm(f0_ / scale_) for f0_, scale_ in zip(f0, scale))

    if max(d0).item() < 1e-5 or max(d1).item() < 1e-5:
        h0 = torch.tensor(1e-6).to(t0)
    else:
        h0 = 0.01 * max(d0_ / d1_ for d0_, d1_ in zip(d0, d1))

    y1 = tuple(y0_ + h0 * f0_ for y0_, f0_ in zip(y0, f0))
    f1 = fun(t0 + h0, y1)

    d2 = tuple(_norm((f1_ - f0_) / scale_) / h0 for f1_, f0_, scale_ in zip(f1, f0, scale))

    if max(d1).item() <= 1e-15 and max(d2).item() <= 1e-15:
        h1 = torch.max(torch.tensor(1e-6).to(h0), h0 * 1e-3)
    else:
        h1 = (0.01 / max(d1 + d2))**(1. / float(order + 1))

    return torch.min(100 * h0, h1)


def _compute_error_ratio(error_estimate, error_tol=None, rtol=None, atol=None, y0=None, y1=None):
    if error_tol is None:
        assert rtol is not None and atol is not None and y0 is not None and y1 is not None
        rtol if _is_iterable(rtol) else [rtol] * len(y0)
        atol if _is_iterable(atol) else [atol] * len(y0)
        error_tol = tuple(
            atol_ + rtol_ * torch.max(torch.abs(y0_), torch.abs(y1_))
            for atol_, rtol_, y0_, y1_ in zip(atol, rtol, y0, y1)
        )
    error_ratio = tuple(error_estimate_ / error_tol_ for error_estimate_, error_tol_ in zip(error_estimate, error_tol))
    mean_sq_error_ratio = tuple(torch.mean(error_ratio_ * error_ratio_) for error_ratio_ in error_ratio)
    return mean_sq_error_ratio


def _optimal_step_size(last_step, mean_error_ratio, safety=0.9, ifactor=10.0, dfactor=0.2, order=5):
    """Calculate the optimal size for the next step."""
    mean_error_ratio = max(mean_error_ratio)  # Compute step size based on highest ratio.
    if mean_error_ratio == 0:
        return last_step * ifactor
    if mean_error_ratio < 1:
        dfactor = _convert_to_tensor(1, dtype=torch.float64, device=mean_error_ratio.device)
    error_ratio = torch.sqrt(mean_error_ratio).to(last_step)
    exponent = torch.tensor(1 / order).to(last_step)
    factor = torch.max(1 / ifactor, torch.min(error_ratio**exponent / safety, 1 / dfactor))
    return last_step / factor


def _check_inputs(func, y0, t):
    tensor_input = False
    if torch.is_tensor(y0):
        tensor_input = True
        y0 = (y0,)
        _base_nontuple_func_ = func
        func = lambda t, y: (_base_nontuple_func_(t, y[0]),)
    assert isinstance(y0, tuple), 'y0 must be either a torch.Tensor or a tuple'
    for y0_ in y0:
        assert torch.is_tensor(y0_), 'each element must be a torch.Tensor but received {}'.format(type(y0_))

    if _decreasing(t):
        t = -t
        _base_reverse_func = func
        func = lambda t, y: tuple(-f_ for f_ in _base_reverse_func(-t, y))

    for y0_ in y0:
        if not torch.is_floating_point(y0_):
            raise TypeError('`y0` must be a floating point Tensor but is a {}'.format(y0_.type()))
    if not torch.is_floating_point(t):
        raise TypeError('`t` must be a floating point Tensor but is a {}'.format(t.type()))

    return tensor_input, func, y0, t