File size: 29,395 Bytes
2571f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
# ported from https://github.com/pvigier/perlin-numpy
import math
import numpy as np
import torch
import torch.nn as nn
def gradient_f(X, batched = False, delta_lst = [1., 1., 1.]):
'''
Compute gradient of a torch tensor "X" in each direction
Upper-boundaries: Backward Difference
Non-boundaries & Upper-boundaries: Forward Difference
if X is batched: (n_batch, ...);
else: (...)
'''
device = X.device
dim = len(X.size()) - 1 if batched else len(X.size())
#print(batched)
#print(dim)
if dim == 1:
#print('dim = 1')
dX = torch.zeros(X.size(), dtype = torch.float, device = device)
X = X.permute(1, 0) if batched else X
dX = dX.permute(1, 0) if batched else dX
dX[-1] = X[-1] - X[-2] # Backward Difference
dX[:-1] = X[1:] - X[:-1] # Forward Difference
dX = dX.permute(1, 0) if batched else dX
dX /= delta_lst[0]
elif dim == 2:
#print('dim = 2')
dX = torch.zeros(X.size() + tuple([2]), dtype = torch.float, device = device)
X = X.permute(1, 2, 0) if batched else X
dX = dX.permute(1, 2, 3, 0) if batched else dX # put batch to last dim
dX[-1, :, 0] = X[-1, :] - X[-2, :] # Backward Difference
dX[:-1, :, 0] = X[1:] - X[:-1] # Forward Difference
dX[:, -1, 1] = X[:, -1] - X[:, -2] # Backward Difference
dX[:, :-1, 1] = X[:, 1:] - X[:, :-1] # Forward Difference
dX = dX.permute(3, 0, 1, 2) if batched else dX
dX[..., 0] /= delta_lst[0]
dX[..., 1] /= delta_lst[1]
elif dim == 3:
#print('dim = 3')
dX = torch.zeros(X.size() + tuple([3]), dtype = torch.float, device = device)
X = X.permute(1, 2, 3, 0) if batched else X
dX = dX.permute(1, 2, 3, 4, 0) if batched else dX
dX[-1, :, :, 0] = X[-1, :, :] - X[-2, :, :] # Backward Difference
dX[:-1, :, :, 0] = X[1:] - X[:-1] # Forward Difference
dX[:, -1, :, 1] = X[:, -1] - X[:, -2] # Backward Difference
dX[:, :-1, :, 1] = X[:, 1:] - X[:, :-1] # Forward Difference
dX[:, :, -1, 2] = X[:, :, -1] - X[:, :, -2] # Backward Difference
dX[:, :, :-1, 2] = X[:, :, 1:] - X[:, :, :-1] # Forward Difference
dX = dX.permute(4, 0, 1, 2, 3) if batched else dX
dX[..., 0] /= delta_lst[0]
dX[..., 1] /= delta_lst[1]
dX[..., 2] /= delta_lst[2]
return dX
def gradient_b(X, batched = False, delta_lst = [1., 1., 1.]):
'''
Compute gradient of a torch tensor "X" in each direction
Non-boundaries & Upper-boundaries: Backward Difference
Lower-boundaries: Forward Difference
if X is batched: (n_batch, ...);
else: (...)
