File size: 29,395 Bytes
2571f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
# ported from https://github.com/pvigier/perlin-numpy

import math

import numpy as np 

import torch
import torch.nn as nn




def gradient_f(X, batched = False, delta_lst = [1., 1., 1.]):
    '''
    Compute gradient of a torch tensor "X" in each direction
    Upper-boundaries: Backward Difference
    Non-boundaries & Upper-boundaries: Forward Difference
    if X is batched: (n_batch, ...);
    else: (...)
    '''
    device = X.device
    dim = len(X.size()) - 1 if batched else len(X.size())
    #print(batched)
    #print(dim)
    if dim == 1:
        #print('dim = 1')
        dX = torch.zeros(X.size(), dtype = torch.float, device = device)
        X = X.permute(1, 0) if batched else X
        dX = dX.permute(1, 0) if batched else dX
        dX[-1] = X[-1] - X[-2] # Backward Difference
        dX[:-1] = X[1:] - X[:-1] # Forward Difference

        dX = dX.permute(1, 0) if batched else dX
        dX /= delta_lst[0]
    elif dim == 2:
        #print('dim = 2')
        dX = torch.zeros(X.size() + tuple([2]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 0) if batched else X
        dX = dX.permute(1, 2, 3, 0) if batched else dX # put batch to last dim
        dX[-1, :, 0] = X[-1, :] - X[-2, :] # Backward Difference
        dX[:-1, :, 0] = X[1:] - X[:-1] # Forward Difference

        dX[:, -1, 1] = X[:, -1] - X[:, -2] # Backward Difference
        dX[:, :-1, 1] = X[:, 1:] - X[:, :-1] # Forward Difference

        dX = dX.permute(3, 0, 1, 2) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
    elif dim == 3:
        #print('dim = 3')
        dX = torch.zeros(X.size() + tuple([3]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 3, 0) if batched else X
        dX = dX.permute(1, 2, 3, 4, 0) if batched else dX
        dX[-1, :, :, 0] = X[-1, :, :] - X[-2, :, :] # Backward Difference
        dX[:-1, :, :, 0] = X[1:] - X[:-1] # Forward Difference

        dX[:, -1, :, 1] = X[:, -1] - X[:, -2] # Backward Difference
        dX[:, :-1, :, 1] = X[:, 1:] - X[:, :-1] # Forward Difference

        dX[:, :, -1, 2] = X[:, :, -1] - X[:, :, -2] # Backward Difference
        dX[:, :, :-1, 2] = X[:, :, 1:] - X[:, :, :-1] # Forward Difference

        dX = dX.permute(4, 0, 1, 2, 3) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
        dX[..., 2] /= delta_lst[2]
    return dX


def gradient_b(X, batched = False, delta_lst = [1., 1., 1.]):
    '''
    Compute gradient of a torch tensor "X" in each direction
    Non-boundaries & Upper-boundaries: Backward Difference
    Lower-boundaries: Forward Difference
    if X is batched: (n_batch, ...);
    else: (...)
    '''
    device = X.device
    dim = len(X.size()) - 1 if batched else len(X.size())
    #print(batched)
    #print(dim)
    if dim == 1:
        #print('dim = 1')
        dX = torch.zeros(X.size(), dtype = torch.float, device = device)
        X = X.permute(1, 0) if batched else X
        dX = dX.permute(1, 0) if batched else dX
        dX[1:] = X[1:] - X[:-1] # Backward Difference
        dX[0] = X[1] - X[0] # Forward Difference

        dX = dX.permute(1, 0) if batched else dX
        dX /= delta_lst[0]
    elif dim == 2:
        #print('dim = 2')
        dX = torch.zeros(X.size() + tuple([2]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 0) if batched else X
        dX = dX.permute(1, 2, 3, 0) if batched else dX # put batch to last dim
        dX[1:, :, 0] = X[1:, :] - X[:-1, :] # Backward Difference
        dX[0, :, 0] = X[1] - X[0] # Forward Difference

        dX[:, 1:, 1] = X[:, 1:] - X[:, :-1] # Backward Difference
        dX[:, 0, 1] = X[:, 1] - X[:, 0] # Forward Difference

