--- license: mit tags: - pytorch - safetensors - threshold-logic - neuromorphic - weighted-voting --- # threshold-weighted Weighted threshold function demonstrating non-uniform input weights. ## Function y = 1 iff 4·x3 + 3·x2 + 2·x1 + 1·x0 >= 6 Each input has a different "voting power": - x3: weight 4 (most influential) - x2: weight 3 - x1: weight 2 - x0: weight 1 (least influential) Maximum weighted sum = 10, threshold = 6 (weighted majority). ## Truth Table (selected rows) | x3 | x2 | x1 | x0 | w_sum | y | |----|----|----|-----|-------|---| | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 | 1 | 1 | 6 | **1** | | 1 | 0 | 0 | 0 | 4 | 0 | | 1 | 0 | 1 | 0 | 6 | **1** | | 1 | 1 | 0 | 0 | 7 | **1** | | 1 | 1 | 1 | 1 | 10 | **1** | Note: x3 alone (weight 4) isn't enough, but x3 + x1 (weight 6) passes. ## Architecture Single threshold neuron: ``` x3 ──(×4)──┐ x2 ──(×3)──┼──► Σ ──► (≥6?) ──► y x1 ──(×2)──┤ x0 ──(×1)──┘ ``` ## Parameters | | | |---|---| | Inputs | 4 | | Outputs | 1 | | Neurons | 1 | | Layers | 1 | | Parameters | 5 | | Magnitude | 16 | ## Theory This is the fundamental building block of threshold logic. Any linearly separable Boolean function can be computed by a single weighted threshold neuron. Non-linearly-separable functions (like XOR) require multiple layers. The general form: y = 1 iff Σ(wi·xi) >= θ ## Applications - Weighted voting systems - Credit scoring - Risk assessment - Neural network layers ## Usage ```python from safetensors.torch import load_file import torch w = load_file('model.safetensors') def weighted(x3, x2, x1, x0): inp = torch.tensor([float(x3), float(x2), float(x1), float(x0)]) return int((inp @ w['y.weight'].T + w['y.bias'] >= 0).item()) # weighted(1, 0, 1, 0) = 1 # 4+2=6 >= 6 # weighted(1, 0, 0, 1) = 0 # 4+1=5 < 6 ``` ## License MIT