'''
device = X.device
dim = len(X.size()) - 1 if batched else len(X.size())
#print(batched)
#print(dim)
if dim == 1:
#print('dim = 1')
dX = torch.zeros(X.size(), dtype = torch.float, device = device)
X = X.permute(1, 0) if batched else X
dX = dX.permute(1, 0) if batched else dX
dX[1:] = X[1:] - X[:-1] # Backward Difference
dX[0] = X[1] - X[0] # Forward Difference
dX = dX.permute(1, 0) if batched else dX
dX /= delta_lst[0]
elif dim == 2:
#print('dim = 2')
dX = torch.zeros(X.size() + tuple([2]), dtype = torch.float, device = device)
X = X.permute(1, 2, 0) if batched else X
dX = dX.permute(1, 2, 3, 0) if batched else dX # put batch to last dim
dX[1:, :, 0] = X[1:, :] - X[:-1, :] # Backward Difference
dX[0, :, 0] = X[1] - X[0] # Forward Difference
dX[:, 1:, 1] = X[:, 1:] - X[:, :-1] # Backward Difference
dX[:, 0, 1] = X[:, 1] - X[:, 0] # Forward Difference
dX = dX.permute(3, 0, 1, 2) if batched else dX
dX[..., 0] /= delta_lst[0]
dX[..., 1] /= delta_lst[1]
elif dim == 3:
#print('dim = 3')
dX = torch.zeros(X.size() + tuple([3]), dtype = torch.float, device = device)
X = X.permute(1, 2, 3, 0) if batched else X
dX = dX.permute(1, 2, 3, 4, 0) if batched else dX
dX[1:, :, :, 0] = X[1:, :, :] - X[:-1, :, :] # Backward Difference
dX[0, :, :, 0] = X[1] - X[0] # Forward Difference
dX[:, 1:, :, 1] = X[:, 1:] - X[:, :-1] # Backward Difference
dX[:, 0, :, 1] = X[:, 1] - X[:, 0] # Forward Difference
dX[:, :, 1:, 2] = X[:, :, 1:] - X[:, :, :-1] # Backward Difference
dX[:, :, 0, 2] = X[:, :, 1] - X[:, :, 0] # Forward Difference
dX = dX.permute(4, 0, 1, 2, 3) if batched else dX
dX[..., 0] /= delta_lst[0]
dX[..., 1] /= delta_lst[1]
dX[..., 2] /= delta_lst[2]
return dX
def gradient_c(X, batched = False, delta_lst = [1., 1., 1.]):
'''
Compute gradient of a torch tensor "X" in each direction
Non-boundaries: Central Difference
Upper-boundaries: Backward Difference
Lower-boundaries: Forward Difference
if X is batched: (n_batch, ...);
else: (...)
'''
device = X.device
dim = len(X.size()) - 1 if batched else len(X.size())
#print(X.size())
#print(batched)
#print(dim)
if dim == 1:
#print('dim = 1')
dX = torch.zeros(X.size(), dtype = torch.float, device = device)
X = X.permute(1, 0) if batched else X
dX = dX.permute(1, 0) if batched else dX
dX[1:-1] = (X[2:] - X[:-2]) / 2 # Central Difference
dX[0] = X[1] - X[0] # Forward Difference
dX[-1] = X[-1] - X[-2] # Backward Difference
dX = dX.permute(1, 0) if batched else dX
dX /= delta_lst[0]
elif dim == 2:
#print('dim = 2')
dX = torch.zeros(X.size() + tuple([2]), dtype = torch.float, device = device)
X = X.permute(1, 2, 0) if batched else X
dX = dX.permute(1, 2, 3, 0) if batched else dX # put batch to last dim
dX[1:-1, :, 0] = (X[2:, :] - X[:-2, :]) / 2
dX[0, :, 0] = X[1] - X[0]
dX[-1, :, 0] = X[-1] - X[-2]
dX[:, 1:-1, 1] = (X[:, 2:] - X[:, :-2]) / 2
dX[:, 0, 1] = X[:, 1] - X[:, 0]
dX[:, -1, 1] = X[:, -1] - X[:, -2]
dX = dX.permute(3, 0, 1, 2) if batched else dX
dX[..., 0] /= delta_lst[0]
dX[..., 1] /= delta_lst[1]
elif dim == 3:
#print('dim = 3')
dX = torch.zeros(X.size() + tuple([3]), dtype = torch.float, device = device)
X = X.permute(1, 2, 3, 0) if batched else X
dX = dX.permute(1, 2, 3, 4, 0) if batched else dX
dX[1:-1, :, :, 0] = (X[2:, :, :] - X[:-2, :, :]) / 2
dX[0, :, :, 0] = X[1] - X[0]
dX[-1, :, :, 0] = X[-1] - X[-2]
dX[:, 1:-1, :, 1] = (X[:, 2:, :] - X[:, :-2, :]) / 2
dX[:, 0, :, 1] = X[:, 1] - X[:, 0]
dX[:, -1, :, 1] = X[:, -1] - X[:, -2]
dX[:, :, 1:-1, 2] = (X[:, :, 2:] - X[:, :, :-2]) / 2
dX[:, :, 0, 2] = X[:, :, 1] - X[:, :, 0]
dX[:, :, -1, 2] = X[:, :, -1] - X[:, :, -2]
dX = dX.permute(4, 0, 1, 2, 3) if batched else dX
dX[..., 0] /= delta_lst[0]
dX[..., 1] /= delta_lst[1]
dX[..., 2] /= delta_lst[2]
return dX
def gradient_c_numpy(X, batched = False, delta_lst = [1., 1., 1.]):
'''
Compute gradient of a Numpy array "X" in each direction
Non-boundaries: Central Difference
Upper-boundaries: Backward Difference
Lower-boundaries: Forward Difference
if X is batched: (n_batch, ...);
else: (...)