        dX = dX.permute(3, 0, 1, 2) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
    elif dim == 3:
        #print('dim = 3')
        dX = torch.zeros(X.size() + tuple([3]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 3, 0) if batched else X
        dX = dX.permute(1, 2, 3, 4, 0) if batched else dX
        dX[1:, :, :, 0] = X[1:, :, :] - X[:-1, :, :] # Backward Difference
        dX[0, :, :, 0] = X[1] - X[0] # Forward Difference

        dX[:, 1:, :, 1] = X[:, 1:] - X[:, :-1] # Backward Difference
        dX[:, 0, :, 1] = X[:, 1] - X[:, 0] # Forward Difference

        dX[:, :, 1:, 2] = X[:, :, 1:] - X[:, :, :-1] # Backward Difference
        dX[:, :, 0, 2] = X[:, :, 1] - X[:, :, 0] # Forward Difference

        dX = dX.permute(4, 0, 1, 2, 3) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
        dX[..., 2] /= delta_lst[2]
    return dX
  

def gradient_c(X, batched = False, delta_lst = [1., 1., 1.]):
    '''
    Compute gradient of a torch tensor "X" in each direction
    Non-boundaries: Central Difference
    Upper-boundaries: Backward Difference
    Lower-boundaries: Forward Difference
    if X is batched: (n_batch, ...);
    else: (...)
    '''
    device = X.device
    dim = len(X.size()) - 1 if batched else len(X.size())
    #print(X.size())
    #print(batched)
    #print(dim)
    if dim == 1:
        #print('dim = 1')
        dX = torch.zeros(X.size(), dtype = torch.float, device = device)
        X = X.permute(1, 0) if batched else X
        dX = dX.permute(1, 0) if batched else dX
        dX[1:-1] = (X[2:] - X[:-2]) / 2 # Central Difference
        dX[0] = X[1] - X[0] # Forward Difference
        dX[-1] = X[-1] - X[-2] # Backward Difference

        dX = dX.permute(1, 0) if batched else dX
        dX /= delta_lst[0]
    elif dim == 2:
        #print('dim = 2')
        dX = torch.zeros(X.size() + tuple([2]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 0) if batched else X
        dX = dX.permute(1, 2, 3, 0) if batched else dX # put batch to last dim
        dX[1:-1, :, 0] = (X[2:, :] - X[:-2, :]) / 2
        dX[0, :, 0] = X[1] - X[0]
        dX[-1, :, 0] = X[-1] - X[-2]
        dX[:, 1:-1, 1] = (X[:, 2:] - X[:, :-2]) / 2
        dX[:, 0, 1] = X[:, 1] - X[:, 0]
        dX[:, -1, 1] = X[:, -1] - X[:, -2]

        dX = dX.permute(3, 0, 1, 2) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
    elif dim == 3:
        #print('dim = 3')
        dX = torch.zeros(X.size() + tuple([3]), dtype = torch.float, device = device)
        X = X.permute(1, 2, 3, 0) if batched else X
        dX = dX.permute(1, 2, 3, 4, 0) if batched else dX
        dX[1:-1, :, :, 0] = (X[2:, :, :] - X[:-2, :, :]) / 2
        dX[0, :, :, 0] = X[1] - X[0]
        dX[-1, :, :, 0] = X[-1] - X[-2]
        dX[:, 1:-1, :, 1] = (X[:, 2:, :] - X[:, :-2, :]) / 2
        dX[:, 0, :, 1] = X[:, 1] - X[:, 0]
        dX[:, -1, :, 1] = X[:, -1] - X[:, -2]
        dX[:, :, 1:-1, 2] = (X[:, :, 2:] - X[:, :, :-2]) / 2
        dX[:, :, 0, 2] = X[:, :, 1] - X[:, :, 0]
        dX[:, :, -1, 2] = X[:, :, -1] - X[:, :, -2]

        dX = dX.permute(4, 0, 1, 2, 3) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
        dX[..., 2] /= delta_lst[2]
    return dX


def gradient_c_numpy(X, batched = False, delta_lst = [1., 1., 1.]):
    '''
    Compute gradient of a Numpy array "X" in each direction
    Non-boundaries: Central Difference
    Upper-boundaries: Backward Difference
    Lower-boundaries: Forward Difference
    if X is batched: (n_batch, ...);
    else: (...)
    '''
    dim = len(X.shape) - 1 if batched else len(X.shape)
    #print(dim)
    if dim == 1:
        #print('dim = 1')
        X = np.transpose(X, (1, 0)) if batched else X
        dX = np.zeros(X.shapee).astype(float)
        dX[1:-1] = (X[2:] - X[:-2]) / 2 # Central Difference
        dX[0] = X[1] - X[0] # Forward Difference
        dX[-1] = X[-1] - X[-2] # Backward Difference

