""" *finite_difference.py* is the main package to compute finite differences in 1D, 2D, and 3D on numpy arrays (class FD_np) and pytorch tensors (class FD_torch). The package supports first and second order derivatives and Neumann and linear extrapolation boundary conditions (though the latter have not been tested extensively yet). """ from __future__ import absolute_import # from builtins import object from abc import ABCMeta, abstractmethod import torch from torch.autograd import Variable import numpy as np from future.utils import with_metaclass class FD(with_metaclass(ABCMeta, object)): """ *FD* is the abstract class for finite differences. It includes most of the actual finite difference code, but requires the definition (in a derived class) of the methods *get_dimension*, *create_zero_array*, and *get_size_of_array*. In this way the numpy and pytorch versions can easily be derived. All the method expect BxXxYxZ format (i.e., they process a batch at a time) """ def __init__(self, spacing, bcNeumannZero=True): """ Constructor :param spacing: 1D numpy array defining the spatial spacing, e.g., [0.1,0.1,0.1] for a 3D image :param bcNeumannZero: Defines the boundary condition. If set to *True* (default) zero Neumann boundary conditions are imposed. If set to *False* linear extrapolation is used (this is still experimental, but may be beneficial for better boundary behavior) """ self.dim = len(spacing) # In my code, data_spacing is a list # spacing.size """spatial dimension""" self.spacing = np.ones(self.dim) """spacing""" self.bcNeumannZero = bcNeumannZero # if false then linear interpolation """should Neumann boundary conditions be used? (otherwise linear extrapolation)""" if len(spacing) == 1: #spacing.size==1: self.spacing[0] = spacing[0] elif len(spacing) == 2: # spacing.size==2: self.spacing[0] = spacing[0] self.spacing[1] = spacing[1] elif len(spacing) == 3: # spacing.size==3: self.spacing[0] = spacing[0] self.spacing[1] = spacing[1] self.spacing[2] = spacing[2] else: print('Current dimension:', len(spacing)) raise ValueError('Finite differences are only supported in dimensions 1 to 3') def dXb(self,I): """ Backward difference in x direction: :math:`\\frac{dI(i)}{dx}\\approx\\frac{I_i-I_{i-1}}{h_x}` :param I: Input image :return: Returns the first derivative in x direction using backward differences """ return (I-self.xm(I))/self.spacing[0] def dXf(self,I): """ Forward difference in x direction: :math:`\\frac{dI(i)}{dx}\\approx\\frac{I_{i+1}-I_{i}}{h_x}` :param I: Input image :return: Returns the first derivative in x direction using forward differences """ return (self.xp(I)-I)/self.spacing[0] def dXc(self,I): """ Central difference in x direction: :math:`\\frac{dI(i)}{dx}\\approx\\frac{I_{i+1}-I_{i-1}}{2h_x}` :param I: Input image :return: Returns the first derivative in x direction using central differences """ return (self.xp(I)-self.xm(I))/(2*self.spacing[0]) def ddXc(self,I): """ Second deriative in x direction :param I: Input image :return: Returns the second derivative in x direction """ return (self.xp(I)-2*I+self.xm(I))/(self.spacing[0]**2) def dYb(self,I): """ Same as dXb, but for the y direction :param I: Input image :return: Returns the first derivative in y direction using backward differences """ return (I-self.ym(I))/self.spacing[1] def dYf(self,I): """ Same as dXf, but for the y direction :param I: Input image :return: Returns the first derivative in y direction using forward differences """ return (self.yp(I)-I)/self.spacing[1] def dYc(self,I): """ Same as dXc, but for