'''
dim = len(X.shape) - 1 if batched else len(X.shape)
#print(dim)
if dim == 1:
#print('dim = 1')
X = np.transpose(X, (1, 0)) if batched else X
dX = np.zeros(X.shapee).astype(float)
dX[1:-1] = (X[2:] - X[:-2]) / 2 # Central Difference
dX[0] = X[1] - X[0] # Forward Difference
dX[-1] = X[-1] - X[-2] # Backward Difference
dX = np.transpose(X, (1, 0)) if batched else dX
dX /= delta_lst[0]
elif dim == 2:
#print('dim = 2')
dX = np.zeros(X.shape + tuple([2])).astype(float)
X = np.transpose(X, (1, 2, 0)) if batched else X
dX = np.transpose(dX, (1, 2, 3, 0)) if batched else dX # put batch to last dim
dX[1:-1, :, 0] = (X[2:, :] - X[:-2, :]) / 2
dX[0, :, 0] = X[1] - X[0]
dX[-1, :, 0] = X[-1] - X[-2]
dX[:, 1:-1, 1] = (X[:, 2:] - X[:, :-2]) / 2
dX[:, 0, 1] = X[:, 1] - X[:, 0]
dX[:, -1, 1] = X[:, -1] - X[:, -2]
dX = np.transpose(dX, (3, 0, 1, 2)) if batched else dX
dX[..., 0] /= delta_lst[0]
dX[..., 1] /= delta_lst[1]
elif dim == 3:
#print('dim = 3')
dX = np.zeros(X.shape + tuple([3])).astype(float)
X = np.transpose(X, (1, 2, 3, 0)) if batched else X
dX = np.transpose(dX, (1, 2, 3, 4, 0)) if batched else dX # put batch to last dim
dX[1:-1, :, :, 0] = (X[2:, :, :] - X[:-2, :, :]) / 2
dX[0, :, :, 0] = X[1] - X[0]
dX[-1, :, :, 0] = X[-1] - X[-2]
dX[:, 1:-1, :, 1] = (X[:, 2:, :] - X[:, :-2, :]) / 2
dX[:, 0, :, 1] = X[:, 1] - X[:, 0]
dX[:, -1, :, 1] = X[:, -1] - X[:, -2]
dX[:, :, 1:-1, 2] = (X[:, :, 2:] - X[:, :, :-2]) / 2
dX[:, :, 0, 2] = X[:, :, 1] - X[:, :, 0]
dX[:, :, -1, 2] = X[:, :, -1] - X[:, :, -2]
dX = np.transpose(dX, (4, 0, 1, 2, 3)) if batched else dX
dX[..., 0] /= delta_lst[0]
dX[..., 1] /= delta_lst[1]
dX[..., 2] /= delta_lst[2]
return dX
def gradient_f_numpy(X, batched = False, delta_lst = [1., 1., 1.]):
'''
Compute gradient of a torch tensor "X" in each direction
Upper-boundaries: Backward Difference
Non-boundaries & Upper-boundaries: Forward Difference
if X is batched: (n_batch, ...);
else: (...)