        dX = np.transpose(X, (1, 0)) if batched else dX
        dX /= delta_lst[0]
    elif dim == 2:
        #print('dim = 2')
        dX = np.zeros(X.shape + tuple([2])).astype(float)
        X = np.transpose(X, (1, 2, 0)) if batched else X
        dX = np.transpose(dX, (1, 2, 3, 0)) if batched else dX # put batch to last dim
        dX[1:-1, :, 0] = (X[2:, :] - X[:-2, :]) / 2
        dX[0, :, 0] = X[1] - X[0]
        dX[-1, :, 0] = X[-1] - X[-2]
        dX[:, 1:-1, 1] = (X[:, 2:] - X[:, :-2]) / 2
        dX[:, 0, 1] = X[:, 1] - X[:, 0]
        dX[:, -1, 1] = X[:, -1] - X[:, -2]

        dX = np.transpose(dX, (3, 0, 1, 2)) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
    elif dim == 3:
        #print('dim = 3')
        dX = np.zeros(X.shape + tuple([3])).astype(float)
        X = np.transpose(X, (1, 2, 3, 0)) if batched else X
        dX = np.transpose(dX, (1, 2, 3, 4, 0)) if batched else dX # put batch to last dim
        dX[1:-1, :, :, 0] = (X[2:, :, :] - X[:-2, :, :]) / 2
        dX[0, :, :, 0] = X[1] - X[0]
        dX[-1, :, :, 0] = X[-1] - X[-2]
        dX[:, 1:-1, :, 1] = (X[:, 2:, :] - X[:, :-2, :]) / 2
        dX[:, 0, :, 1] = X[:, 1] - X[:, 0]
        dX[:, -1, :, 1] = X[:, -1] - X[:, -2]
        dX[:, :, 1:-1, 2] = (X[:, :, 2:] - X[:, :, :-2]) / 2
        dX[:, :, 0, 2] = X[:, :, 1] - X[:, :, 0]
        dX[:, :, -1, 2] = X[:, :, -1] - X[:, :, -2]

        dX = np.transpose(dX, (4, 0, 1, 2, 3)) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
        dX[..., 2] /= delta_lst[2]
    return dX


def gradient_f_numpy(X, batched = False, delta_lst = [1., 1., 1.]):
    '''
    Compute gradient of a torch tensor "X" in each direction
    Upper-boundaries: Backward Difference
    Non-boundaries & Upper-boundaries: Forward Difference
    if X is batched: (n_batch, ...);
    else: (...)
    '''
    dim = len(X.shape) - 1 if batched else len(X.shape)
    #print(dim)
    if dim == 1:
        #print('dim = 1')
        X = np.transpose(X, (1, 0)) if batched else X
        dX = np.zeros(X.shapee).astype(float)
        dX[-1] = X[-1] - X[-2] # Backward Difference
        dX[:-1] = X[1:] - X[:-1] # Forward Difference

        dX = np.transpose(X, (1, 0)) if batched else dX
        dX /= delta_lst[0]
    elif dim == 2:
        #print('dim = 2')
        dX = np.zeros(X.shape + tuple([2])).astype(float)
        X = np.transpose(X, (1, 2, 0)) if batched else X
        dX = np.transpose(dX, (1, 2, 3, 0)) if batched else dX # put batch to last dim
        dX[-1, :, 0] = X[-1, :] - X[-2, :] # Backward Difference
        dX[:-1, :, 0] = X[1:] - X[:-1] # Forward Difference

        dX[:, -1, 1] = X[:, -1] - X[:, -2] # Backward Difference
        dX[:, :-1, 1] = X[:, 1:] - X[:, :-1] # Forward Difference

        dX = np.transpose(dX, (3, 0, 1, 2)) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
    elif dim == 3:
        #print('dim = 3')
        dX = np.zeros(X.shape + tuple([3])).astype(float)
        X = np.transpose(X, (1, 2, 3, 0)) if batched else X
        dX = np.transpose(dX, (1, 2, 3, 4, 0)) if batched else dX # put batch to last dim
        dX[-1, :, :, 0] = X[-1, :, :] - X[-2, :, :] # Backward Difference
        dX[:-1, :, :, 0] = X[1:] - X[:-1] # Forward Difference