the y direction :param I: Input image :return: Returns the first derivative in y direction using central differences """ return (self.yp(I)-self.ym(I))/(2*self.spacing[1]) def ddYc(self,I): """ Same as ddXc, but for the y direction :param I: Input image :return: Returns the second derivative in the y direction """ return (self.yp(I)-2*I+self.ym(I))/(self.spacing[1]**2) def dZb(self,I): """ Same as dXb, but for the z direction :param I: Input image :return: Returns the first derivative in the z direction using backward differences """ return (I - self.zm(I))/self.spacing[2] def dZf(self, I): """ Same as dXf, but for the z direction :param I: Input image :return: Returns the first derivative in the z direction using forward differences """ return (self.zp(I)-I)/self.spacing[2] def dZc(self, I): """ Same as dXc, but for the z direction :param I: Input image :return: Returns the first derivative in the z direction using central differences """ return (self.zp(I)-self.zm(I))/(2*self.spacing[2]) def ddZc(self,I): """ Same as ddXc, but for the z direction :param I: Input iamge :return: Returns the second derivative in the z direction """ return (self.zp(I)-2*I+self.zm(I))/(self.spacing[2]**2) def lap(self, I): """ Compute the Lapacian of an image !!!!!!!!!!! IMPORTANT: ALL THE FOLLOWING IMPLEMENTED CODE ADD 1 ON DIMENSION, WHICH REPRESENT BATCH DIMENSION. THIS IS FOR COMPUTATIONAL EFFICIENCY. :param I: Input image [batch, X,Y,Z] :return: Returns the Laplacian """ ndim = self.getdimension(I) if ndim == 1+1: return self.ddXc(I) elif ndim == 2+1: return (self.ddXc(I) + self.ddYc(I)) elif ndim == 3+1: return (self.ddXc(I) + self.ddYc(I) + self.ddZc(I)) else: raise ValueError('Finite differences are only supported in dimensions 1 to 3') def grad_norm_sqr_c(self, I): """ Computes the gradient norm of an image !!!!!!!!!!! IMPORTANT: ALL THE FOLLOWING IMPLEMENTED CODE ADD 1 ON DIMENSION, WHICH REPRESENT BATCH DIMENSION. THIS IS FOR COMPUTATIONAL EFFICIENCY. :param I: Input image [batch, X,Y,Z] :return: returns ||grad I||^2 """ ndim = self.getdimension(I) if ndim == 1 + 1: return self.dXc(I)**2 elif ndim == 2 + 1: return (self.dXc(I)**2 + self.dYc(I)**2) elif ndim == 3 + 1: return (self.dXc(I)**2 + self.dYc(I)**2 + self.dZc(I)**2) else: raise ValueError('Finite differences are only supported in dimensions 1 to 3') def grad_norm_sqr_f(self, I): """ Computes the gradient norm of an image !!!!!!!!!!! IMPORTANT: ALL THE FOLLOWING IMPLEMENTED CODE ADD 1 ON DIMENSION, WHICH REPRESENT BATCH DIMENSION. THIS IS FOR COMPUTATIONAL EFFICIENCY. :param I: Input image [batch, X,Y,Z] :return: returns ||grad I||^2 """ ndim = self.getdimension(I) if ndim == 1 + 1: return self.dXf(I)**2 elif ndim == 2 + 1: return (self.dXf(I)**2 + self.dYf(I)**2) elif ndim == 3 + 1: return (self.dXf(I)**2 + self.dYf(I)**2 + self.dZf(I)**2) else: raise ValueError('Finite differences are only supported in dimensions 1 to 3') def grad_norm_sqr_b(self, I): """ Computes the gradient norm of an image !!!!!!!!!!! IMPORTANT: ALL THE FOLLOWING IMPLEMENTED CODE ADD 1 ON DIMENSION, WHICH REPRESENT BATCH DIMENSION. THIS IS FOR COMPUTATIONAL EFFICIENCY. :param I: Input image [batch, X,Y,Z] :return: returns ||grad I||^2 """ ndim = self.getdimension(I) if ndim == 1 + 1: return self.dXb(I)**2 elif ndim == 2 + 1: return (self.dXb(I)**2 + self.dYb(I)**2) elif ndim == 3 + 1: return (self.dXb(I)**2 + self.dYb(I)**2 + self.dZb(I)**2) else: raise ValueError('Finite differences are only supported in dimensions 1 to 3') @abstractmethod def getdimension(self,I): """ Abstract method to return the dimension of an input image I :param I: Input image :return: Returns the dimension of the image I """ pass @abstractmethod def create_zero_array(self, sz): """ Abstract method to create a zero array of a given size, sz. E.g., sz=[10,2,5] :param sz: Size array :return: Returns a zero array of the specified size """ pass @abstractmethod def get_size_of_array(self, A): """ Abstract method to return the size of an array (as a vector) :param A: Input array :return: Returns its size (e.g., [5,10] or [3,4,6] """ pass def xp(self,I): """ !!!!!!!!!!! IMPORTANT: ALL THE FOLLOWING IMPLEMENTED CODE ADD 1 ON DIMENSION, WHICH REPRESENT BATCH DIMENSION. THIS IS FOR COMPUTATIONAL EFFICIENCY. Returns the values for x-index incremented by one (to the right in 1D) :param I: Input image [batch, X, Y,Z] :return: Image with values at an x-index one larger """ rxp = self.create_zero_array( self.get_size_of_array( I ) ) ndim = self.getdimension(I) if ndim == 1+1: rxp[:,0:-1] = I[:,1:] if self.bcNeumannZero: rxp[:,-1] = I[:,-1] else: rxp[:,-1] = 2*I[:,-1]-I[:,-2] elif ndim == 2+1: rxp[:,0:-1,:] = I[:,1:,:] if self.bcNeumannZero: rxp[:,-1,:] = I[:,-1,:] else: rxp[:,-1,:] = 2*I[:,-1,:]-I[:,-2,:] elif ndim == 3+1: rxp[:,0:-1,:,:] = I[:,1:,:,:] if self.bcNeumannZero: rxp[:,-1,:,:] = I[:,-1,:,:] else: rxp[:,-1,:,:] = 2*I[:,-1,:,:]-I[:,-2,:,:] else: raise ValueError('Finite differences are only supported in dimensions 1 to 3') return rxp def xm(self,I): """ !!!!!!!!!!! IMPORTANT: ALL THE FOLLOWING IMPLEMENTED CODE ADD 1 ON DIMENSION, WHICH REPRESENT BATCH DIMENSION. THIS IS FOR COMPUTATIONAL EFFICIENCY. Returns the values for x-index decremented by one (to the left in 1D) :param I: Input image [batch, X, Y, Z] :return: Image with values at an x-index one smaller """ rxm = self.create_zero_array( self.get_size_of_array( I ) ) ndim = self.getdimension(I) if ndim == 1+1: rxm[:,1:] = I[:,0:-1] if self.bcNeumannZero: rxm[:,0] = I[:,0] else: rxm[:,0] = 2*I[:,0]-I[:,1] elif ndim == 2+1: rxm[:,1:,:] = I[:,0:-1,:] if self.bcNeumannZero: rxm[:,0,:] = I[:,0,:] else: rxm[:,0,:] = 2*I[:,0,:]-I[:,1,:] elif ndim == 3+1: rxm[:,1:,:,:] = I[:,0:-1,:,:] if self.bcNeumannZero: rxm[:,0,:,:] = I[:,0,:,:] else: rxm[:,0,:,:] = 2*I[:,0,:,:]-I[:,1,:,:] else: raise ValueError('Finite differences are only supported in dimensions 1 to 3') return rxm def yp(self, I): """ !!!!!!!!!!! IMPORTANT: ALL THE FOLLOWING IMPLEMENTED CODE ADD 1 ON DIMENSION, WHICH REPRESENT BATCH DIMENSION. THIS IS FOR COMPUTATIONAL EFFICIENCY. Same as xp, but for the y direction :param I: Input image :return: Image with values at y-index one larger """ ryp = self.create_zero_array( self.get_size_of_array( I ) ) ndim = self.getdimension(I) if ndim == 2+1: ryp[:,:,0:-1] = I[:,:,1:] if self.bcNeumannZero: ryp[:,:,-1] = I[:,:,-1] else: ryp[:,:,-1] = 2*I[:,:,-1]-I[:,:,-2] elif ndim == 3+1: ryp[:,:,0:-1,:] = I[:,:,1:,:] if self.bcNeumannZero: ryp[:,:,-1,:] = I[:,:,-1,:] else: ryp[:,:,-1,:] = 2*I[:,:,-1,:]-I[:,:,-2,:] else: print('Current dimension:', ndim-1) raise ValueError('Finite differences are only supported in dimensions 1 to 3') return ryp def ym(self, I): """ Same as xm, but for the y direction !!!!!!!!!!! IMPORTANT: ALL THE FOLLOWING IMPLEMENTED CODE ADD 1 ON DIMENSION, WHICH REPRESENT BATCH DIMENSION. THIS IS FOR COMPUTATIONAL EFFICIENCY. Returns the values for x-index decremented by one (to the left in 1D) :param I: Input image [batch, X, Y, Z] :return: Image with values at y-index one smaller """ rym = self.create_zero_array( self.get_size_of_array( I ) ) ndim = self.getdimension(I) if ndim == 2+1: rym[:,:,1:] = I[:,:,0:-1] if self.bcNeumannZero: rym[:,:,0] = I[:,:,0] else: rym[:,:,0] = 2*I[:,:,0]-I[:,:,1] elif ndim == 3+1: rym[:,:,1:,:] = I[:,:,0:-1,:] if self.bcNeumannZero: rym[:,:,0,:] = I[:,:,0,:] else: rym[:,:,0,:] = 2*I[:,:,0,:]-I[:,:,1,:] else: raise ValueError('Finite differences are only supported in dimensions 1 to 3') return rym def zp(self, I): """ Same as xp, but for the z direction !!!!!!!!!!! IMPORTANT: ALL THE FOLLOWING IMPLEMENTED CODE ADD 1 ON DIMENSION, WHICH REPRESENT BATCH DIMENSION. THIS IS FOR COMPUTATIONAL EFFICIENCY. Returns the values for x-index decremented by one (to the left in 1D) :param I: Input image [batch, X, Y, Z] :return: Image with values at z-index one larger """ rzp = self.create_zero_array( self.get_size_of_array( I ) ) ndim = self.getdimension(I) if ndim == 3+1: rzp[:,:,:,0:-1] = I[:,:,:,1:] if self.bcNeumannZero: rzp[:,:,:,-1] = I[:,:,:,-1] else: rzp[:,:,:,-1] = 2*I[:,:,:,-1]-I[:,:,:,-2] else: raise ValueError('Finite differences are only supported in dimensions 1 to 3') return rzp def zm(self, I): """ Same as xm, but for the z direction !!!!!!!!!!! IMPORTANT: ALL THE FOLLOWING IMPLEMENTED CODE ADD 1 ON DIMENSION, WHICH REPRESENT BATCH DIMENSION. THIS IS FOR COMPUTATIONAL EFFICIENCY. Returns the values for x-index decremented by one (to the left in 1D) :param I: Input image [batch, X, Y, Z] :return: Image with values at z-index one smaller """ rzm = self.create_zero_array( self.get_size_of_array( I ) ) ndim = self.getdimension(I) if ndim == 3+1: rzm[:,:,:,1:] = I[:,:,:,0:-1] if self.bcNeumannZero: rzm[:,:,:,0] = I[:,:,:,0] else: rzm[:,:,:,0] = 2*I[:,:,:,0]-I[:,:,:,1] else: raise ValueError('Finite differences are only supported in dimensions 1 to 3') return rzm class FD_np(FD): """ Defnitions of the abstract methods for numpy """ def __init__(self,spacing,bcNeumannZero=True): """ Constructor for numpy finite differences :param spacing: spatial spacing (array with as many entries as there are spatial dimensions) :param bcNeumannZero: Specifies if zero Neumann conditions should be used (if not, uses linear extrapolation) """ super(FD_np, self).__init__(spacing,bcNeumannZero) def getdimension(self,I): """ Returns the dimension of an image :param I: input image :return: dimension of the input image """ return I.ndim def create_zero_array(self, sz): """ Creates a zero array :param sz: size of the zero array, e.g., [3,4,2] :return: the zero array """ return np.zeros( sz ) def get_size_of_array(self, A): """ Returns the size (shape in numpy) of an array :param A: input array :return: shape/size """ return A.shape class FD_torch(FD): """ Defnitions of the abstract methods for torch """ def __init__(self,spacing,device,bcNeumannZero=True): """ Constructor for torch finite differences :param spacing: spatial spacing (array with as many entries as there are spatial dimensions) :param bcNeumannZero: Specifies if zero Neumann conditions should be used (if not, uses linear extrapolation) """ super(FD_torch, self).__init__(spacing,bcNeumannZero) self.device = device def getdimension(self,I): """ Returns the dimension of an image :param I: input image :return: dimension of the input image """ return I.dim() def create_zero_array(self, sz): """ Creats a zero array :param sz: size of the array, e.g., [3,4,2] :return: the zero array """ return torch.zeros(sz).float().to(self.device) def get_size_of_array(self, A): """ Returns the size (size()) of an array :param A: input array :return: shape/size """ return A.size()