'''
dim = len(X.shape) - 1 if batched else len(X.shape)
#print(dim)
if dim == 1:
#print('dim = 1')
X = np.transpose(X, (1, 0)) if batched else X
dX = np.zeros(X.shapee).astype(float)
dX[-1] = X[-1] - X[-2] # Backward Difference
dX[:-1] = X[1:] - X[:-1] # Forward Difference
dX = np.transpose(X, (1, 0)) if batched else dX
dX /= delta_lst[0]
elif dim == 2:
#print('dim = 2')
dX = np.zeros(X.shape + tuple([2])).astype(float)
X = np.transpose(X, (1, 2, 0)) if batched else X
dX = np.transpose(dX, (1, 2, 3, 0)) if batched else dX # put batch to last dim
dX[-1, :, 0] = X[-1, :] - X[-2, :] # Backward Difference
dX[:-1, :, 0] = X[1:] - X[:-1] # Forward Difference
dX[:, -1, 1] = X[:, -1] - X[:, -2] # Backward Difference
dX[:, :-1, 1] = X[:, 1:] - X[:, :-1] # Forward Difference
dX = np.transpose(dX, (3, 0, 1, 2)) if batched else dX
dX[..., 0] /= delta_lst[0]
dX[..., 1] /= delta_lst[1]
elif dim == 3:
#print('dim = 3')
dX = np.zeros(X.shape + tuple([3])).astype(float)
X = np.transpose(X, (1, 2, 3, 0)) if batched else X
dX = np.transpose(dX, (1, 2, 3, 4, 0)) if batched else dX # put batch to last dim
dX[-1, :, :, 0] = X[-1, :, :] - X[-2, :, :] # Backward Difference
dX[:-1, :, :, 0] = X[1:] - X[:-1] # Forward Difference
dX[:, -1, :, 1] = X[:, -1] - X[:, -2] # Backward Difference
dX[:, :-1, :, 1] = X[:, 1:] - X[:, :-1] # Forward Difference
dX[:, :, -1, 2] = X[:, :, -1] - X[:, :, -2] # Backward Difference
dX[:, :, :-1, 2] = X[:, :, 1:] - X[:, :, :-1] # Forward Difference
dX = np.transpose(dX, (4, 0, 1, 2, 3)) if batched else dX
dX[..., 0] /= delta_lst[0]
dX[..., 1] /= delta_lst[1]
dX[..., 2] /= delta_lst[2]
return dX
class Upwind(object):
'''
Backward if > 0, forward if <= 0
'''
def __init__(self, U, data_spacing = [1., 1, 1.], batched = True):
self.U = U # (s, r, c)
self.batched = batched
self.data_spacing = data_spacing
self.dim = len(self.U.size()) - 1 if batched else len(self.U.size())
self.I = torch.ones(self.U.size(), dtype = torch.float, device = U.device)
def dX(self, FGx):
dXf = gradient_f(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 0]
dXb = gradient_b(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 0]
Xflag = (FGx > 0).float()
return dXf * (self.I - Xflag) + dXb * Xflag
def dY(self, FGy):
dYf = gradient_f(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 1]
dYb = gradient_b(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 1]
Yflag = (FGy > 0).float()
return dYf * (self.I - Yflag) + dYb * Yflag
def dZ(self, FGz):
dZf = gradient_f(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 2]
dZb = gradient_b(self.U, batched = self.batched, delta_lst = self.data_spacing)[..., 2]
Zflag = (FGz > 0).float()
return dZf * (self.I - Zflag) + dZb * Zflag
class AdvDiffPartial(nn.Module):
def __init__(self, data_spacing, device):
super(AdvDiffPartial, self).__init__()
self.dimension = len(data_spacing) # (slc, row, col)
self.device = device
self.data_spacing = data_spacing
@property
def Grad_Ds(self):
return {
'constant': self.Grad_constantD,
'scalar': self.Grad_scalarD,
'diag': self.Grad_diagD,
'full': self.Grad_fullD,
'full_dual': self.Grad_fullD,
'full_spectral':self.Grad_fullD,
'full_cholesky': self.Grad_fullD,