        dX[:, -1, :, 1] = X[:, -1] - X[:, -2] # Backward Difference
        dX[:, :-1, :, 1] = X[:, 1:] - X[:, :-1] # Forward Difference

        dX[:, :, -1, 2] = X[:, :, -1] - X[:, :, -2] # Backward Difference
        dX[:, :, :-1, 2] = X[:, :, 1:] - X[:, :, :-1] # Forward Difference

        dX = np.transpose(dX, (4, 0, 1, 2, 3)) if batched else dX
        dX[..., 0] /= delta_lst[0]
        dX[..., 1] /= delta_lst[1]
        dX[..., 2] /= delta_lst[2]
    return dX


class Upwind(object):
    '''
    Backward if > 0, forward if <= 0
    '''
    def __init__(self, U, data_spacing = [1., 1, 1.], batched = True):
        self.U = U # (s, r, c)
        self.batched = batched
        self.data_spacing = data_spacing
        self.dim = len(self.U.size()) - 1 if batched else len(self.U.size())
        self.I = torch.ones(self.U.size(), dtype = torch.float, device = U.device)

    def dX(self, FGx):
        dXf = gradient_f(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 0]
        dXb = gradient_b(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 0]
        Xflag = (FGx > 0).float()
        return dXf * (self.I - Xflag) + dXb * Xflag

    def dY(self, FGy):
        dYf = gradient_f(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 1]
        dYb = gradient_b(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 1]
        Yflag = (FGy > 0).float()
        return dYf * (self.I - Yflag) + dYb * Yflag

    def dZ(self, FGz):
        dZf = gradient_f(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 2]
        dZb = gradient_b(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 2]
        Zflag = (FGz > 0).float()
        return dZf * (self.I - Zflag) + dZb * Zflag
    
    
class AdvDiffPartial(nn.Module):
    def __init__(self, data_spacing, device):
        super(AdvDiffPartial, self).__init__()
        self.dimension = len(data_spacing)  # (slc, row, col)
        self.device = device
        self.data_spacing = data_spacing

    @property
    def Grad_Ds(self):
        return {
            'constant': self.Grad_constantD,
            'scalar': self.Grad_scalarD,
            'diag': self.Grad_diagD,
            'full': self.Grad_fullD,
            'full_dual': self.Grad_fullD,
            'full_spectral':self.Grad_fullD,
            'full_cholesky': self.Grad_fullD,
            'full_symmetric': self.Grad_fullD
        }
    @property
    def Grad_Vs(self):
        return {
            'constant': self.Grad_constantV,
            'scalar': self.Grad_scalarV,
            'vector': self.Grad_vectorV, # For general V w/o div-free TODO self.Grad_vectorV
            'vector_div_free': self.Grad_div_free_vectorV,
            'vector_div_free_clebsch': self.Grad_div_free_vectorV,
            'vector_div_free_stream': self.Grad_div_free_vectorV,
            'vector_div_free_stream_gauge': self.Grad_div_free_vectorV, 
        }

    def Grad_constantD(self, C, Dlst):
        if self.dimension == 1:
            return Dlst['D'] * (self.ddXc(C))
        elif self.dimension == 2:
            return Dlst['D'] * (self.ddXc(C) + self.ddYc(C))
        elif self.dimension == 3:
            return Dlst['D'] * (self.ddXc(C) + self.ddYc(C) + self.ddZc(C))

    def Grad_constant_tensorD(self, C, Dlst):
        if self.dimension == 1:
            raise NotImplementedError
        elif self.dimension == 2:
            dC_c = self.dc(C)
            dC_f = self.df(C)
            return Dlst['Dxx'] * self.dXb(dC_f[..., 0]) +\
                Dlst['Dxy'] * self.dXb(dC_f[..., 1]) + Dlst['Dxy'] * self.dYb(dC_f[..., 0]) +\
                        Dlst['Dyy'] * self.dYb(dC_f[..., 1])  
        elif self.dimension == 3:
            dC_c = self.dc(C)
            dC_f = self.df(C)
            return Dlst['Dxx'] * self.dXb(dC_f[..., 0]) + Dlst['Dyy'] * self.dYb(dC_f[..., 1]) + Dlst['Dzz'] * self.dZb(dC_f[..., 2]) + \
                            Dlst['Dxy'] * (self.dXb(dC_f[..., 1]) + self.dYb(dC_f[..., 0])) + \
                                Dlst['Dyz'] * (self.dYb(dC_f[..., 2]) + self.dZb(dC_f[..., 1])) + \
                                    Dlst['Dxz'] * (self.dZb(dC_f[..., 0]) + self.dXb(dC_f[..., 2]))
        
