Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,103 +1,103 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
tags:
|
| 4 |
-
- formal-verification
|
| 5 |
-
- coq
|
| 6 |
-
- threshold-logic
|
| 7 |
-
- neuromorphic
|
| 8 |
-
- minority
|
| 9 |
-
---
|
| 10 |
-
|
| 11 |
-
# tiny-Minority-verified
|
| 12 |
-
|
| 13 |
-
Formally verified minority gate for 8-bit inputs. Single threshold neuron computing minority function with 100% accuracy.
|
| 14 |
-
|
| 15 |
-
## Architecture
|
| 16 |
-
|
| 17 |
-
| Component | Value |
|
| 18 |
-
|-----------|-------|
|
| 19 |
-
| Inputs | 8 |
|
| 20 |
-
| Outputs | 1 |
|
| 21 |
-
| Neurons | 1 |
|
| 22 |
-
| Parameters | 9 |
|
| 23 |
-
| Weights | [-1, -1, -1, -1, -1, -1, -1, -1] |
|
| 24 |
-
| Bias | 3 |
|
| 25 |
-
| Activation | Heaviside step |
|
| 26 |
-
|
| 27 |
-
## Key Properties
|
| 28 |
-
|
| 29 |
-
- 100% accuracy (256/256 inputs correct)
|
| 30 |
-
- Coq-proven correctness
|
| 31 |
-
- Single threshold neuron
|
| 32 |
-
- Integer weights
|
| 33 |
-
- Fires when ≤3 of 8 inputs are true
|
| 34 |
-
- Complement of majority (inverted weights)
|
| 35 |
-
|
| 36 |
-
## Usage
|
| 37 |
-
|
| 38 |
-
```python
|
| 39 |
-
import torch
|
| 40 |
-
from safetensors.torch import load_file
|
| 41 |
-
|
| 42 |
-
weights = load_file('minority.safetensors')
|
| 43 |
-
|
| 44 |
-
def minority_gate(bits):
|
| 45 |
-
# bits: list of 8 binary values
|
| 46 |
-
inputs = torch.tensor([float(b) for b in bits])
|
| 47 |
-
weighted_sum = (inputs * weights['weight']).sum() + weights['bias']
|
| 48 |
-
return int(weighted_sum >= 0)
|
| 49 |
-
|
| 50 |
-
# Test
|
| 51 |
-
print(minority_gate([0,0,0,0,0,0,0,0])) # 1 (minority)
|
| 52 |
-
print(minority_gate([1,1,1,0,0,0,0,0])) # 1 (3/8, minority)
|
| 53 |
-
print(minority_gate([1,1,1,1,0,0,0,0])) # 0 (4/8, not minority)
|
| 54 |
-
print(minority_gate([1,1,1,1,1,1,1,1])) # 0 (no minority)
|
| 55 |
-
```
|
| 56 |
-
|
| 57 |
-
## Verification
|
| 58 |
-
|
| 59 |
-
**Coq Theorem**:
|
| 60 |
-
```coq
|
| 61 |
-
Theorem minority_correct : forall x0 x1 x2 x3 x4 x5 x6 x7,
|
| 62 |
-
minority_circuit [x0; x1; x2; x3; x4; x5; x6; x7] =
|
| 63 |
-
minority_spec [x0; x1; x2; x3; x4; x5; x6; x7].
|
| 64 |
-
```
|
| 65 |
-
|
| 66 |
-
Proven axiom-free via three methods:
|
| 67 |
-
1. **Exhaustive**: Verified on all 256 inputs
|
| 68 |
-
2. **Universal**: Quantified proof over all boolean combinations
|
| 69 |
-
3. **Algebraic**: Characterized via hamming weight ≤ 3
|
| 70 |
-
|
| 71 |
-
**Algebraic characterization**:
|
| 72 |
-
```coq
|
| 73 |
-
Theorem minority_hamming_weight (xs : list bool) :
|
| 74 |
-
length xs = 8 ->
|
| 75 |
-
minority_circuit xs = true <-> hamming_weight xs <= 3.
|
| 76 |
-
```
|
| 77 |
-
|
| 78 |
-
Full proof: [coq-circuits/Threshold/Minority.v](https://github.com/CharlesCNorton/coq-circuits)
|
| 79 |
-
|
| 80 |
-
## Circuit Operation
|
| 81 |
-
|
| 82 |
-
Input with k true bits produces weighted sum: -k + 3
|
| 83 |
-
|
| 84 |
-
- k ≤ 3: weighted_sum ≥ 0 → output 1 (minority)
|
| 85 |
-
- k > 3: weighted_sum < 0 → output 0 (not minority)
|
| 86 |
-
|
| 87 |
-
## Applications
|
| 88 |
-
|
| 89 |
-
- Inverted voting systems
|
| 90 |
-
- Fault detection (low activation)
|
| 91 |
-
- Sparse pattern detection
|
| 92 |
-
- Neuromorphic hardware
|
| 93 |
-
|
| 94 |
-
## Citation
|
| 95 |
-
|
| 96 |
-
```bibtex
|
| 97 |
-
@software{tiny_minority_prover_2025,
|
| 98 |
-
title={tiny-Minority-verified: Formally Verified Minority Gate},
|
| 99 |
-
author={Norton, Charles},
|
| 100 |
-
url={https://huggingface.co/phanerozoic/tiny-Minority-verified},
|
| 101 |
-
year={2025}
|
| 102 |
-
}
|
| 103 |
-
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- formal-verification
|
| 5 |
+
- coq
|
| 6 |
+
- threshold-logic
|
| 7 |
+
- neuromorphic
|
| 8 |
+
- minority
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# tiny-Minority-verified
|
| 12 |
+
|
| 13 |
+
Formally verified minority gate for 8-bit inputs. Single threshold neuron computing minority function with 100% accuracy.