'full_symmetric': self.Grad_fullD
}
@property
def Grad_Vs(self):
return {
'constant': self.Grad_constantV,
'scalar': self.Grad_scalarV,
'vector': self.Grad_vectorV, # For general V w/o div-free TODO self.Grad_vectorV
'vector_div_free': self.Grad_div_free_vectorV,
'vector_div_free_clebsch': self.Grad_div_free_vectorV,
'vector_div_free_stream': self.Grad_div_free_vectorV,
'vector_div_free_stream_gauge': self.Grad_div_free_vectorV,
}
def Grad_constantD(self, C, Dlst):
if self.dimension == 1:
return Dlst['D'] * (self.ddXc(C))
elif self.dimension == 2:
return Dlst['D'] * (self.ddXc(C) + self.ddYc(C))
elif self.dimension == 3:
return Dlst['D'] * (self.ddXc(C) + self.ddYc(C) + self.ddZc(C))
def Grad_constant_tensorD(self, C, Dlst):
if self.dimension == 1:
raise NotImplementedError
elif self.dimension == 2:
dC_c = self.dc(C)
dC_f = self.df(C)
return Dlst['Dxx'] * self.dXb(dC_f[..., 0]) +\
Dlst['Dxy'] * self.dXb(dC_f[..., 1]) + Dlst['Dxy'] * self.dYb(dC_f[..., 0]) +\
Dlst['Dyy'] * self.dYb(dC_f[..., 1])
elif self.dimension == 3:
dC_c = self.dc(C)
dC_f = self.df(C)
return Dlst['Dxx'] * self.dXb(dC_f[..., 0]) + Dlst['Dyy'] * self.dYb(dC_f[..., 1]) + Dlst['Dzz'] * self.dZb(dC_f[..., 2]) + \
Dlst['Dxy'] * (self.dXb(dC_f[..., 1]) + self.dYb(dC_f[..., 0])) + \
Dlst['Dyz'] * (self.dYb(dC_f[..., 2]) + self.dZb(dC_f[..., 1])) + \
Dlst['Dxz'] * (self.dZb(dC_f[..., 0]) + self.dXb(dC_f[..., 2]))
def Grad_scalarD(self, C, Dlst): # batch_C: (batch_size, (slc), row, col)
# Expanded version: \nabla (D \nabla C) => \nabla D \cdot \nabla C (part (a)) + D \Delta C (part (b)) #
# NOTE: Work better than Central Differences !!! #
# Nested Forward-Backward Difference Scheme in part (b)#
if self.dimension == 1:
dC = gradient_c(C, batched = True, delta_lst = self.data_spacing)
return gradient_c(Dlst['D'], batched = True, delta_lst = self.data_spacing) * dC + \
Dlst['D'] * gradient_c(dC, batched = True, delta_lst = self.data_spacing)
else: # (dimension = 2 or 3)
dC_c = gradient_c(C, batched = True, delta_lst = self.data_spacing)
dC_f = gradient_f(C, batched = True, delta_lst = self.data_spacing)
dD_c = gradient_c(Dlst['D'], batched = True, delta_lst = self.data_spacing)
out = (dD_c * dC_c).sum(-1)
for dim in range(dC_f.size(-1)):
out += Dlst['D'] * gradient_b(dC_f[..., dim], batched = True, delta_lst = self.data_spacing)[..., dim]
return out
def Grad_diagD(self, C, Dlst):
# Expanded version #
if self.dimension == 1:
raise NotImplementedError('diag_D is not supported for 1D version of diffusivity')
elif self.dimension == 2:
dC_c = self.dc(C)
dC_f = self.df(C)
return self.dXc(Dlst['Dxx']) * dC_c[..., 0] + Dlst['Dxx'] * self.dXb(dC_f[..., 0]) +\
self.dYc(Dlst['Dyy']) * dC_c[..., 1] + Dlst['Dyy'] * self.dYb(dC_f[..., 1])
elif self.dimension == 3:
dC_c = self.dc(C)
dC_f = self.df(C)
return self.dXc(Dlst['Dxx']) * dC_c[..., 0] + Dlst['Dxx'] * self.dXb(dC_f[..., 0]) +\
self.dYc(Dlst['Dyy']) * dC_c[..., 1] + Dlst['Dyy'] * self.dYb(dC_f[..., 1]) +\
self.dZc(Dlst['Dzz']) * dC_c[..., 2] + Dlst['Dzz'] * self.dZb(dC_f[..., 2])
def Grad_fullD(self, C, Dlst):
# Expanded version #
'''https://github.com/uncbiag/PIANOinD/blob/master/Doc/PIANOinD.pdf'''
if self.dimension == 1:
