--- license: mit tags: - formal-verification - coq - threshold-logic - neuromorphic - modular-arithmetic --- # tiny-mod12-verified Formally verified MOD-12 circuit. Single-layer threshold network computing modulo-12 arithmetic with 100% accuracy. ## Architecture | Component | Value | |-----------|-------| | Inputs | 8 | | Outputs | 1 (per residue class) | | Neurons | 12 (one per residue 0-11) | | Parameters | 108 (12 × 9) | | Weights | [1, 1, 1, 1, 1, 1, 1, 1] | | Bias | 0 | | Activation | Heaviside step | ## Key Properties - 100% accuracy (256/256 inputs correct) - Coq-proven correctness - All-ones weight pattern (m > input width) - Computes Hamming weight mod 12 - Compatible with neuromorphic hardware ## Algebraic Pattern MOD-12 uses all-ones weights because the reset position (position 12) is beyond the 8-bit input width: - All positions 1-8: weight = 1 - Position 12 (beyond input): would be weight = 1-12 = -11 The circuit tracks cumulative sum mod 12 using the Hamming weight directly. ## Usage ```python import torch from safetensors.torch import load_file weights = load_file('mod12.safetensors') def mod12_circuit(bits): # bits: list of 8 binary values inputs = torch.tensor([float(b) for b in bits]) weighted_sum = (inputs * weights['weight']).sum() + weights['bias'] return int(weighted_sum.item()) % 12 # Test print(mod12_circuit([1,1,1,1,1,1,1,1])) # 8 mod 12 = 8 print(mod12_circuit([1,1,1,1,0,0,0,0])) # 4 mod 12 = 4 ``` ## Verification **Coq Theorem**: ```coq Theorem mod12_correct_residue_0 : forall x0 x1 x2 x3 x4 x5 x6 x7, mod12_is_zero [x0; x1; x2; x3; x4; x5; x6; x7] = Z.eqb ((Z.of_nat (hamming_weight [x0; x1; x2; x3; x4; x5; x6; x7])) mod 12) 0. ``` Proven axiom-free using algebraic weight patterns. Full proof: [coq-circuits/Modular/Mod12.v](https://github.com/CharlesCNorton/coq-circuits/blob/main/coq/Modular/Mod12.v) ## Residue Distribution For 8-bit inputs (256 total), limited to residues 0-8: - Residue 0: 1 inputs - Residue 1: 8 inputs - Residue 2: 28 inputs - Residue 3: 56 inputs - Residue 4: 70 inputs - Residue 5: 56 inputs - Residue 6: 28 inputs - Residue 7: 8 inputs - Residue 8: 1 inputs - Residues 9-11: 0 inputs (unreachable with 8-bit input) ## Citation ```bibtex @software{tiny_mod12_verified_2025, title={tiny-mod12-verified: Formally Verified MOD-12 Circuit}, author={Norton, Charles}, url={https://huggingface.co/phanerozoic/tiny-mod12-verified}, year={2025} } ```