    def Grad_scalarD(self, C, Dlst): # batch_C: (batch_size, (slc), row, col)
        # Expanded version: \nabla (D \nabla C) => \nabla D \cdot \nabla C (part (a)) + D \Delta C (part (b)) # 
        # NOTE: Work better than Central Differences !!! # 
        # Nested Forward-Backward Difference Scheme in part (b)#
        if self.dimension == 1:
            dC = gradient_c(C, batched = True, delta_lst = self.data_spacing)
            return gradient_c(Dlst['D'], batched = True, delta_lst = self.data_spacing) * dC + \
                Dlst['D'] * gradient_c(dC, batched = True, delta_lst = self.data_spacing)
        else: # (dimension = 2 or 3)
            dC_c = gradient_c(C, batched = True, delta_lst = self.data_spacing)
            dC_f = gradient_f(C, batched = True, delta_lst = self.data_spacing)
            dD_c = gradient_c(Dlst['D'], batched = True, delta_lst = self.data_spacing)
            out = (dD_c * dC_c).sum(-1)
            for dim in range(dC_f.size(-1)):
                out += Dlst['D'] * gradient_b(dC_f[..., dim], batched = True, delta_lst = self.data_spacing)[..., dim]
            return out

    def Grad_diagD(self, C, Dlst):
        # Expanded version #
        if self.dimension == 1:
            raise NotImplementedError('diag_D is not supported for 1D version of diffusivity')
        elif self.dimension == 2:
            dC_c = self.dc(C)
            dC_f = self.df(C)
            return self.dXc(Dlst['Dxx']) * dC_c[..., 0] + Dlst['Dxx'] * self.dXb(dC_f[..., 0]) +\
                self.dYc(Dlst['Dyy']) * dC_c[..., 1] + Dlst['Dyy'] * self.dYb(dC_f[..., 1]) 
        elif self.dimension == 3:
            dC_c = self.dc(C)
            dC_f = self.df(C)
            return self.dXc(Dlst['Dxx']) * dC_c[..., 0] + Dlst['Dxx'] * self.dXb(dC_f[..., 0]) +\
                self.dYc(Dlst['Dyy']) * dC_c[..., 1] + Dlst['Dyy'] * self.dYb(dC_f[..., 1]) +\
                    self.dZc(Dlst['Dzz']) * dC_c[..., 2] + Dlst['Dzz'] * self.dZb(dC_f[..., 2])

    def Grad_fullD(self, C, Dlst):
        # Expanded version #
        '''https://github.com/uncbiag/PIANOinD/blob/master/Doc/PIANOinD.pdf'''
        if self.dimension == 1:
            raise NotImplementedError('full_D is not supported for 1D version of diffusivity')
        elif self.dimension == 2:
            dC_c = self.dc(C)
            dC_f = self.df(C)
            return self.dXc(Dlst['Dxx']) * dC_c[..., 0] + Dlst['Dxx'] * self.dXb(dC_f[..., 0]) +\
                self.dXc(Dlst['Dxy']) * dC_c[..., 1] + Dlst['Dxy'] * self.dXb(dC_f[..., 1]) +\
                    self.dYc(Dlst['Dxy']) * dC_c[..., 0] + Dlst['Dxy'] * self.dYb(dC_f[..., 0]) +\
                        self.dYc(Dlst['Dyy']) * dC_c[..., 1] + Dlst['Dyy'] * self.dYb(dC_f[..., 1])  
        elif self.dimension == 3:
            dC_c = self.dc(C)
            dC_f = self.df(C)
            return (self.dXc(Dlst['Dxx']) + self.dYc(Dlst['Dxy']) + self.dZc(Dlst['Dxz'])) * dC_c[..., 0] + \
                (self.dXc(Dlst['Dxy']) + self.dYc(Dlst['Dyy']) + self.dZc(Dlst['Dyz'])) * dC_c[..., 1] + \
                    (self.dXc(Dlst['Dxz']) + self.dYc(Dlst['Dyz']) + self.dZc(Dlst['Dzz'])) * dC_c[..., 2] + \
                        Dlst['Dxx'] * self.dXb(dC_f[..., 0]) + Dlst['Dyy'] * self.dYb(dC_f[..., 1]) + Dlst['Dzz'] * self.dZb(dC_f[..., 2]) + \
                            Dlst['Dxy'] * (self.dXb(dC_f[..., 1]) + self.dYb(dC_f[..., 0])) + \
                                Dlst['Dyz'] * (self.dYb(dC_f[..., 2]) + self.dZb(dC_f[..., 1])) + \
                                    Dlst['Dxz'] * (self.dZb(dC_f[..., 0]) + self.dXb(dC_f[..., 2]))