raise NotImplementedError('full_D is not supported for 1D version of diffusivity')
elif self.dimension == 2:
dC_c = self.dc(C)
dC_f = self.df(C)
return self.dXc(Dlst['Dxx']) * dC_c[..., 0] + Dlst['Dxx'] * self.dXb(dC_f[..., 0]) +\
self.dXc(Dlst['Dxy']) * dC_c[..., 1] + Dlst['Dxy'] * self.dXb(dC_f[..., 1]) +\
self.dYc(Dlst['Dxy']) * dC_c[..., 0] + Dlst['Dxy'] * self.dYb(dC_f[..., 0]) +\
self.dYc(Dlst['Dyy']) * dC_c[..., 1] + Dlst['Dyy'] * self.dYb(dC_f[..., 1])
elif self.dimension == 3:
dC_c = self.dc(C)
dC_f = self.df(C)
return (self.dXc(Dlst['Dxx']) + self.dYc(Dlst['Dxy']) + self.dZc(Dlst['Dxz'])) * dC_c[..., 0] + \
(self.dXc(Dlst['Dxy']) + self.dYc(Dlst['Dyy']) + self.dZc(Dlst['Dyz'])) * dC_c[..., 1] + \
(self.dXc(Dlst['Dxz']) + self.dYc(Dlst['Dyz']) + self.dZc(Dlst['Dzz'])) * dC_c[..., 2] + \
Dlst['Dxx'] * self.dXb(dC_f[..., 0]) + Dlst['Dyy'] * self.dYb(dC_f[..., 1]) + Dlst['Dzz'] * self.dZb(dC_f[..., 2]) + \
Dlst['Dxy'] * (self.dXb(dC_f[..., 1]) + self.dYb(dC_f[..., 0])) + \
Dlst['Dyz'] * (self.dYb(dC_f[..., 2]) + self.dZb(dC_f[..., 1])) + \
Dlst['Dxz'] * (self.dZb(dC_f[..., 0]) + self.dXb(dC_f[..., 2]))
def Grad_constantV(self, C, Vlst):
if len(Vlst['V'].size()) == 1:
if self.dimension == 1:
return - Vlst['V'] * self.dXb(C) if Vlst['V'] > 0 else - Vlst['V'] * self.dXf(C)
elif self.dimension == 2:
return - Vlst['V'] * (self.dXb(C) + self.dYb(C)) if Vlst['V'] > 0 else - Vlst['V'] * (self.dXf(C) + self.dYf(C))
elif self.dimension == 3:
return - Vlst['V'] * (self.dXb(C) + self.dYb(C) + self.dZb(C)) if Vlst['V'] > 0 else - Vlst['V'] * (self.dXf(C) + self.dYf(C) + self.dZf(C))
else:
if self.dimension == 1:
return - Vlst['V'] * self.dXb(C) if Vlst['V'][0, 0] > 0 else - Vlst['V'] * self.dXf(C)
elif self.dimension == 2:
return - Vlst['V'] * (self.dXb(C) + self.dYb(C)) if Vlst['V'][0, 0, 0] > 0 else - Vlst['V'] * (self.dXf(C) + self.dYf(C))
elif self.dimension == 3:
return - Vlst['V'] * (self.dXb(C) + self.dYb(C) + self.dZb(C)) if Vlst['V'][0, 0, 0, 0] > 0 else - Vlst['V'] * (self.dXf(C) + self.dYf(C) + self.dZf(C))
def Grad_constant_vectorV(self, C, Vlst):
if self.dimension == 1:
raise NotImplementedError
elif self.dimension == 2:
out_x = - Vlst['Vx'] * (self.dXb(C) + self.dYb(C)) if Vlst['Vx'][0, 0, 0] > 0 else - Vlst['Vx'] * (self.dXf(C) + self.dYf(C))
out_y = - Vlst['Vy'] * (self.dXb(C) + self.dYb(C)) if Vlst['Vy'][0, 0, 0] > 0 else - Vlst['Vy'] * (self.dXf(C) + self.dYf(C))
return out_x + out_y
elif self.dimension == 3:
out_x = - Vlst['Vx'] * (self.dXb(C) + self.dYb(C)) if Vlst['Vx'][0, 0, 0] > 0 else - Vlst['Vx'] * (self.dXf(C) + self.dYf(C))
out_y = - Vlst['Vy'] * (self.dXb(C) + self.dYb(C)) if Vlst['Vy'][0, 0, 0] > 0 else - Vlst['Vy'] * (self.dXf(C) + self.dYf(C))
out_z = - Vlst['Vz'] * (self.dXb(C) + self.dYb(C)) if Vlst['Vz'][0, 0, 0] > 0 else - Vlst['Vz'] * (self.dXf(C) + self.dYf(C))
return out_x + out_y + out_z
def Grad_SimscalarV(self, C, Vlst):
V = Vlst['V']
Upwind_C = Upwind(C, self.data_spacing)
if self.dimension == 1:
C_x = Upwind_C.dX(V)
return - V * C_x
if self.dimension == 2:
C_x, C_y = Upwind_C.dX(V), Upwind_C.dY(V)
return - V * (C_x + C_y)
if self.dimension == 3:
C_x, C_y, C_z = Upwind_C.dX(V), Upwind_C.dY(V), Upwind_C.dZ(V)
