--- license: mit tags: - pytorch - safetensors - threshold-logic - neuromorphic - functionally-complete --- # threshold-nor The silence detector. Fires only when both inputs are quiet. ## Circuit ``` x y │ │ └─┬─┘ ▼ ┌────────┐ │w: -1,-1│ │ b: 0 │ └────────┘ │ ▼ NOR(x,y) ``` ## Mechanism With bias 0, we start exactly at threshold. Any input subtracts, pushing us below: | x | y | sum | output | |---|---|-----|--------| | 0 | 0 | 0 | 1 | | 0 | 1 | -1 | 0 | | 1 | 0 | -1 | 0 | | 1 | 1 | -2 | 0 | NOR is OR with inverted output. It's also NOT extended to two inputs: NOR(x,x) = NOT(x). ## Parameters | | | |---|---| | Weights | [-1, -1] | | Bias | 0 | | Total | 3 parameters | ## Optimality Exhaustive enumeration of all 7 weight configurations at magnitudes 0-2 confirms this circuit is **already at minimum magnitude (2)**. There is exactly one valid configuration at magnitude 2, and no valid configurations exist below it. ## Functional Completeness Like NAND, NOR can build any Boolean function: - NOT(x) = NOR(x, x) - OR(x,y) = NOT(NOR(x,y)) = NOR(NOR(x,y), NOR(x,y)) - AND(x,y) = NOR(NOT(x), NOT(y)) NOR logic was used in the Apollo Guidance Computer. ## Usage ```python from safetensors.torch import load_file import torch w = load_file('model.safetensors') def nor_gate(x, y): inputs = torch.tensor([float(x), float(y)]) return int((inputs * w['weight']).sum() + w['bias'] >= 0) ``` ## Files ``` threshold-nor/ ├── model.safetensors ├── model.py ├── config.json └── README.md ``` ## License MIT