    def Grad_constantV(self, C, Vlst):
        if len(Vlst['V'].size()) == 1:
            if self.dimension == 1:
                return - Vlst['V'] * self.dXb(C) if Vlst['V'] > 0 else - Vlst['V'] * self.dXf(C)
            elif self.dimension == 2:
                return - Vlst['V'] * (self.dXb(C) + self.dYb(C)) if Vlst['V'] > 0 else - Vlst['V'] * (self.dXf(C) + self.dYf(C))
            elif self.dimension == 3:
                return - Vlst['V'] * (self.dXb(C) + self.dYb(C) + self.dZb(C)) if Vlst['V'] > 0 else - Vlst['V'] * (self.dXf(C) + self.dYf(C) + self.dZf(C))
        else:
            if self.dimension == 1:
                return - Vlst['V'] * self.dXb(C) if Vlst['V'][0, 0] > 0 else - Vlst['V'] * self.dXf(C)
            elif self.dimension == 2:
                return - Vlst['V'] * (self.dXb(C) + self.dYb(C)) if Vlst['V'][0, 0, 0] > 0 else - Vlst['V'] * (self.dXf(C) + self.dYf(C))
            elif self.dimension == 3:
                return - Vlst['V'] * (self.dXb(C) + self.dYb(C) + self.dZb(C)) if Vlst['V'][0, 0, 0, 0] > 0 else - Vlst['V'] * (self.dXf(C) + self.dYf(C) + self.dZf(C))
    
    def Grad_constant_vectorV(self, C, Vlst):
        if self.dimension == 1:
            raise NotImplementedError
        elif self.dimension == 2:
            out_x = - Vlst['Vx'] * (self.dXb(C) + self.dYb(C)) if Vlst['Vx'][0, 0, 0] > 0 else - Vlst['Vx'] * (self.dXf(C) + self.dYf(C))
            out_y = - Vlst['Vy'] * (self.dXb(C) + self.dYb(C)) if Vlst['Vy'][0, 0, 0] > 0 else - Vlst['Vy'] * (self.dXf(C) + self.dYf(C))
            return out_x + out_y
        elif self.dimension == 3:
            out_x = - Vlst['Vx'] * (self.dXb(C) + self.dYb(C)) if Vlst['Vx'][0, 0, 0] > 0 else - Vlst['Vx'] * (self.dXf(C) + self.dYf(C))
            out_y = - Vlst['Vy'] * (self.dXb(C) + self.dYb(C)) if Vlst['Vy'][0, 0, 0] > 0 else - Vlst['Vy'] * (self.dXf(C) + self.dYf(C))
            out_z = - Vlst['Vz'] * (self.dXb(C) + self.dYb(C)) if Vlst['Vz'][0, 0, 0] > 0 else - Vlst['Vz'] * (self.dXf(C) + self.dYf(C))
            return out_x + out_y + out_z
    
    def Grad_SimscalarV(self, C, Vlst):
        V = Vlst['V']
        Upwind_C = Upwind(C, self.data_spacing)
        if self.dimension == 1:
            C_x = Upwind_C.dX(V)
            return - V * C_x
        if self.dimension == 2:
            C_x, C_y = Upwind_C.dX(V), Upwind_C.dY(V)
            return - V * (C_x + C_y)
        if self.dimension == 3:
            C_x, C_y, C_z = Upwind_C.dX(V), Upwind_C.dY(V), Upwind_C.dZ(V)
            return - V * (C_x + C_y + C_z)