return - V * (C_x + C_y + C_z)
def Grad_scalarV(self, C, Vlst):
V = Vlst['V']
Upwind_C = Upwind(C, self.data_spacing)
dV = gradient_c(V, batched = True, delta_lst = self.data_spacing)
if self.dimension == 1:
C_x = Upwind_C.dX(V)
return - V * C_x - C * dV
elif self.dimension == 2:
C_x, C_y = Upwind_C.dX(V), Upwind_C.dY(V)
return - V * (C_x + C_y) - C * dV.sum(-1)
elif self.dimension == 3:
C_x, C_y, C_z = Upwind_C.dX(V), Upwind_C.dY(V), Upwind_C.dZ(V)
return - V * (C_x + C_y + C_z) - C * dV.sum(-1)
def Grad_div_free_vectorV(self, C, Vlst):
''' For divergence-free-by-definition velocity'''
if self.dimension == 1:
raise NotImplementedError('clebschVector is not supported for 1D version of velocity')
Upwind_C = Upwind(C, self.data_spacing)
C_x, C_y = Upwind_C.dX(Vlst['Vx']), Upwind_C.dY(Vlst['Vy'])
if self.dimension == 2:
return - (Vlst['Vx'] * C_x + Vlst['Vy'] * C_y)
elif self.dimension == 3:
C_z = Upwind_C.dZ(Vlst['Vz'])
return - (Vlst['Vx'] * C_x + Vlst['Vy'] * C_y + Vlst['Vz'] * C_z)
def Grad_vectorV(self, C, Vlst):
''' For general velocity'''
if self.dimension == 1:
raise NotImplementedError('vector is not supported for 1D version of velocity')
Upwind_C = Upwind(C, self.data_spacing)
C_x, C_y = Upwind_C.dX(Vlst['Vx']), Upwind_C.dY(Vlst['Vy'])
Vx_x = self.dXc(Vlst['Vx'])
Vy_y = self.dYc(Vlst['Vy'])
if self.dimension == 2:
return - (Vlst['Vx'] * C_x + Vlst['Vy'] * C_y) - C * (Vx_x + Vy_y)
if self.dimension == 3:
C_z = Upwind_C.dZ(Vlst['Vz'])
Vz_z = self.dZc(Vlst['Vz'])
return - (Vlst['Vx'] * C_x + Vlst['Vy'] * C_y + Vlst['Vz'] * C_z) - C * (Vx_x + Vy_y + Vz_z)
################# Utilities #################
def db(self, X):
return gradient_b(X, batched = True, delta_lst = self.data_spacing)
def df(self, X):
return gradient_f(X, batched = True, delta_lst = self.data_spacing)
def dc(self, X):
return gradient_c(X, batched = True, delta_lst = self.data_spacing)
def dXb(self, X):
return gradient_b(X, batched = True, delta_lst = self.data_spacing)[..., 0]
def dXf(self, X):
return gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 0]
def dXc(self, X):
return gradient_c(X, batched = True, delta_lst = self.data_spacing)[..., 0]
def dYb(self, X):
return gradient_b(X, batched = True, delta_lst = self.data_spacing)[..., 1]
def dYf(self, X):
return gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 1]
def dYc(self, X):
return gradient_c(X, batched = True, delta_lst = self.data_spacing)[..., 1]
def dZb(self, X):
return gradient_b(X, batched = True, delta_lst = self.data_spacing)[..., 2]
def dZf(self, X):
return gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 2]
def dZc(self, X):
return gradient_c(X, batched = True, delta_lst = self.data_spacing)[..., 2]
def ddXc(self, X):
return gradient_b(gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 0],
batched = True, delta_lst = self.data_spacing)[..., 0]
def ddYc(self, X):
return gradient_b(gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 1],
batched = True, delta_lst = self.data_spacing)[..., 1]
def ddZc(self, X):
return gradient_b(gradient_f(X, batched = True, delta_lst = self.data_spacing)[..., 2],
batched = True, delta_lst = self.data_spacing)[..., 2]
class AdvDiffPDE(nn.Module):
