--- license: mit tags: - formal-verification - coq - threshold-logic - neuromorphic --- # tiny-OR-verified Formally verified OR gate. Single threshold neuron computing disjunction with 100% accuracy. ## Architecture | Component | Value | |-----------|-------| | Inputs | 2 | | Outputs | 1 | | Neurons | 1 | | Parameters | 3 | | Weights | [1, 1] | | Bias | -1 | | Activation | Heaviside step | ## Key Properties - 100% accuracy (4/4 inputs correct) - Coq-proven correctness - Single threshold neuron - Integer weights - Commutative: OR(x,y) = OR(y,x) - Associative: OR(x,OR(y,z)) = OR(OR(x,y),z) - Idempotent: OR(x,x) = x ## Usage ```python import torch from safetensors.torch import load_file weights = load_file('or.safetensors') def or_gate(x, y): # Heaviside: weighted_sum + bias >= 0 inputs = torch.tensor([float(x), float(y)]) weighted_sum = (inputs * weights['weight']).sum() + weights['bias'] return int(weighted_sum >= 0) # Test print(or_gate(0, 0)) # 0 print(or_gate(0, 1)) # 1 print(or_gate(1, 0)) # 1 print(or_gate(1, 1)) # 1 ``` ## Verification **Coq Theorem**: ```coq Theorem or_correct : forall x y, or_circuit x y = orb x y. ``` Proven axiom-free with properties: - Commutativity - Associativity - Identity (OR with false) - Absorption (OR with true) - Idempotence Full proof: [coq-circuits/Boolean/OR.v](https://github.com/CharlesCNorton/coq-circuits/blob/main/coq/Boolean/OR.v) ## Circuit Operation Input combination produces weighted sum: - (0,0): 0*1 + 0*1 - 1 = -1 < 0 → 0 - (0,1): 0*1 + 1*1 - 1 = 0 >= 0 → 1 - (1,0): 1*1 + 0*1 - 1 = 0 >= 0 → 1 - (1,1): 1*1 + 1*1 - 1 = 1 >= 0 → 1 Requires at least one input to reach threshold. ## Citation ```bibtex @software{tiny_or_prover_2025, title={tiny-OR-verified: Formally Verified OR Gate}, author={Norton, Charles}, url={https://huggingface.co/phanerozoic/tiny-OR-verified}, year={2025} } ```