"""Compute spline interpolating coefficients These functions are ported from the C routines in SPM's bsplines.c by John Ashburner, which are themselves ports from Philippe Thevenaz's code. JA furthermore derived the initial conditions for the DFT ("wrap around") boundary conditions. Note that similar routines are available in scipy with boundary conditions DCT1 ("mirror"), DCT2 ("reflect") and DFT ("wrap"); all derived by P. Thevenaz, according to the comments. Our DCT2 boundary conditions are ported from scipy. Only boundary conditions DCT1, DCT2 and DFT are implemented. References ---------- ..[1] M. Unser, A. Aldroubi and M. Eden. "B-Spline Signal Processing: Part I-Theory," IEEE Transactions on Signal Processing 41(2):821-832 (1993). ..[2] M. Unser, A. Aldroubi and M. Eden. "B-Spline Signal Processing: Part II-Efficient Design and Applications," IEEE Transactions on Signal Processing 41(2):834-848 (1993). ..[3] M. Unser. "Splines: A Perfect Fit for Signal and Image Processing," IEEE Signal Processing Magazine 16(6):22-38 (1999). """ import torch import math from typing import List, Optional from .jit_utils import movedim1 from .pushpull import pad_list_int @torch.jit.script def get_poles(order: int) -> List[float]: empty: List[float] = [] if order in (0, 1): return empty if order == 2: return [math.sqrt(8.) - 3.] if order == 3: return [math.sqrt(3.) - 2.] if order == 4: return [math.sqrt(664. - math.sqrt(438976.)) + math.sqrt(304.) - 19., math.sqrt(664. + math.sqrt(438976.)) - math.sqrt(304.) - 19.] if order == 5: return [math.sqrt(67.5 - math.sqrt(4436.25)) + math.sqrt(26.25) - 6.5, math.sqrt(67.5 + math.sqrt(4436.25)) - math.sqrt(26.25) - 6.5] if order == 6: return [-0.488294589303044755130118038883789062112279161239377608394, -0.081679271076237512597937765737059080653379610398148178525368, -0.00141415180832581775108724397655859252786416905534669851652709] if order == 7: return [-0.5352804307964381655424037816816460718339231523426924148812, -0.122554615192326690515272264359357343605486549427295558490763, -0.0091486948096082769285930216516478534156925639545994482648003] raise NotImplementedError @torch.jit.script def get_gain(poles: List[float]) -> float: lam: float = 1. for pole in poles: lam *= (1. - pole) * (1. - 1./pole) return lam @torch.jit.script def dft_initial(inp, pole: float, dim: int = -1, keepdim: bool = False): assert inp.shape[dim] > 1 max_iter: int = int(math.ceil(-30./math.log(abs(pole)))) max_iter = min(max_iter, inp.shape[dim]) poles = torch.as_tensor(pole, dtype=inp.dtype, device=inp.device) poles = poles.pow(torch.arange(1, max_iter, dtype=inp.dtype, device=inp.device)) poles = poles.flip(0) inp = movedim1(inp, dim, 0) inp0 = inp[0] inp = inp[1-max_iter:] inp = movedim1(inp, 0, -1) out = torch.matmul(inp.unsqueeze(-2), poles.unsqueeze(-1)).squeeze(-1) out = out + inp0.unsqueeze(-1) if keepdim: out = movedim1(out, -1, dim) else: out = out.squeeze(-1) pole = pole ** max_iter out = out / (1 - pole) return out @torch.jit.script def dct1_initial(inp, pole: float, dim: int = -1, keepdim: bool = False): n = inp.shape[dim] max_iter: int = int(math.ceil(-30./math.log(abs(pole)))) if max_iter < n: poles = torch.as_tensor(pole, dtype=inp.dtype, device=inp.device) poles = poles.pow(torch.arange(1, max_iter, dtype=inp.dtype, device=inp.device)) inp = movedim1(inp, dim, 0) inp0 = inp[0] inp = inp[1:max_iter] inp = movedim1(inp, 0, -1) out = torch.matmul(inp.unsqueeze(-2), poles.unsqueeze(-1)).squeeze(-1) out = out + inp0.unsqueeze(-1) if keepdim: out = movedim1(out, -1, dim) else: out = out.squeeze(-1) else: max_iter = n polen = pole ** (n - 1) inp0 = inp[0] + polen * inp[-1] inp = inp[1:-1] inp = movedim1(inp, 0, -1) poles = torch.as_tensor(pole, dtype=inp.dtype, device=inp.device) poles = poles.pow(torch.arange(1, n-1, dtype=inp.dtype, device=inp.device)) poles = poles + (polen * polen) / poles out = torch.matmul(inp.unsqueeze(-2), poles.unsqueeze(-1)).squeeze(-1) out = out + inp0.unsqueeze(-1) if keepdim: out = movedim1(out, -1, dim) else: out = out.squeeze(-1) pole = pole ** (max_iter - 1) out = out / (1 - pole * pole) return out @torch.jit.script def dct2_initial(inp, pole: float, dim: int = -1, keepdim: bool = False): # Ported from scipy: # https://github.com/scipy/scipy/blob/master/scipy/ndimage/src/ni_splines.c # # I (YB) unwarped and simplied the terms so that I could use a dot # product instead of a loop. # It should certainly be possible to derive a version for max_iter < n, # as JA did for DCT1, to avoid long recursions when `n` is large. But # I think it would require