File size: 2,587 Bytes
e1404bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
license: mit
tags:
- pytorch
- safetensors
- threshold-logic
- neuromorphic
- multi-layer
---
# threshold-biimplies
The biconditional: x β y ("if and only if"). Functionally identical to XNOR, but framed as the logical equivalence relation.
## Circuit
```
x y
β β
βββββ¬ββββ€
β β β
βΌ β βΌ
βββββββββββββββββ
β NOR βββ AND β Layer 1
βw:-1,-1ββw:1,1 β
βb: 0 βββb: -2 β
βββββββββββββββββ
β β β
βββββΌββββ
βΌ
ββββββββ
β OR β Layer 2
βw: 1,1β
βb: -1 β
ββββββββ
β
βΌ
x β y
```
## Mechanism
The biconditional tests whether x and y have the same truth value:
| x | y | NOR | AND | x β y |
|---|---|-----|-----|-------|
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 |
NOR catches "both false," AND catches "both true," OR combines.
## Why Two Layers?
Unlike simple implication (x β y), the biconditional is not linearly separable. It requires detecting two diagonal cases - same problem as XOR.
Implication x β y can be computed with weights [-1, +1] because it fails only at (1,0). Biimplication fails at both (0,1) and (1,0) - these points cannot be separated from (0,0) and (1,1) by a single hyperplane.
## Parameters
| Layer | Weights | Bias |
|-------|---------|------|
| NOR | [-1, -1] | 0 |
| AND | [1, 1] | -2 |
| OR | [1, 1] | -1 |
| **Total** | | **9** |
## Properties
- Reflexive: x β x = 1
- Symmetric: (x β y) = (y β x)
- Transitive: (x β y) β§ (y β z) β (x β z)
Full equivalence relation.
## Usage
```python
from safetensors.torch import load_file
import torch
w = load_file('model.safetensors')
def biimplies_gate(x, y):
inp = torch.tensor([float(x), float(y)])
nor_out = int((inp * w['layer1.neuron1.weight']).sum() + w['layer1.neuron1.bias'] >= 0)
and_out = int((inp * w['layer1.neuron2.weight']).sum() + w['layer1.neuron2.bias'] >= 0)
l1 = torch.tensor([float(nor_out), float(and_out)])
return int((l1 * w['layer2.weight']).sum() + w['layer2.bias'] >= 0)
```
## Files
```
threshold-biimplies/
βββ model.safetensors
βββ model.py
βββ config.json
βββ README.md
```
## License
MIT
|