    def Grad_scalarV(self, C, Vlst):
        V = Vlst['V']
        Upwind_C = Upwind(C, self.data_spacing)
        dV = gradient_c(V, batched = True, delta_lst = self.data_spacing)
        if self.dimension == 1:
            C_x = Upwind_C.dX(V)
            return - V * C_x - C * dV
        elif self.dimension == 2:
            C_x, C_y = Upwind_C.dX(V), Upwind_C.dY(V)
            return - V * (C_x + C_y) - C * dV.sum(-1)
        elif self.dimension == 3:
            C_x, C_y, C_z = Upwind_C.dX(V), Upwind_C.dY(V), Upwind_C.dZ(V)
            return - V * (C_x + C_y + C_z) - C * dV.sum(-1)

    def Grad_div_free_vectorV(self, C, Vlst):
        ''' For divergence-free-by-definition velocity'''
        if self.dimension == 1:
            raise NotImplementedError('clebschVector is not supported for 1D version of velocity')
        Upwind_C = Upwind(C, self.data_spacing) 
        C_x, C_y = Upwind_C.dX(Vlst['Vx']), Upwind_C.dY(Vlst['Vy'])
        if self.dimension == 2:
            return - (Vlst['Vx'] * C_x + Vlst['Vy'] * C_y)
        elif self.dimension == 3:
            C_z = Upwind_C.dZ(Vlst['Vz'])
            return - (Vlst['Vx'] * C_x + Vlst['Vy'] * C_y + Vlst['Vz'] * C_z)
            
    def Grad_vectorV(self, C, Vlst):
        ''' For general velocity'''
        if self.dimension == 1:
            raise NotImplementedError('vector is not supported for 1D version of velocity')
        Upwind_C = Upwind(C, self.data_spacing) 
        C_x, C_y = Upwind_C.dX(Vlst['Vx']), Upwind_C.dY(Vlst['Vy'])
        Vx_x = self.dXc(Vlst['Vx'])
        Vy_y = self.dYc(Vlst['Vy']) 
        if self.dimension == 2:
            return - (Vlst['Vx'] * C_x + Vlst['Vy'] * C_y) - C * (Vx_x + Vy_y)
        if self.dimension == 3:
            C_z = Upwind_C.dZ(Vlst['Vz'])
            Vz_z = self.dZc(Vlst['Vz'])
            return - (Vlst['Vx'] * C_x + Vlst['Vy'] * C_y + Vlst['Vz'] * C_z) - C * (Vx_x + Vy_y + Vz_z)
    
    ################# Utilities #################
    def db(self, X):
        return gradient_b(X, batched = True, delta_lst = self.data_spacing)
    def df(self, X):
        return gradient_f(X, batched = True, delta_lst = self.data_spacing)
    def dc(self, X):
        return gradient_c(X, batched = True, delta_lst = self.data_spacing)
    def dXb(self, X):
        return gradient_b(X, batched = True, delta_lst = self.data_spacing)[..., 0]
    def dXf(self, X):
        return gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 0]
    def dXc(self, X):
        return gradient_c(X, batched = True, delta_lst = self.data_spacing)[..., 0]
    def dYb(self, X):
        return gradient_b(X, batched = True, delta_lst = self.data_spacing)[..., 1]
    def dYf(self, X):
        return gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 1]
    def dYc(self, X):
        return gradient_c(X, batched = True, delta_lst = self.data_spacing)[..., 1]
    def dZb(self, X):
        return gradient_b(X, batched = True, delta_lst = self.data_spacing)[..., 2]
    def dZf(self, X):
        return gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 2]
    def dZc(self, X):
        return gradient_c(X, batched = True, delta_lst = self.data_spacing)[..., 2]
    def ddXc(self, X):
        return gradient_b(gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 0], 
        batched = True, delta_lst = self.data_spacing)[..., 0]
    def ddYc(self, X):
        return gradient_b(gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 1], 
        batched = True, delta_lst = self.data_spacing)[..., 1]
    def ddZc(self, X):
        return gradient_b(gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 2], 
        batched = True, delta_lst = self.data_spacing)[..., 2]
    