a more complicated anticausal/final condition. n = inp.shape[dim] polen = pole ** n pole_last = polen * (1 + 1/(pole + polen * polen)) inp00 = inp[0] inp0 = inp[0] + pole_last * inp[-1] inp = inp[1:-1] inp = movedim1(inp, 0, -1) poles = torch.as_tensor(pole, dtype=inp.dtype, device=inp.device) poles = (poles.pow(torch.arange(1, n-1, dtype=inp.dtype, device=inp.device)) + poles.pow(torch.arange(2*n-2, n, -1, dtype=inp.dtype, device=inp.device))) out = torch.matmul(inp.unsqueeze(-2), poles.unsqueeze(-1)).squeeze(-1) out = out + inp0.unsqueeze(-1) out = out * (pole / (1 - polen * polen)) out = out + inp00.unsqueeze(-1) if keepdim: out = movedim1(out, -1, dim) else: out = out.squeeze(-1) return out @torch.jit.script def dft_final(inp, pole: float, dim: int = -1, keepdim: bool = False): assert inp.shape[dim] > 1 max_iter: int = int(math.ceil(-30./math.log(abs(pole)))) max_iter = min(max_iter, inp.shape[dim]) poles = torch.as_tensor(pole, dtype=inp.dtype, device=inp.device) poles = poles.pow(torch.arange(2, max_iter+1, dtype=inp.dtype, device=inp.device)) inp = movedim1(inp, dim, 0) inp0 = inp[-1] inp = inp[:max_iter-1] inp = movedim1(inp, 0, -1) out = torch.matmul(inp.unsqueeze(-2), poles.unsqueeze(-1)).squeeze(-1) out = out.add(inp0.unsqueeze(-1), alpha=pole) if keepdim: out = movedim1(out, -1, dim) else: out = out.squeeze(-1) pole = pole ** max_iter out = out / (pole - 1) return out @torch.jit.script def dct1_final(inp, pole: float, dim: int = -1, keepdim: bool = False): inp = movedim1(inp, dim, 0) out = pole * inp[-2] + inp[-1] out = out * (pole / (pole*pole - 1)) if keepdim: out = movedim1(out.unsqueeze(0), 0, dim) return out @torch.jit.script def dct2_final(inp, pole: float, dim: int = -1, keepdim: bool = False): # Ported from scipy: # https://github.com/scipy/scipy/blob/master/scipy/ndimage/src/ni_splines.c inp = movedim1(inp, dim, 0) out = inp[-1] * (pole / (pole - 1)) if keepdim: out = movedim1(out.unsqueeze(0), 0, dim) return out @torch.jit.script class CoeffBound: def __init__(self, bound: int): self.bound = bound def initial(self, inp, pole: float, dim: int = -1, keepdim: bool = False): if self.bound in (0, 2): # zero, dct1 return dct1_initial(inp, pole, dim, keepdim) elif self.bound in (1, 3): # nearest, dct2 return dct2_initial(inp, pole, dim, keepdim) elif self.bound == 6: # dft return dft_initial(inp, pole, dim, keepdim) else: raise NotImplementedError def final(self, inp, pole: float, dim: int = -1, keepdim: bool = False): if self.bound in (0, 2): # zero, dct1 return dct1_final(inp, pole, dim, keepdim) elif self.bound in (1, 3): # nearest, dct2 return dct2_final(inp, pole, dim, keepdim) elif self.bound == 6: # dft return dft_final(inp, pole, dim, keepdim) else: raise NotImplementedError @torch.jit.script def filter(inp, bound: CoeffBound, poles: List[float], dim: int = -1, inplace: bool = False): if not inplace: inp = inp.clone() if inp.shape[dim] == 1: return inp gain = get_gain(poles) inp *= gain inp = movedim1(inp, dim, 0) n = inp.shape[0] for pole in poles: inp[0] = bound.initial(inp, pole, dim=0, keepdim=False) for i in range(1, n): inp[i].add_(inp[i-1], alpha=pole) inp[-1] = bound.final(inp, pole, dim=0, keepdim=False) for i in range(n-2, -1, -1): inp[i].neg_().add_(inp[i+1]).mul_(pole) inp = movedim1(inp, 0, dim) return inp @torch.jit.script def spline_coeff(inp, bound: int, order: int, dim: int = -1, inplace: bool = False): """Compute the interpolating spline coefficients, for a given spline order and boundary conditions, along a single dimension. Parameters ---------- inp : tensor bound : {2: dct1, 6: dft} order : {0..7} dim : int, default=-1 inplace : bool, default=False Returns ------- out : tensor """ if not inplace: inp = inp.clone() if order in (0, 1): return inp poles = get_poles(order) return filter(inp, CoeffBound(bound), poles, dim=dim, inplace=True) @torch.jit.script def spline_coeff_nd(inp, bound: List[int], order: List[int], dim: Optional[int] = None, inplace: bool = False): """Compute the interpolating spline coefficients, for a given spline order and boundary condition, along the last `dim` dimensions. Parameters ---------- inp : (..., *spatial) tensor bound : List[{2: dct1, 6: dft}] order : List[{0..7}] dim : int, default=`inp.dim()` inplace : bool, default=False Returns ------- out : (..., *spatial) tensor """ if not inplace: inp = inp.clone() if dim is None: dim = inp.dim() bound = pad_list_int(bound, dim) order = pad_list_int(order, dim) for d, b, o in zip(range(dim), bound, order): inp = spline_coeff(inp, b, o, dim=-dim + d, inplace=True) return inp