|
| 14 |
+
|
| 15 |
+
## Architecture
|
| 16 |
+
|
| 17 |
+
| Component | Value |
|
| 18 |
+
|-----------|-------|
|
| 19 |
+
| Inputs | 8 |
|
| 20 |
+
| Outputs | 1 |
|
| 21 |
+
| Neurons | 1 |
|
| 22 |
+
| Parameters | 9 |
|
| 23 |
+
| Weights | [-1, -1, -1, -1, -1, -1, -1, -1] |
|
| 24 |
+
| Bias | 3 |
|
| 25 |
+
| Activation | Heaviside step |
|
| 26 |
+
|
| 27 |
+
## Key Properties
|
| 28 |
+
|
| 29 |
+
- 100% accuracy (256/256 inputs correct)
|
| 30 |
+
- Coq-proven correctness
|
| 31 |
+
- Single threshold neuron
|
| 32 |
+
- Integer weights
|
| 33 |
+
- Fires when ≤3 of 8 inputs are true
|
| 34 |
+
- Complement of majority (inverted weights)
|
| 35 |
+
|
| 36 |
+
## Usage
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
import torch
|
| 40 |
+
from safetensors.torch import load_file
|
| 41 |
+
|
| 42 |
+
weights = load_file('minority.safetensors')
|
| 43 |
+
|
| 44 |
+
def minority_gate(bits):
|
| 45 |
+
# bits: list of 8 binary values
|
| 46 |
+
inputs = torch.tensor([float(b) for b in bits])
|
| 47 |
+
weighted_sum = (inputs * weights['weight']).sum() + weights['bias']
|
| 48 |
+
return int(weighted_sum >= 0)
|
| 49 |
+
|
| 50 |
+
# Test
|
| 51 |
+
print(minority_gate([0,0,0,0,0,0,0,0])) # 1 (minority)
|
| 52 |
+
print(minority_gate([1,1,1,0,0,0,0,0])) # 1 (3/8, minority)
|
| 53 |
+
print(minority_gate([1,1,1,1,0,0,0,0])) # 0 (4/8, not minority)
|
| 54 |
+
print(minority_gate([1,1,1,1,1,1,1,1])) # 0 (no minority)
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
## Verification
|
| 58 |
+
|
| 59 |
+
**Coq Theorem**:
|
| 60 |
+
```coq
|
| 61 |
+
Theorem minority_correct : forall x0 x1 x2 x3 x4 x5 x6 x7,
|
| 62 |
+
minority_circuit [x0; x1; x2; x3; x4; x5; x6; x7] =
|
| 63 |
+
minority_spec [x0; x1; x2; x3; x4; x5; x6; x7].
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
Proven axiom-free via three methods:
|
| 67 |
+
1. **Exhaustive**: Verified on all 256 inputs
|
| 68 |
+
2. **Universal**: Quantified proof over all boolean combinations
|
| 69 |
+
3. **Algebraic**: Characterized via hamming weight ≤ 3
|
| 70 |
+
|
| 71 |
+
**Algebraic characterization**:
|
| 72 |
+
```coq
|
| 73 |
+
Theorem minority_hamming_weight (xs : list bool) :
|
| 74 |
+
length xs = 8 ->
|
| 75 |
+
minority_circuit xs = true <-> hamming_weight xs <= 3.
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
Full proof: [coq-circuits/Threshold/Minority.v](https://github.com/CharlesCNorton/coq-circuits/blob/main/coq/Threshold/Minority.v)
|
| 79 |
+
|
| 80 |
+
## Circuit Operation
|
| 81 |
+
|
| 82 |
+
Input with k true bits produces weighted sum: -k + 3
|
| 83 |
+
|
| 84 |
+
- k ≤ 3: weighted_sum ≥ 0 → output 1 (minority)
|
| 85 |
+
- k > 3: weighted_sum < 0 → output 0 (not minority)
|
| 86 |
+
|
| 87 |
+
## Applications
|
| 88 |
+
|
| 89 |
+
- Inverted voting systems
|
| 90 |
+
- Fault detection (low activation)
|
| 91 |
+
- Sparse pattern detection
|
| 92 |
+
- Neuromorphic hardware
|
| 93 |
+
|
| 94 |
+
## Citation
|
| 95 |
+
|
| 96 |
+
```bibtex
|
| 97 |
+
@software{tiny_minority_prover_2025,
|
| 98 |
+
title={tiny-Minority-verified: Formally Verified Minority Gate},
|
| 99 |
+
author={Norton, Charles},
|
| 100 |
+
url={https://huggingface.co/phanerozoic/tiny-Minority-verified},
|
| 101 |
+
year={2025}
|
| 102 |
+
}
|
| 103 |
+
```
|