class AdvDiffPDE(nn.Module):
    '''
    Plain advection-diffusion PDE solver for pre-set V_lst and D_lst (1D, 2D, 3D) for forward time series simulation
    '''
    def __init__(self, data_spacing, perf_pattern, D_type='scalar', V_type='vector', BC=None, dt=0.1, V_dict={}, D_dict={}, stochastic=False, device='cpu'):
        super(AdvDiffPDE, self).__init__() 
        self.BC = BC
        self.dt = dt
        self.dimension = len(data_spacing)
        self.perf_pattern = perf_pattern
        self.partials = AdvDiffPartial(data_spacing, device)
        self.D_type, self.V_type = D_type, V_type
        self.stochastic = stochastic 
        self.V_dict, self.D_dict = V_dict, D_dict
        self.Sigma, self.Sigma_V, self.Sigma_D = 0., 0., 0. # Only for initialization # 
        if self.dimension == 1:
            self.neumann_BC = torch.nn.ReplicationPad1d(1)
        elif self.dimension == 2:
            self.neumann_BC = torch.nn.ReplicationPad2d(1)
        elif self.dimension == 3:
            self.neumann_BC = torch.nn.ReplicationPad3d(1)
        else:
            raise ValueError('Unsupported dimension: %d' % self.dimension)
                 
    @property
    def set_BC(self):
    # NOTE For bondary condition of mass concentration #
        '''X: (n_batch, spatial_shape)'''
        if self.BC == 'neumann' or self.BC == 'cauchy':
            if self.dimension == 1:
                return lambda X: self.neumann_BC(X[:, 1:-1].unsqueeze(dim=1))[:,0]
            elif self.dimension == 2:
                return lambda X: self.neumann_BC(X[:, 1:-1, 1:-1].unsqueeze(dim=1))[:,0]
            elif self.dimension == 3:
                return lambda X: self.neumann_BC(X[:, 1:-1, 1:-1, 1:-1].unsqueeze(dim=1))[:,0]
            else:
                raise NotImplementedError('Unsupported B.C.!')
        elif self.BC == 'dirichlet_neumann' or self.BC == 'source_neumann':
            ctrl_wdth = 1
            if self.dimension == 1:
                self.dirichlet_BC = torch.nn.ReplicationPad1d(ctrl_wdth)
                return lambda X: self.dirichlet_BC(X[:, ctrl_wdth : -ctrl_wdth].unsqueeze(dim=1))[:,0]
            elif self.dimension == 2:
                self.dirichlet_BC = torch.nn.ReplicationPad2d(ctrl_wdth)
                return lambda X: self.dirichlet_BC(X[:, ctrl_wdth : -ctrl_wdth, ctrl_wdth : -ctrl_wdth].unsqueeze(dim=1))[:,0]
            elif self.dimension == 3:
                self.dirichlet_BC = torch.nn.ReplicationPad3d(ctrl_wdth)
                return lambda X: self.neumann_dirichlet_BCBC(X[:, ctrl_wdth : -ctrl_wdth, ctrl_wdth : -ctrl_wdth, ctrl_wdth : -ctrl_wdth].unsqueeze(dim=1))[:,0]
            else:
                raise NotImplementedError('Unsupported B.C.!')
        else:
            return lambda X: X 
        
    def forward(self, t, batch_C):
        '''
        t: (batch_size,)
        batch_C: (batch_size, (slc,) row, col)
        ''' 
        batch_size  = batch_C.size(0)
        batch_C = self.set_BC(batch_C)
        if 'diff' not in self.perf_pattern:
            out = self.partials.Grad_Vs[self.V_type](batch_C, self.V_dict) 
            if self.stochastic:  
                out = out + self.Sigma * math.sqrt(self.dt) * torch.randn_like(batch_C).to(batch_C)
        elif 'adv' not in self.perf_pattern:
            out = self.partials.Grad_Ds[self.D_type](batch_C, self.D_dict)
            if self.stochastic:  
                out = out + self.Sigma * math.sqrt(self.dt) * torch.randn_like(batch_C).to(batch_C)
        else:
            if self.stochastic:  
                out_D = self.partials.Grad_Ds[self.D_type](batch_C, self.D_dict)
                out_V = self.partials.Grad_Vs[self.V_type](batch_C, self.V_dict) 
                out = out_D + out_V + self.Sigma * math.sqrt(self.dt) * torch.randn_like(batch_C).to(batch_C) 
            else:
                out_V = self.partials.Grad_Vs[self.V_type](batch_C, self.V_dict)  
                out_D = self.partials.Grad_Ds[self.D_type](batch_C, self.D_dict)
                out = out_V + out_D
        return out