'''
Plain advection-diffusion PDE solver for pre-set V_lst and D_lst (1D, 2D, 3D) for forward time series simulation
'''
def __init__(self, data_spacing, perf_pattern, D_type='scalar', V_type='vector', BC=None, dt=0.1, V_dict={}, D_dict={}, stochastic=False, device='cpu'):
super(AdvDiffPDE, self).__init__()
self.BC = BC
self.dt = dt
self.dimension = len(data_spacing)
self.perf_pattern = perf_pattern
self.partials = AdvDiffPartial(data_spacing, device)
self.D_type, self.V_type = D_type, V_type
self.stochastic = stochastic
self.V_dict, self.D_dict = V_dict, D_dict
self.Sigma, self.Sigma_V, self.Sigma_D = 0., 0., 0. # Only for initialization #
if self.dimension == 1:
self.neumann_BC = torch.nn.ReplicationPad1d(1)
elif self.dimension == 2:
self.neumann_BC = torch.nn.ReplicationPad2d(1)
elif self.dimension == 3:
self.neumann_BC = torch.nn.ReplicationPad3d(1)
else:
raise ValueError('Unsupported dimension: %d' % self.dimension)
@property
def set_BC(self):
# NOTE For bondary condition of mass concentration #
'''X: (n_batch, spatial_shape)'''
if self.BC == 'neumann' or self.BC == 'cauchy':
if self.dimension == 1:
return lambda X: self.neumann_BC(X[:, 1:-1].unsqueeze(dim=1))[:,0]
elif self.dimension == 2:
return lambda X: self.neumann_BC(X[:, 1:-1, 1:-1].unsqueeze(dim=1))[:,0]
elif self.dimension == 3:
return lambda X: self.neumann_BC(X[:, 1:-1, 1:-1, 1:-1].unsqueeze(dim=1))[:,0]
else:
raise NotImplementedError('Unsupported B.C.!')
elif self.BC == 'dirichlet_neumann' or self.BC == 'source_neumann':
ctrl_wdth = 1
if self.dimension == 1:
self.dirichlet_BC = torch.nn.ReplicationPad1d(ctrl_wdth)
return lambda X: self.dirichlet_BC(X[:, ctrl_wdth : -ctrl_wdth].unsqueeze(dim=1))[:,0]
elif self.dimension == 2:
self.dirichlet_BC = torch.nn.ReplicationPad2d(ctrl_wdth)
return lambda X: self.dirichlet_BC(X[:, ctrl_wdth : -ctrl_wdth, ctrl_wdth : -ctrl_wdth].unsqueeze(dim=1))[:,0]
elif self.dimension == 3:
self.dirichlet_BC = torch.nn.ReplicationPad3d(ctrl_wdth)
return lambda X: self.neumann_dirichlet_BCBC(X[:, ctrl_wdth : -ctrl_wdth, ctrl_wdth : -ctrl_wdth, ctrl_wdth : -ctrl_wdth].unsqueeze(dim=1))[:,0]
else:
raise NotImplementedError('Unsupported B.C.!')
else:
return lambda X: X
def forward(self, t, batch_C):
'''
t: (batch_size,)
batch_C: (batch_size, (slc,) row, col)
'''
batch_size = batch_C.size(0)
batch_C = self.set_BC(batch_C)
if 'diff' not in self.perf_pattern:
out = self.partials.Grad_Vs[self.V_type](batch_C, self.V_dict)
if self.stochastic:
out = out + self.Sigma * math.sqrt(self.dt) * torch.randn_like(batch_C).to(batch_C)
elif 'adv' not in self.perf_pattern:
out = self.partials.Grad_Ds[self.D_type](batch_C, self.D_dict)
if self.stochastic:
out = out + self.Sigma * math.sqrt(self.dt) * torch.randn_like(batch_C).to(batch_C)
else:
if self.stochastic:
out_D = self.partials.Grad_Ds[self.D_type](batch_C, self.D_dict)
out_V = self.partials.Grad_Vs[self.V_type](batch_C, self.V_dict)
out = out_D + out_V + self.Sigma * math.sqrt(self.dt) * torch.randn_like(batch_C).to(batch_C)
else:
out_V = self.partials.Grad_Vs[self.V_type](batch_C, self.V_dict)
out_D = self.partials.Grad_Ds[self.D_type](batch_C, self.D_dict)
out = out_V + out_D
return out
|